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ABSTRACT
In large-scale commercial web search engines, estimating the
importance of a web page is a crucial ingredient in rank-
ing web search results. So far, to assess the importance of
web pages, two different types of feedback have been taken
into account, independent of each other: the feedback ob-
tained from the hyperlink structure among the web pages
(e.g., PageRank) or the web browsing patterns of users (e.g.,
BrowseRank). Unfortunately, both types of feedback have
certain drawbacks. While the former lacks the user prefer-
ences and is vulnerable to malicious intent, the latter suffers
from sparsity and hence low web coverage. In this work, we
combine these two types of feedback under a hybrid page
ranking model in order to alleviate the above-mentioned
drawbacks. Our empirical results indicate that the proposed
model leads to better estimation of page importance accord-
ing to an evaluation metric that relies on user click feedback
obtained from web search query logs. We conduct all of our
experiments in a realistic setting, using a very large scale
web page collection (around 6.5 billion web pages) and web
browsing data (around two billion web page visits).

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Algorithms, Performance, Experimentation, Human Factors

Keywords
Page quality, web search, ranking, PageRank, BrowseRank

1. INTRODUCTION
Query-dependent features, such as BM25, are successfully

used in IR systems to estimate the degree of relevance be-
tween a given query and a document. In the context of large-
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scale web search engines, however, quantifying only the rel-
evance is not adequate. The large size of the Web and high
variation in content quality require distinguishing the impor-
tance of web pages independent of the query. Hence, most
web search engines incorporate query-independent page im-
portance scores into their ranking algorithms.

PageRank [22] is perhaps the most well-known and widely
used technique for computing web page importance. The ba-
sic idea behind this technique is to compute the importance
of a web page based on the quantity of the links received
from other pages as well as the quality of those referring
pages. Although PageRank has found many important use
cases, it has two serious drawbacks. First, PageRank solely
relies on the hyperlink structure of the Web without incor-
porating any kind of feedback from the real users surfing the
Web. Therefore, all pages are treated equally, ignoring their
importance for end users or the likelihood of being visited
by a web surfer [9]. Second, since the hyperlink structure
is mainly created by the web site owners, it is subject to
manipulation. As an example, link farms can be created to
artificially boost the importance of certain web pages, mak-
ing PageRank vulnerable to link spam [12].

An interesting alternative to PageRank is to exploit the
web surfing behavior of users to assess the importance of
web pages (e.g., BrowseRank [21]). In this approach, a vir-
tual link structure is created between web pages based on
the web browsing patterns of users, i.e., the transitions they
make between different pages when surfing the Web. Such
patterns can be obtained by mining navigational user activ-
ity that is tracked by the toolbar applications, commonly
installed in web browsers. This approach provides better
quality feedback about page importance and also solves the
previously mentioned spam problem associated with Page-
Rank. However, the web browsing patterns extracted from
the toolbar logs are very sparse. Hence, many web pages
(especially, the less popular web pages) are not covered and
their scores cannot be computed.

One of the main objectives of this work is to investigate
whether exploiting web and user feedback at the same time
(i.e., using both web data and browsing data) improves the
quality of page rankings over using only one type of feedback.
To this end, we define a discrete-time Markov chain con-
structed by aggregating web and browsing data with prop-
erly scaled page transition probabilities. Importance scores
of pages are estimated using the standard procedure fol-
lowed in PageRank computations. We refer to the proposed
technique as PBRank (PageBrowseRank). All of our exper-
iments are conducted in a large scale and realistic setting.
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Our contributions can be summarized as follows:
• We devise a hybrid ranking model that uses a mixture

of feedback obtained from the hyperlink structure of
the Web and the web browsing patterns of users.
• We shed light into the overlap between the web data,

browsing data, and web search click data as well as the
correlation between the importance values assigned to
web hosts by these data sources.
• We experiment in a realistic setting with very large

data, orders of magnitude larger than the data used in
earlier works in the same problem context.

