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Abstract: This paper studies the problem of robust stabilization of an infinite dimensional
plant by a stable and possibly low order controller. The plant of interest is assumed to have
only finitely many simple unstable zeros, however, may have infinitely many unstable poles. In
the literature, it has been shown that the problem can be reduced to an interpolation problem
and it is possible to obtain lower and upper bounds of the multiplicative uncertainty under
which an infinite dimensional stable controller can be generated by a modified Nevanlinna-Pick
formulation. We propose that the same interpolation problem can be solved approximately by
a finite dimensional approach and present a finite dimensional interpolation function which
can be used to find a stable controller. We illustrate this idea by a numerical example and
additionally show the effects of the free design parameters of the rational interpolating outer
function approach on the numerical example.
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1. INTRODUCTION

This paper is about strong and robust stabilization of SISO
infinite dimensional plants, specifically time delay systems,
by a finite dimensional controller. Strong stability requires
a stable controller to be designed. A stable controller
has two main advantages: it is robust to sensor failures
(i.e. undetermined feedback input or saturation of control

input) as described by Doyle et al. (1990), and Ünal and

İftar (2012c) and it is testable stand-alone as mentioned
by van de Wal et al. (2002). It is possible to test a stable
controller by its input-output relationship practically by
applying some test signals as an open-loop system before
using it with the original plant to prevent undesired errors.

It is essential to mention that strong stability means
achieving stabilization by a stable controller which is
different than some other strong stability concepts used
in the infinite dimensional system theory, e.g. Hale and
Lunel (2002).

There is a rich literature for strong stabilization of fi-
nite dimensional plants, see e.g. Campos-Delgado and
Zhou (2003), Cheng et al. (2007), Cheng et al. (2011),

Gümüşsoy and Özbay (2009), Petersen (2009), and Gündeş

and Özbay (2011) and see also Gümüşsoy et al. (2008) for
sensitivity shaping of infinite dimensional systems by fixed
order stable controllers. Nevertheless, robust stabilization
by a stable controller remains to be an active open research
area and to our knowledge; the most recent contribution,
which has been made by Wakaiki et al. (2013), gives
some sufficient conditions as discussed below in more de-
tail. Most recently, the same idea has been extended to

the mixed sensitivity minimization by stable controllers,
Wakaiki and Yamamoto (2014); see also Gümüşsoy and

Özbay (2009) for an alternative earlier approach. We refer

to Ünal and İftar (2012b) and Ünal and İftar (2012c) for
recent results on stable H∞ controller design for plants
with input-output delays. It should be noted that for time
delay systems, parity interlacing property, p.i.p., (having
even number of poles between any pair of extended right
half plane zeros) is necessary (and sufficient with added
restrictions) for the existence of a strongly stabilizing

controller, Ünal and İftar (2012a).

In their paper, Wakaiki et al. (2013) have studied infinite
dimensional plants having finitely many simple unstable
zeros but possibly infinitely many unstable poles. The au-
thors have tried to find a way to calculate upper and lower
bounds for the largest multiplicative uncertainty under
which a robustly stabilizing stable controller can be gen-
erated. They have used a method developed in Gümüşsoy
and Özbay (2009) and Özbay (2010), where an extension
to the well known Nevanlinna-Pick interpolation algorithm
is used. After calculating the upper and lower bounds,
Wakaiki et al. (2013) also proposed how to generate a
stable controller for a given multiplicative uncertainty. In
this approach, for each bound, a modified version of the
Nevanlinna-Pick interpolation problem is solved and the
resulting interpolating function is an infinite dimensional
one. Since this interpolating function is a part of the
designed controller, the resulting controller ends up to be
infinite dimensional, independent of the other components.

In this paper, we present an application of an old method
appearing in Vidyasagar (1985) and Doyle et al. (1990),
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Fig. 1. The standard unity feedback system.

where a finite dimensional approach is used to find an
interpolating outer function, without considering the H∞

norm condition to be satisfied for robustness. We apply
this method to solve the relaxed problems described by
Wakaiki et al. (2013) to calculate “approximate” upper
and lower bounds, then check the resulting H∞ norm
condition to verify that the stable controller designed also
satisfies the robustness condition.

The paper is organized as follows: in Section 2 some details
and brief results from Wakaiki et al. (2013) are presented.
In Section 3 the method proposed in Vidyasagar (1985)
and Doyle et al. (1990) is recalled and it is applied to
the relaxed problems to calculate approximate maximum
allowable uncertainty bounds. The effects of different free
design parameters on the numerically calculated interpo-
lation function are investigated in Section 5. Finally, Sec-
tion 6 contains some concluding remarks on the proposed
method.

2. PROBLEM DEFINITION

In this paper, we consider the feedback system shown in
Figure 1 where C is required to be a stable controller,
i.e. C ∈ H∞, for a given infinite dimensional plant P .
Recall that the feedback system (C,P ) is stable if and
only if S = (1 + PC)−1, CS and PS are H∞ functions.
A controller C ∈ H∞ leading to a stable feedback system
(C,P ), is said to be a strongly stabilizing controller for the
given plant P .

