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Abstract—Optimal channel switching and detector design is
studied for M -ary communication systems in the presence of
stochastic signaling, which facilitates randomization of signal
values transmitted for each information symbol. Considering the
presence of multiple additive noise channels (which can have non-
Gaussian distributions in general) between a transmitter and a
receiver, the joint optimization of the channel switching (time-
sharing) strategy, stochastic signals, and detectors is performed
in order to achieve the minimum average probability of error. It
is proved that the optimal solution to this problem corresponds
to either (i) switching between at most two channels with
deterministic signaling over each channel, or (ii) time-sharing
between at most two different signals over a single channel (i.e.,
stochastic signaling over a single channel). For both cases, the
optimal solutions are shown to employ corresponding maximum a
posteriori probability (MAP) detectors at the receiver. Numerical
results are presented to investigate the proposed approach.

I. INTRODUCTION

Error performance of some communication systems that
are subject to average power constraints can be improved
via randomization (time sharing) of signal power [1]–[7]. For
example, it is shown in [1] that transmitting a stochastic
signal for each symbol instead of a deterministic signal can
improve performance of a given receiver in terms of error
probability. In particular, it is proved that an optimal stochastic
signal can be represented by a randomization of no more
than three different signal values under second and fourth
moment constraints. Also, sufficient conditions are derived
to specify if stochastic signaling can provide performance
improvements over deterministic signaling. The study in [2]
considers the jointly optimal design of stochastic signals and a
detector under an average power constraint, and shows that the
optimal solution results in stochastic signaling between at most
two distinct signal values and the corresponding maximum a
posteriori probability (MAP) detector at the receiver. Detector
randomization, which involves the use of multiple detectors
with certain probabilities, can also provide improvements in
error performance of some communication systems [4], [6].
In other words, a receiver can time-share (randomize) among
multiple detectors in order to achieve a lower average probabil-
ity of error. In [4], an average power constrained binary com-
munication system is considered, and randomization between
two deterministic signal pairs and the corresponding MAP
detectors is studied. Significant performance improvements
are observed as a result of detector randomization in some
cases in the presence of non-Gaussian noise. In [6], the results
in [4] and [2] are generalized by considering both detector
randomization and stochastic signaling, and it is shown that
the joint optimization of stochastic signaling and detector
randomization results in a randomization between at most two
MAP detectors corresponding to two deterministic signals.

In the presence of multiple channels between a transmitter
and a receiver, channel switching can be performed (i.e., each
channel can be used for a certain fraction of time) in order to
improve error performance of a communication system [7]–
[9]. In [7], the convexity properties of error probability in
terms of signal power are investigated for binary-valued scalar
signals over additive noise channels under an average power
constraint, and, based on the convexity results, it is concluded
that the optimal channel switching strategy involves time-
sharing between at most two different channels with antipodal
signaling over each channel when the noise in each channel
has a unimodal differentiable probability density function
(PDF).

To the best of our knowledge, performance benefits due
to stochastic signaling (i.e., performing signal randomization
for the transmission of each symbol) has not been studied in
the presence of multiple channels with generic (non-Gaussian
and/or multimodal) noise PDFs. In this study, we investigate
the joint optimization of the channel switching (time-sharing)
strategy, stochastic signals, and detectors in order to achieve
the minimum average probability of error for an average power
constrained M−ary communication system. We prove that
the optimal solution to this problem corresponds to either (i)
switching between at most two channels with deterministic
signaling over each channel and employing the corresponding
MAP detector at the receiver, or (ii) time-sharing between
at most two different signals over a single channel (i.e.,
stochastic signaling over a single channel) and employing
the corresponding MAP detector at the receiver. Numerical
examples are presented to investigate the theoretical results.