The following are the selected findings of our work:
• Exploiting both web and user feedback at the same

time improves the quality of the page ranking com-
pared to using only one type of feedback.
• Using the web data increases the coverage (the number

of web hosts for which an importance score can be
computed) over using only the browsing data.
• When the web and user feedbacks are optimally com-

bined, the user feedback has 99 times more influence
on the quality of page rankings than the web feedback.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide some background on the PageRank
and BrowseRank techniques. The proposed hybrid rank-
ing model, PBRank, is presented in Section 3. We present
our performance evaluation metrics in Section 4. Then, in
Section 5, we provide the characteristics of our data. The
results of conducted experiments are presented in Section 6.
A brief survey of related work is given in Section 7. Finally,
we conclude the paper in Section 8.

2. BACKGROUND
Pagerank. PageRank [22] is motivated by the aca-

demic citation literature. The main idea in this technique
is to assign higher scores to pages that receive many links
from other important pages which have relatively few out-
links [2]. The computation of scores relies on a probabilistic
model known as the random surfer model, where the score
of a page is defined by the steady-state probability that the
surfer will be at that particular page at some time step in
the future. This model consists of a Markov chain induced
by a random walk on a web graph having n vertices. Each
state of the chain corresponds to a different vertex in the
web graph. A transition matrix P=(pij) is associated with
this chain such that

pij =

{
1/|Li|, |Li| > 0;
0, otherwise.

, (1)

where Li denotes the set of out-links of page i. Given this
transition matrix, the PageRank vector p = (pi), where pi
indicates the score of page i, can be computed by find-
ing the Markov chain’s stationary distribution that satisfies
p = PTp, i.e., the principal eigenvector of the chain. The
solution can be obtained through a series of iterations of
the form pk+1 = PTpk using the power method [10]. The
existence of a solution, i.e., the convergence of iterations,
requires the P matrix to be stochastic, irreducible, and ape-
riodic, neither of which are guaranteed for P.

The reason behind matrix P for not being stochastic is
the presence of sink (or so-called dangling) pages with no
out-links. Although there are other possibilities [3, 16, 17],
the common solution to this problem is to add artificial links
from such pages to every other page in the Web [22]. This

results in a stochastic transition matrix P′, computed as

P′ = P + dvT, (2)

where d = (di) is a dangling page vector (if i is a dangling
page, di=1; otherwise, di=0) and v=(vi) is a vector, where
vi indicates the transition probability from dangling pages
to a specific page i. Typically, the transition probabilities
are set to 1/n for all pages. The resulting matrix P′ is
stochastic, but not irreducible. Applying a similar technique
on P′, an irreducible stochastic transition matrix P′′ can be
obtained, also guaranteeing aperiodicity as

P′′ = αP′ + (1− α)entT. (3)

Here, en is a vector of size n containing all ones. α denotes
the probability that the surfer will follow one of the links in
the current page while (1−α) is the probability that the surfer
will jump to a page that is not necessarily linked by the
current page. In practice, α values between 0.85 and 0.9 are
used. The t = (ti) vector is referred to as the teleportation
vector, where ti indicates the probability of jumping to page
i. Typically, this probability is set to 1/n for all pages. In
case of personalized or topical teleportation vectors, non-
uniform jump probabilities can also be used [13].

BrowseRank. BrowseRank [21] mainly relies on the
same principles with PageRank. However, it is based on
a continuous-time Markov process, which exploits the stay-
ing times of users on pages. In this technique, the browsing
graph is constructed as G = (V,W), where V is the set of
vertices representing web pages visited by users and W is a
set of directed edges indicating the visit patterns between
pages. Vertices are associated with staying times of users on
respective pages and the teleportation probabilities of those
pages. Each edge is weighted with the number of visits be-
tween the two pages corresponding to its end vertices.

Given the above-mentioned browsing graph, a continuous-
time Markov process is defined. This model is then con-
verted into a discrete-time Markov process whose station-
ary distribution is estimated using the power method. The
details of this conversion are too technical to be discussed
here and we refer the reader to [21] for further details. In-
stead, herein, we briefly discuss how the transitions of users
between different pages are obtained since this step is some-
what different than the procedure we adopted in our work.

In BrowseRank, the transitions that users make between
different pages are obtained by relying on the page visits
observed in individual web browsing sessions of users. A
browsing session is composed of a series of page visits that
are sorted in increasing order of timestamps. Initially, an
edge (vi, vj) is added to W for every pair (i, j) of pages
such that there is no other page visited between i and j.
Afterwards, an edge (vi, vj) is removed from W if the user
visited page j by typing its URL in the browser’s navigation
bar or if page j is visited more than 30 minutes after page i
is visited.