II. OPTIMAL CHANNEL SWITCHING

Consider an M -ary communication system, in which the
information can be conveyed between the transmitter and
receiver over K additive noise channels as illustrated in Fig. 1.
The transmitter is allowed to switch or time-share among
these K channels to improve the correct decision performance
at the receiver. A relay at the transmitter controls access to
the channels so that only one of the channels can be used
for symbol transmission at any given time. Furthermore, a
stochastic signaling approach is adopted by treating the signals
transmitted from each channel for each information symbol as
random vectors instead of constant values [1]. In other words,
the transmitter can perform randomization of signal values for
each information symbol, which also corresponds to a form of
constellation randomization [2], [10]. The transmitter and the
receiver are assumed to be synchronized so that the receiver
knows which channel is currently in use, and employs the
optimal decision rule for the corresponding channel and the
stochastic signaling scheme.
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Fig. 1. M -ary communication system that employs stochastic signaling and
channel switching.

We consider generic channels with possibly non-
Gaussian/multimodal noise and aim to obtain the optimal
channel switching strategy when stochastic signaling is
possible over each channel. In this scenario, the noisy
observation vector Y received by the detector corresponding
to the ith channel can be modeled as follows:

Y = S
(i)
j +N(i), j ∈ {0, 1, . . . ,M − 1}, i ∈ {1, . . . ,K}

(1)
where S

(i)
j represents the N -dimensional signal vector trans-

mitted for symbol j over channel i, and N(i) is the noise

component of the ith channel that is independent of S
(i)
j . It

should be emphasized that S
(i)
j is modeled as a random vector

to employ stochastic signaling. Also, the prior probabilities of
the symbols, denoted by π0, π1, . . . , πM−1, are assumed to
be known. Although the signal model in (1) is in the form
of a simple additive noise channel, it is sufficient to incor-
porate various effects such as thermal noise, multiple-access
interference, and jamming [7]. It is also valid in the case of
flat-fading channels assuming perfect channel estimation [1].
Note that the probability distribution of the noise component
in (1) is not necessarily Gaussian since it is modeled to include
the effects of interference and jamming as well [11].

The receiver uses the observation in (1) in order to deter-
mine the transmitted information symbol. For that purpose, a
generic decision rule (detector) is considered for each channel
making a total of K detectors getting utilized at the receiver.
That is, for a given observation vector Y = y, the detector of
the ith channel φ(i)(y) is described as

φ(i)(y) = j , if y ∈ Γ
(i)
j (2)

for j ∈ {0, 1, . . . ,M−1} , where Γ
(i)
0 ,Γ

(i)
1 , . . . ,Γ

(i)
M−1 are the

decision regions (i.e., a partition of the observation space R
N )

for the detector of the ith channel [12]. The transmitter and the
receiver can switch among these K channels in any manner
in order to optimize the probability of error performance. Let
vi denote the channel switching factor for channel i, where∑K

i=1 vi = 1 and vi ≥ 0 for i = 1, . . . ,K. In other words,
the transmitter and the receiver communicate over channel i
for 100vi percent of the time (i = 1, . . . ,K).

The aim of this study is to jointly optimize the channel
switching strategy (v1, . . . , vK), stochastic signals, and detec-
tors in order to achieve the maximum average probability of
correct decision. The average probability of correct decision

can be expressed as Pc =
∑K

i=1 vi P
(i)
c , where vi is the

channel switching factor for channel i, and P
(i)
c represents the

corresponding probability of correct decision for that channel
under M -ary signaling; that is,

P(i)
c =

M−1∑
j=0

πj

∫
Γ
(i)
j

p
(i)
j (y) dy (3)

for i = 1, 2, . . . ,K, with p
(i)
j (y) denoting the conditional

PDF of the observation when the jth symbol is transmitted
over the ith channel. Since stochastic signaling is considered,

S
(i)
j in (1) is modeled as a random vector. Recalling that

the signals and the noise are independent, the conditional

PDF of the observation can be calculated as p
(i)
j (y) =∫

RN p
S

(i)
j

(x) pN(i)(y − x) dx = E
{
pN(i)