3. PBRANK
The main idea behind PBRank is to combine two dif-

ferent types of feedback, i.e., those provided by the web
data and browsing data in a meaningful way. Our goal is to
come up with a simple extension to the standard procedure
summarized in Section 2, leaving the theoretical foundations
unchanged. To this end, we use a transition matrix X corre-
sponding to the pages in the union of the web and browsing
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data. X is a square matrix of size m×m and is expressed as
a linear combination of two other matrices of the same size:

X = λP′′ + (1− λ)B′′. (4)

Here, P′′ is an m×m version of the final PageRank matrix
used in the power method iterations (see Eq. 3), i.e., this
matrix is created based on the web feedback. In addition,
using the user feedback, we define another matrix B′′, which
we will describe next. λ is a constant in the [0, 1] range
and is used to adjust the influence of one type of feedback
over the other. The page importance scores can be obtained
by finding the principal eigenvector of X using the power
method as usual.

We form the B′′ matrix in a similar fashion to Eq. 3:

B′′ = βB′ + (1− β)enrT, (5)

where β and r = (ri) are the counterparts of the α con-
stant and the t vector in Eq. 3, respectively. We use biased
teleportation probabilities in r, instead of uniformly setting
them to 1/n as in t. The teleportation probability ri of a
particular page i is computed as

ri=
1 + Ti

m+
∑m
j=1 Tj

, (6)

where Ti denotes the number of visits to page i by means
other than following a link in a page. This way, the jumping
behavior of the surfer is biased towards more popular pages.
Here, we add one to visit counts for smoothing purposes.

Following the idea in [9], β can be computed as

β=

∑m
j=1 (Vj − Tj)∑m

j=1 Vj
, (7)

where Vj denotes the total visit count of page j. The β con-
stant reflects the users’ tendency to reach a page by following
the hyperlinks in web pages.

The B′ matrix is computed by the following equation:

B′ = B + dvT, (8)

where d and v are defined as before (see Eq. 2). The prob-
abilities in the page transition matrix B = (bij) are set de-
pending on the likelihood of a hyperlink being followed by
users. Therefore, the links within a page are not treated
equally as in Eq. 1. Instead, the transition probability from
page i to page j is computed in a biased manner by taking
into account the share of the click volume of page j in the
overall click volume observed on page i as

bij =
Vij∑

k∈Li Vik
, (9)

where Vij is the click volume from page i towards page j.
PBRank can be considered as a variant of BrowseRank

since both techniques use page visit probabilities extracted
from browsing data. In practice, one may prefer PBRank
to BrowseRank because of the following reasons. First, as
we will show later in Section 6, PBRank achieves a bet-
ter coverage of web pages than BrowseRank due to the use
of web data in scoring computations, i.e., a larger number
of pages receive non-zero scores. Second, PBRank’s imple-
mentation is easier than the implementation of BrowseRank,
which employs a relatively more sophisticated continuous-
time Markov model. Finally, the transition probabilities

computed in PBRank are accurate values computed over
actual user clicks on links. The transition probabilities com-
puted in BrowseRank, however, are only approximations be-
cause they are computed based on a timestamp-sorted se-
quence of page visits in user sessions, not the links that are
actually followed by users. Given that many users browse
the Web by opening multiple browser tabs [14] and concur-
rently following links in different tabs, a time-ordered se-
quence of page visits may not be sufficient to obtain the ac-
tual transitions between pages. Hence, the transition prob-
abilities computed in BrowseRank may not reflect the true
surfing patterns of users.

We note that the existence of a solution is guaranteed
since the X matrix is irreducible and aperiodic because both
summation terms in Eq. 4 already have these properties.
When λ = 0 or λ = 1, X may not be row-stochastic, but
this does not prevent the convergence of iterations. If λ is
set to zero or one in Eq. 4, PBRank reduces to a discrete-
time variant of BrowseRank or PageRank, respectively. As
we will see in Section 6, the best ranking quality will be
obtained for λ values close to zero.