(
y − S

(i)
j

)}
, where

the expectation is over the PDF of S
(i)
j . Then, the average

probability of correct decision can be expressed as

Pc =
K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E

{
pN(i)

(
y − S

(i)
j

)}
dy

)
. (4)

In practical systems, there is a constraint on the average
power emitted from the transmitter. Under the framework of
stochastic signaling and channel switching, this constraint on
the average power is expressed in the following form [12]:∑K

i=1 vi
(∑M−1

j=0 πj E

{∥∥S(i)
j

∥∥2

2

}) ≤ A, where A denotes the

average power limit.
In this study, we primarily concentrate on obtaining the

optimal signaling and channel switching strategy in terms of
the correct decision probability for an M -ary communication
system. Although the channel switching problem is addressed
in various frameworks, the novelty of the problem introduced
here arises from the following two aspects: (i) signals trans-
mitted over the channels corresponding to different symbols
are modeled as random vectors (stochastic signaling) subject
to an overall average power constraint, (ii) no restrictions are
imposed on the noise PDFs of the channels available for
switching. This formulation, in turn translates into a joint

design problem over the channel switching factors {vi}Ki=1,
channel-specific signal PDFs employed at the transmitter{
p
S

(i)
0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

}K

i=1
, and the corresponding optimal

detectors used at the receiver
{
φ(i)

}K

i=1
.

max
K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E

{
pN(i)

(
y − S

(i)
j

)}
dy

)

subject to

K∑
i=1

vi

(
M−1∑
j=0

πj E

{∥∥S(i)
j

∥∥2

2

})
≤ A , (5)

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K}

where the maximization is to be performed over{
φ(i), vi, pS(i)

0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

}K

i=1
. Included in the

above statement are the implicit assumptions stating that each
p
S

(i)
j

(·) should represent a PDF.

The signals for all the M symbols that are transmitted over
channel i can be expressed as the elements of a random vector:

S(i) �
[
S
(i)
0 S

(i)
1 . . . S

(i)
M−1

] ∈ R
MN , where S

(i)
j ’s are N -

dimensional row vectors ∀j ∈ {0, 1, . . . ,M − 1} . Then, a
more compact version of the optimization problem in (5) can
be stated as follows:
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max
{φ(i), vi, p

S(i)}K

i=1

K∑
i=1

vi E
{
Gi(S

(i))
}

subject to

K∑
i=1

vi E
{
H(S(i))

} ≤ A , (6)

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K}

where Gi(S
(i)) =

∑M−1
j=0

∫
Γ
(i)
j

πj pN(i)

(
y − S

(i)
j

)
dy,

H(S(i)) =
∑M−1

j=0 πj

∥∥S(i)
j

∥∥2

2
, and the expectations are taken

with respect to pS(i)(·)’s, which denote the joint PDFs of the
signals for symbols {0, 1, . . . ,M − 1} that are transmitted

over channel i. Specifically, Gi(s
(i)) represents the average

probability of correct decision when the deterministic signal
vector s(i) is used for the transmission of M symbols over
the additive noise channel i and the corresponding detector
is employed at the receiver. Then, E{Gi(S

(i))} can be inter-
preted as a generic stochastic signaling scheme over channel
i. The exact number of signal values employed by the scheme
is determined by the number of distinct values that the random
vector S(i) can take.

Let P†
c denote the maximum average probability of correct

decision obtained as the solution of the optimization problem
in (6). To provide a simpler formulation of this problem,
an upper bound on P†

c will be derived first, and then the
achievability of that bound will be investigated. Let G(x)
denote the maximum of the average probabilities of cor-
rect decision when the deterministic signal vector x is used
for the transmission of M symbols over the additive noise
channels i = 1, 2, . . . , K and the corresponding detectors
for all K channels are employed at the receiver. That is,

G(x) � max
i∈{1, 2, ... , K}

Gi(x), from which G(x) ≥ Gi(x) fol-

lows ∀ i ∈ {1, 2, . . . , K} and ∀x ∈ R
MN . This inequality

can be applied to the objective function in (6) to obtain a
new optimization problem that provides an upper bound on
the solution of the optimization problem in (6) as follows.

max
{φ(i), vi, p

S(i)}K

i=1

K∑
i=1

vi E
{
G(S(i))

}

subject to

K∑
i=1

vi E
{
H(S(i))

} ≤ A , (7)

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K}

where the expectations are taken with respect to pS(i)(·)’s,
which denote the joint PDFs of the signals for symbols
{0, 1, . . . ,M − 1} that are transmitted over channel i.

In order to achieve further simplification of the prob-

lem in (7), define p
S̆
(s̆) �

∑K

i=1 vi pS(i)(s̆) , where s̆ �

[ s̆0 s̆1 · · · s̆M−1] ∈ R
MN , and s̆j’s are N -dimensional row

vectors ∀j ∈ {0, 1, . . . ,M − 1} . Since
∑K

i=1 vi = 1 , vi ≥
0 ∀i , and pS(i)(·)’s are valid PDFs on R

MN , p
S̆
(s̆) satisfies

the conditions to be a PDF. Then, the optimization problem
in (7) can be written in the following form:

max
p
S̆
,

{
φ(i)

}K

i=1

E{G(S̆)} subject to E{H(S̆)} ≤ A (8)

where G(s̆) = max
i∈{1, 2, ... , K}

Gi(s̆) for all s̆ ∈ R
MN , and the

expectations are taken with respect to p
S̆
(·), which denotes

the PDF of the signal constellation employed for transmission
of symbols {0, 1, . . . ,M − 1} . Let P�

c denote the maximum
average probability of correct decision obtained as the solution
to the optimization problem in (8). By definition of function
G, P�

c ≥ P†
c is always satisfied.

In (8), G(s̆) represents the maximum of the average prob-
abilities of correct decision when the deterministic signal
vector s̆ is used for the transmission of M symbols over
the additive noise channels i = 1, 2, . . . , K and the cor-
responding detectors are employed at the receiver. Therefore,

E{G(S̆)} can be interpreted as a randomization (switching)
among channels with respect to the PDF p

S̆
(·), where the

average probability of correct decision for each signal vector
s̆ in the support of p

S̆
is maximized by transmitting it over

the most favorable channel (i.e., the channel with the highest
probability of correct decision for the given signal vector s̆),
and altogether they maximize the total average probability of
correct decision.

Optimization problems in the form of (8) have been in-
vestigated in various studies in the literature such as [1], [4],
[6], [13]. Assume that Gi(s) in (6) is a continuous function
∀ i ∈ {1, 2, . . . ,K} and a � s � b where a and b are
finite real vectors in R

MN . Then, the pointwise maximum
G(s) = max

i∈{1, 2, ... , K}
Gi(s) is also continuous on [a, b], and

the optimal solution of (8) can be represented by a randomiza-
tion of at most two signal levels as a result of Carathéodory’s
theorem [14]; that is, popt

S̆
(s̆) = λ δ(s̆−s1)+(1−λ) δ(s̆−s2).

Therefore, the problem in (8) can be solved over such signal
PDFs resulting in

max{
λ, s1, s2,{φ(i)}K

i=1

} λG(s1) + (1− λ)G(s2) (9)

subject to λH(s1) + (1− λ)H(s2) ≤ A , λ ∈ [0, 1]

where G(sk) = max
i∈{1, 2, ... , K}

Gi(sk), Gi(sk) =∑M−1
j=0

∫
Γ
(i)
j

πj pN(i) (y − sk,j) dy ∀ i ∈ {1, 2, . . . ,K} ,

H(sk) =
∑M−1

j=0 πj

∥∥sk,j∥∥2

2
, and sk =

[ sk,0 sk,1 · · · sk,M−1] ∈ R
MN with sk,j being an N -

dimensional row vector ∀j ∈ {0, 1, . . . ,M − 1} . Therefore,
optimal performance can be achieved by randomizing between
at most two signal vectors, s1 and s2. From (9), it is deduced
that the objective function is maximized under the specified
constraints by either one of the following strategies:

1) transmitting exclusively over a single channel via deter-
ministic signaling, λ ∈ {0, 1},

2) time sharing (or randomization) between two sig-
nal vectors over a single channel, λ ∈ (0, 1) and
arg max

i∈{1, 2, ... , K}

Gi(s1) = arg max
i∈{1, 2, ... , K}

Gi(s2),

3) switching (or randomization) between two channels and
deterministic signaling over each one, λ ∈ (0, 1) and
arg max

i∈{1, 2, ... , K}

Gi(s1) �= arg max
i∈{1, 2, ... , K}

Gi(s2).

The last step in the simplification of the optimization
problem in (9) comes from an observation about the structure
of optimal detectors. For a given channel i and the corre-
sponding signaling scheme over the channel (deterministic or
randomization between two signal vectors), the conditional
probability of the observation y under the hypothesis j (i.e.,
when symbol j is transmitted) is expressed as
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p
(i)
j (y) = E

{
pN(i)(y − S

(i)
j )

}
= (10){

pN(i)

(
y − s

(i)
j

)
, if deterministic

λpN(i)

(
y − s

(i)
1,j

)
+ (1− λ)pN(i)

(
y − s

(i)
2,j

)
, if randomized

When deciding among M symbols based on observation
y, the MAP decision rule selects symbol j if j =

arg max
l∈{0, 1, ... ,M−1}

πl p
(i)
l (y) , and it maximizes the average prob-

ability of correct decision [12]. Therefore, it is not necessary to
search over all decision rules in (9); only the MAP decision
rule should be determined for the detector of each channel
[2]. The average probability of correct decision for a generic
decision rule is given in (3). Using the decision region for

the MAP detector; i.e., Γ
(i)
j = {y ∈ R

N | πj p
(i)
j (y) ≥

πl p
(i)
l (y) , ∀l �= j}, the average probability of correct decision

for ith channel becomes

P
(i)
c,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy (11)

=

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj E

{
pN(i)

(
y − S

(i)
j

)}}
dy

where E
{
pN(i)

(
y − S

(i)
j

)}
is as in (10).

Below, more explicit forms of the optimization problem
stated in (9) are given for all possible scenarios mentioned
previously.
1. Transmitting Exclusively over a Single Channel via
Deterministic Signaling: In this case, a single channel is
utilized exclusively, and the transmitted signal for each symbol
is deterministic; i.e., a fixed signal vector is transmitted over
the channel for each symbol. Without loss of generality,
channel i is considered. Using the result given in (11) for
the deterministic case, the problem in (9) can be expressed as

max
s(i)

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN(i)

(
y − s

(i)
j

)}
dy

subject to

M−1∑
j=0

πj

∥∥s(i)j

∥∥2

2
≤ A . (12)

2. Time-Sharing (or Randomization) between at most
Two Signal Vectors over a Single Channel: Similar to the
previous case, the transmission occurs over a single channel
exclusively, but in this case the transmitted signal for each
symbol is a randomization of at most two different signal vec-
tors. Without loss of generality, channel i is considered. Using
the result for the randomized case in (11), the optimization
problem in (9) can be expressed as

max{
λ, s

(i)
1 , s

(i)
2

}
∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy

subject to λ

(
M−1∑
j=0

πj

∥∥s(i)1,j

∥∥2

2

)
+ (1− λ) (13)

.