4. EVALUATION METRICS
Given different ranking techniques for estimating page im-

portance, we would like to quantify two different aspects of
those techniques: page coverage and ranking quality. The
former aspect refers to the ability of the ranker to compute
a (non-zero) score for many pages. The second aspect refers
to the ability of the technique to place important pages at
higher ranks with respect to a ground-truth ranking.

Herein, we define two separate metrics to quantify the
two aspects mentioned above. In both metrics, to repre-
sent the actual page importance, we rely on a ground-truth
data obtained from web search click logs. Since our focus in
this work is on the impact of the generated page rankings
on web search, the user clicks issued on web search results
form a natural ground-truth. We note that, at the level of
individual queries, the click likelihood of a page in search
results is largely affected by the relevance of the page to the
query. However, as the click information is aggregated over
many different queries, the click volume of a page in search
results stands as a fairly reasonable ground-truth indicating
the importance of the page for users.

We now introduce some notation and define our metrics.
Let ρ be a given page ranking technique and Rρ be the set
of pages that are accessible by this technique. Every page in
Rρ when ranked by ρ receives a positive importance score,
higher scores indicating more important pages. Let ρ∗ be
an oracle ranker that can access to the ground-truth impor-
tance values for a set R∗ of pages. Given these definitions,
the coverage χρ of a ranking technique ρ is defined as the
fraction of ground-truth pages for which a score can be com-
puted by ρ.

Next, we devise a metric to quantify the quality of the
ranking generated by a given ranker ρ with respect to the
oracle ranker ρ∗. In literature, there are various metrics
readily available for measuring the correlation between two
given rankings (e.g., Kendall’s tau [18] and Spearman’s
footrule [24]). Unfortunately, those metrics operate on fully
ranked lists. In our case, we have partially ranked lists
(i.e., some pages in the ground-truth set are not available
to ranker ρ and vice versa). In literature, there are variants
that can handle partial rankings [7]. Nevertheless, we prefer
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not to use those metrics here because neither of them take
into account the popularity of the ranked items (i.e., in our
setting, the click volumes of pages would be omitted). In
our setting, the commonly used IR metrics such as DCG
or NDCG [15] are not very useful either because, in such
metrics, the top ranked items are heavily weighted. Our
rankings are very long and having such a strong bias only
at the top ranks is not very meaningful.

Due to the above-mentioned reasons, we devise a quality
metric that can capture items’ estimated rank and the im-
portance in the ground-truth data at the same time while
being able to yield meaningful results for rankings with a
large number of items. We define the relative quality Φρ(k)
of a given ranking Rρ at rank k with respect to a ground-
truth ranking R∗ as

Φρ(k) =
φR

ρ

(k)

φR
∗

(k)
. (10)

Here, φR
∗
(k) is a normalization factor representing the qual-

ity of the best possible ranking that can be achieved by the
oracle ranker ρ∗. Note that the best possible ranking is
achieved when pages in R∗ are ranked in decreasing order of
their importance. We define CR(k) (the sum of importances
of top k pages in R) and φρ through recursive functions as

CR(k) =


0, if k = 0;
CR(k − 1) + I(Rk), if 1 ≤ k ≤ |R|;
CR(|R|), if k > |R|.

, (11)

φR(k) =


0, if k = 0;
φR(k − 1)+

CR(k − 1) + I(Rk)
2

, if 1 ≤ k ≤ |R|;
φR(k − 1)+
CR(k − 1), if k > |R|.

, (12)

where Rk denotes the k-th ranked page in a given ranking
R of pages and I(p) denotes the importance of page p, in-
ferred from the ground-truth data. In Section 6, we will
consider two different alternatives to compute I(p), one as-
suming unit page importance values and another where the
page importance is represented by the click volume of the
page in search results. In either case, we will assume that
I(p) = 0 if p 6∈ R∗. We note that PageRank, BrowseRank,
and PBRank yield only positive scores when ranking pages.

The devised φ metric emphasizes accumulation of impor-
tance at early ranks, as the total page importance attained
at rank k continues to contribute to the value of the metric
at all ranks following k. In this sense, the functioning of this
metric resembles the ROC analysis and the area under the
curve metric [8].

5. DATA
Web page collection. We use a snapshot of the Web

(crawled in late 2011), which contains around 6.5 billion web
pages. Due to the difficulties involved in parsing web pages
written in the CJK languages, we exclude such pages from
further consideration. Moreover, self-links are removed and
identical out-links in a page are contracted into a single out-
link. We convert the remaining pages and links into a web
graph and further compress this graph to obtain a host-level
graph of the Web. In the rest of the paper, we use this host-
level graph, which includes about 230 million unique web
hosts with 1.5 billion inter-host links.

Browsing data. We obtain the web browsing data
through a commercial toolbar application deployed at the
web scale on a large number of web browsers. Our experi-
ments use only the browsing data acquired from users who
explicitly gave permission for their page views to be logged.
For each visited page, the toolbar log contains information
about the time at which the page is visited and how the
page is reached. In particular, a page has a referrer URL if
the user reached the page by clicking a link in another page,
otherwise, i.e., if the user manually typed the URL or clicked
a bookmark link, the referrer URL is not available. In total,
our data contains around two billion page visits, performed
by users all around the world. The browsing data is obtained
in a period right after the web collection is obtained.

Click data. To serve as a ground-truth in evaluation
of the generated page rankings, we use a large (random)
sample of clicks obtained from the query logs of a commer-
cial web search engine. The query log contains information
about the query string, and the URLs clicked by the user
who submitted the query. The data includes around 170,000
unique URLs and over 700,000 clicks. The click sample is
obtained in a time period that follows the acquisition of the
browsing data. The scatter plot in Fig. 1 shows the correla-
tion between the visit counts of URLs in the browsing data
and their click counts. According to this figure, there is a
large number of URLs that are highly visited by web surfers,
but not received many clicks from search engine users when
displayed in web search results. However, the reverse state-
ment is not true, i.e., highly clicked web pages tend to be
visited by many web surfers. This observation provides us
enough motivation to use the click data as an alternative
ground-truth for representing page importance.

6. EXPERIMENTS
Optimizing β. An important parameter that needs to

be tuned before PBRank computations is the β constant.
Tuning this constant requires measuring the ratio between
the number of visits initiated by following an out-link in a
page and the total number of visits in the browsing data
(see Eq. 7). In our data, we found this value to be β=0.62,
i.e., URLs are slightly more likely to be visited by following
links. The obtained number is somewhat consistent with the
earlier observation in [9]. Fig. 2 displays the distribution of
URL visit counts in the browsing data. We observe a power-
law distribution with slight distortion at the head.

Overlap among data sources and Coverage. Fig. 3
displays the overlap between the three different data sources.
As expected, the web data is considerably larger than the
browsing and click data. Based on these numbers, we can
compute the coverage metric (χ), defined in Section 4. While
using only the browsing data provides a coverage of 80.1%,
using only the web data gives a coverage of 95.8%. On the
other hand, using both of the feedbacks results in a coverage
of 97.2% and provides a coverage increase of 17.1% over
using only the browsing data. This result indicates that
PBRank can produce non-zero importance scores for a larger
number of URLs than both BrowseRank and PageRank.

Optimizing λ. We next aim to find the λ value that
optimizes the ranking quality metric defined in Eq. 12. To
this end, we compute the value of this metric for different
PBRank rankings that are obtained by varying λ through
parameter sweeping. Fig. 4 shows the values of the metric
with λ increased between zero and one at increments of 0.1.

2354



100 101 102 103 104 105 106

Visit count of URL in browsing data (log scale)
100

101

102

103

C
lic

k 
co

un
t o

f U
R

L 
in

 c
lic

k 
da

ta
 (l

og
 sc

al
e)

Figure 1: Visit count of a URL in
the browsing data versus its click
count in search results.
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Figure 2: Distribution of URL visit
counts in toolbar data.
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Figure 4: The variation in ranking
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Figure 6: Contribution of differ-
ent data sources to the top k
URLs in PBRank with λ=0.01.

According to the figure, any λ value between zero and one
yields a superior ranking performance than either baseline.
We observe better performance as λ is closer to zero. Hence,
we perform another parameter sweep for λ values near zero.
The results of this experiment are displayed in Table 1. We
observe that the optimum λ value is somewhere between
0.005 and 0.015. In the rest of the experiments, we set λ to
0.01, where we observe the best ranking quality (when the
page importance is weighted by the click count). Accord-
ing to the ratio 0.99/0.01, the feedback obtained from the
browsing data has 99 times more influence on the ranking
quality than the feedback coming from the web data.