(
M−1∑
j=0

πj

∥∥s(i)2,j

∥∥2

2

)
≤ A , λ ∈ [0, 1]

where p
(i)
j (y) = λ pN(i)

(
y−s

(i)
1,j

)
+(1−λ) pN(i)

(
y−s

(i)
2,j

)
. It

is noted that the optimization problem in (13) reduces to that
of (12) when λ ∈ {0, 1}.
3. Switching (or Randomization) between at most Two
Channels and Deterministic Signaling over each Channel:
In this case, optimum performance is investigated while trans-
mitting over at most two channels and the transmission over

each channel is constrained to be deterministic, i.e., a fixed
signal vector is sent over each channel for each symbol but the
channels are switched in time. Without loss of generality, chan-
nels i and l are considered (i �= l and i , l ∈ {1, 2, . . . ,K}).
Since deterministic signaling is employed in each channel,
the result given in (11) for the deterministic case should be
applied for each channel. Then, the optimization problem in
(9) becomes

max
{λ, s(i), s(l)}

λGi,MAP(s
(i)) + (1− λ)Gl,MAP(s

(l)) (14)

subject to λH(s(i)) + (1− λ)H(s(l)) ≤ A , λ ∈ [0, 1]

where H(s(i)) =
∑M−1

j=0 πj

∥∥s(i)j

∥∥2

2
, Gi,MAP(s

(i)) =∫
RN max

j ∈{0, 1, ... ,M−1}

{
πj pN(i)(y−s

(i)
j )

}
dy, and Gl(s

(l)) and

H(s(l)) are defined similarly by replacing i with l in the
corresponding equations.

It is noted that the optimization space is considerably
reduced in (12)-(14) compared to that in (9) since there is
no need to search over the detectors in (12)-(14).

In the view of the above analysis, the solution of the
optimization problem in (9) can be decomposed into two
parts. First, time-sharing (or randomization) between at most
two signal vectors over a single channel is considered. Let

P
(i)
c,Opt be the solution of the optimization problem in (13)

for ith channel; that is, P
(i)
c,Opt denotes the maximum av-

erage probability of correct decision that can be achieved
by stochastic signaling over channel i under average power
constraint. Secondly, switching (or randomization) between
at most two channels with deterministic signaling over each

channel is considered. Let P
(i, l)
c,Opt be the solution of the

optimization problem in (14) for channels i and l; that is,

P
(i, l)
c,Opt denotes the maximum average probability of correct

decision that can be achieved by switching between channels
i and l under average power constraint. Then, the solution
of the optimization problem in (9) can be obtained by solving
the following set of optimization sub-problems and computing
their maximum:

PStoc
c = max

i∈{1, 2, ... , K}
P
(i)
c,Opt

PCS
c = max

i,l∈{1, 2, ... , K} and i<l
P
(i, l)
c,Opt

P�
c = max

{
PStoc
c , PCS

c

}
(15)

where the superscript Stoc denotes stochastic signaling over
a single channel and CS represents channel switching.

Finally, the following proposition is presented.
Proposition 1: Let P†

c denote the maximum probability of
correct decision obtained as the solution of the optimization
problem in (6). Then, P†

c is equal to P�
c in (15).

The proof is omitted due to the space limitation.
Proposition 1 implies that the solution of the original

optimization problem stated in (6), which considers the joint
optimization of switching factors among channels, channel-
specific signal PDFs employed at the transmitter and the corre-
sponding detectors used at the receiver, can be obtained as the
solution of the much simpler optimization problem specified in
(15). Formally, when multiple channels are available for signal
transmission (i.e., K ≥ 2), it is sufficient to either employ
switching between two channels with two deterministic signal
vectors (i.e., there is no need to employ stochastic signaling
over a channel to achieve the optimal solution while switching
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channels); or employ stochastic signaling with at most two
signal vectors over a single channel.

III. NUMERICAL RESULTS AND CONCLUSIONS

For a numerical example, a scalar binary communication
system with equiprobable information symbols is considered
and the average power limit is set to A = 1. It is assumed that
K ≥ 2 channels are available between the transmitter and the
receiver for channel switching purposes. The following four
schemes are considered for performance comparison.

Gaussian Solution over a Single Channel: Antipodal

signals in the form of (−√
A,

√
A) are transmitted for binary

information symbols, and the corresponding MAP detectors
are employed at the receivers. Among the K channels, the
most favorable channel, the one that yields the highest average
probability of correct decision, is chosen for transmission.

Optimal Deterministic Solution over a Single Channel:
Deterministic signaling with corresponding MAP detectors are
considered for all the channels. K optimization problems in
the form of (12) are solved and the most favorable channel is
chosen for transmission.

Optimal Stochastic Solution over a Single Channel: This
scheme employs stochastic signaling and corresponding MAP
detectors for all the channels. The problem in (13) is solved
for all the channels and the most favorable channel is chosen
for transmission (see the first expression in (15)).

Optimal Channel Switching with Deterministic Signal-
ing: Deterministic signaling with corresponding MAP detec-
tors are employed for all the channels and the optimal switch-
ing strategy is obtained. Since optimal switching requires at
most two channels, K(K − 1)/2 problems in (14) are solved
and the channel pair that provides the highest performance is
selected (see the second expression in (15)).

For the numerical example, the noise of all the K
channels is modeled by a Gaussian mixture model [5],
[11], [13], which is represented by the following PDF:

pN(i)(n) =
(√

2πσiLi

)−1 ∑Li

l=1 exp
{− (n− μ

(i)
l )2/(2σ2

i )
}

for i ∈ {1 . . .K}, where Li is the number of components
in the mixture for channel i. It is noted that the components
of the Gaussian mixture noise in each channel are modeled
to have the same weight (1/Li) and the same variance (σ2

i ).
For simplicity of notation, the mean values of the Gaussian
mixture components for channel i are collected in a vector as

μ(i) =
[
μ
(i)
1 . . . μ

(i)
Li

]
. Then, the average noise power of the ith

channel can be calculated as E
{|N(i)|2} = σ2

i + 1
Li
‖μ(i)‖22,

where ‖μ(i)‖2 denotes the L2 norm of vector μ(i).
We consider a scenario in which all the channels have

distinct noise PDFs. For the Gaussian mixture noise model,
it is assumed that σi = σ and Li = L, ∀i ∈ {1, . . . ,K},
and that the component means of the Gaussian mixture are

chosen as μ(i) =
√
E vi/‖vi‖2 for i = 1, . . . ,K, where E

is a constant and vi’s are L-dimensional distinct vectors. It is
noted that ‖μ(i)‖22 = E. Hence, the average noise power is the

same for all the channels. Namely, E
{|N(i)|2} = σ2 + E/L,

∀i ∈ {1, . . . ,K}. In Fig. 2, the average probabilities of error
for the four strategies are plotted versus A/σ2 for K = 3,
v1 = [−3 −2 0 2 3], v2 = [−4 −3 0 3 4], v3 = [−5 −3 0 3 5],
and E = 3. From Fig. 2, it is observed that the Gaussian
solution has the worst performance among all the approaches
as expected since it is optimized for Gaussian noise and is
not expected to achieve high performance in the presence of
multimodal noise PDFs. When optimal deterministic signaling
is employed (see (12)), significant gains can be achieved over

σ

Fig. 2. Average probability of error versus A/σ2 for various approaches,
where K = 3, v1 = [−3 − 2 0 2 3], v2 = [−4 − 3 0 3 4], v3 =
[−5 − 3 0 3 5], and E = 3.

the Gaussian solution in this example. In addition, further
improvements are possible when stochastic signaling is used
instead of deterministic signaling (see (13)). However, it is
observed that the best performance is achieved when optimal
channel switching is performed between at most two deter-
ministic signals.

Additional results are obtained when all the channels have
identical noise PDFs, and similar observations to those for
Fig. 2 are made. However, the results are not presented due
to the space limitation.
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