Comparison of rankings. Fig. 5 shows the distribution
of URL importance scores generated by PBRank for three
different values of λ. All distributions are heavily skewed.
As expected, the score distributions for λ=0 and λ=0.01 are
very similar to each other and somewhat different than the
score distribution in case of λ= 1. The curve representing
λ=0 is shorter than the other two because fewer URLs (only
those in the web browsing data) are ranked.

Contribution of data sources to top k ranks. As
illustrated in Fig. 6, the main contribution to the top k=100
URLs in the ranking generated by PBRank (λ= 0.01) comes

from the URLs that are present in both web and browsing
data. As k increases to 10K, we observe some URLs that
are available only in the browsing data to enter the rankings.
The URLs that are available only in the web data become
visible after the first 10K ranks. This result indicates that
the URLs in the very top ranks are mainly determined by
the feedback obtained from the browsing data.

7. RELATED WORK
Overview. PageRank is originally proposed in [22]. The

technique finds application in a variety of problems from dif-
ferent domains including bibliometrics [6], web crawling [5],
and spam detection [11]. HITS [19] is a technique closely
related to PageRank. Interested reader may refer to [2]
and [20] for a survey of further issues.

Customizing PageRank. A large effort is spent to cus-
tomize PageRank computations depending on the interests
of users. This is mainly achieved by either adjusting the α
constant, which shows the probability of following a link in
the current page, or by customizing the teleportation vector
v (see Eq. 3). Regarding the first possibility (customizing
the random jump probability), several works investigated
the effect of α on the quality of the final rankings [1, 4,
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Table 1: The ranking quality metric (Φ) for varying
values of λ

Φ
λ Unit weight Weighted

(only browsing data) 0 0.87512 0.96259
0.00001 0.92265 0.97637
0.0001 0.92390 0.97679
0.001 0.92496 0.97716
0.005 0.92536 0.97731
0.01 0.92550 0.97738

0.015 0.92541 0.97735
0.02 0.92531 0.97733
0.03 0.92525 0.97730
0.04 0.92504 0.97725
0.05 0.92494 0.97723
0.1 0.92437 0.97705

(only web data) 1 0.87283 0.95232

9, 23]. The order of pages in the final PageRank vector is
found to be heavily affected by the α constant used [23].
The results reported in [4] show that α values close to 1 do
not yield accurate rankings. Two latter works suggest using
α values around 0.5 [1] or in the 0.6–0.725 range [9]. The
approach proposed in [9] is relevant to ours in that it relies
on the web browsing data to set the α constant. Regarding
the second possibility (customizing the teleportation vector),
several attempts were made [13, 16, 17]. In topic-sensitive
PageRank [13], several topic-specific PageRank vectors are
computed for a fixed number of topics. The PageRank com-
putation is biased to yield higher scores for pages belonging
to a certain topic by simply adjusting the jump probabil-
ities in the teleportation vector. In [17], a similar idea is
described, restricting personalization preferences to blocks
of web domains instead of topics. In [16], an approximate
personalized PageRank vector is computed based on precom-
puted basis vectors. The BrowseRank approach [21] relies
on web browsing data to customize the teleportation vector.

Our work goes beyond these works in different aspects.
First, we use web browsing data of users to customize the
probabilities in the transition matrix, instead of adapting
only the α constant as in [9] or adjusting the probabilities
in the teleportation vector as in [21]. In this respect, our
model can accurately capture the variation in the quality of
the links within web pages, unlike the above-mentioned two
works, which assume a uniform probability for following a
link in a page. Moreover, we conduct our experiments in
a very large setting, orders of magnitude larger than the
settings in most previous work.

8. CONCLUSIONS
We proposed a novel model for computing web page im-

portance scores by using a mixture of the feedback extracted
from the hyperlink structure of the Web and the feedback
obtained from the web browsing patterns of users. Accord-
ing to a quality metric using user clicks on web search results
mined from a query log, the proposed hybrid model exploit-
ing both the web structure and the navigation patterns of
users lead to a better performance than using only a single
type of feedback. We found that the optimum mixture is
achieved when 99% of the score comes from the browsing
feedback, and only 1% from the web feedback.
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