In this paper we consider the same class of plants consid-
ered in Wakaiki et al. (2013):

P =
N

D
(1)

such that N ∈ H∞, D ∈ H∞ and the pair (N,D) are
strongly co-prime as in Smith (1989). A controller strongly
stabilizing P is a robustly stabilizing controller for the set

Pρ := {P∆ = (1 +W∆)P :
∆ ∈ H∞, �∆�∞ < 1/ρ}

(2)

if and only if it satisfies

�WT �∞ ≤ ρ (3)

where T = PC(1 + PC)−1, and W characterizes the fre-
quency distribution of the multiplicative plant uncertainty.
In this work we assume that W,W−1 ∈ H∞.

As in Wakaiki et al. (2013) we consider an inner-outer
factorization of N and D so that

P =
Mn

Md

N0 (4)

where Mn is inner and finite dimensional, Md is inner and
possibly infinite dimensional and N0, N

−1
0 ∈ H∞.

Note that when Md is infinite dimensional the plant
contains infinitely many poles in C+ (e.g. a neutral time

delay system with asymptotic pole chains in C+); however
requiring N−1

0 ∈ H∞ imposes a restriction that the plant
is not strictly proper.

Example: A typical plant example satisfying the above
conditions is the neutral time delay system

P (s) =
(s− α)(s − 4e−s + 1)

(s− 10)(s− 15)(2e−s + 1)
(5)

where the factorization is in the form

Mn(s) :=
(s− α)(s − p)

(s+ α)(s + p)

Md(s) :=
(s− 10)(s− 15)(2e−s + 1)

(s+ 10)(s+ 15)(e−s + 2)

No(s) :=
(s+ α)(s+ p)(s− 4e−s + 1)

(s− p)(s+ 10)(s+ 15)(e−s + 2)

(6)

with p > 0 being the only root of the quasi-polynomial
(s − 4e−s + 1) in C+; p can be calculated numerically
by using qpmr or Yalta packages, see Vyhĺıdal and Źıtek
(2014) and Avanessoff et al. (2013); for the above example,
p = 0.7990.

In the rest of the paper, it is assumed that W = KW0

where both W0 and W−1
0 belong to H∞ and K > 0. Thus

we have robust stability if

�W0T �∞ <
1

ρ K
. (7)

Problem Definition: In summary, the problem at hand
is to find a strongly stabilizing C for P satisfying (7) for
the largest possible K. We call the largest K > 0 for
which the above problem is solvable the largest allowable
uncertainty bound. By Ünal and İftar (2012a), in order to
have a feasible solution to the strong stabilization problem,
P is assumed to satisfy the parity interlacing property. In
Wakaiki et al. (2013) some upper and lower bounds are
computed for the largest allowable uncertainty bound.

Brief Outline of the Proposed Solution: Wakaiki
et al. (2013) showed that for a given K > 0 the strong
robust stabilization problem is solvable if and only if there
exists a function F satisfying all three conditions given
below:

F, F−1 ∈ H∞ (8)

�W −MdF�∞ ≤ ρ (9)

F (zi) =
W (zi)

Md(zi)
, i = 1, ..., n, (10)

where z1, . . . , zn are the zeros of P in C+. Furthermore,
once such a function F is constructed, a feasible controller
is given by

C =
W −MdF

MnN0F
(11)

Since the above problem is not straight forward to solve,
Wakaiki et al. (2013) have proposed two relaxed problems
each of which defines a necessary (respectively, a suffi-
cient) condition to calculate upper and lower bounds for
the largest possible multiplicative uncertainty K. In the
relaxed problem, which is designed to solve for the lower
bound, they have defined Ws to be Ws,W

−1
s ∈ RH∞ such

that |Ws(jω)| ≤ ρ−|W (jω)| for almost all ω ∈ R. If finitely
many simple unstable zeros of the plant are called as zi
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then we define βi = W (zi)/(Md(zi)Ws(zi)) for i = 1, ..., n.
Wakaiki et al. (2013) proved that if G is a solution to the
modified Nevanlinna-Pick problem with the interpolation
data (zi, βi)

n
i=1 then

C =
W −MdWsG

MnN0WsG
(12)

is a solution for the strong and robust stabilization problem.
A similar definition is given by Wakaiki et al. (2013) for
the upper bound calculations and it relies on a solution of
another modified Nevanlinna-Pick problem.

Modified Version of Nevanlinna-Pick Problem:
Suppose z1, ..., zn ∈ C+ are distinct and none of them
coincide with s = 1; let β1, ..., βn ∈ C \ {0}. Determine
whether there exists a function G such that G,G−1 ∈ H∞,
�G�∞ ≤ 1 and G(zi) = βi for i = 1, ..., n.

The condition G−1 ∈ H∞ is the modification on the
original Nevanlinna-Pick problem. The modified version
of the problem is proved to be solvable by Gümüşsoy
and Özbay (2009) and Özbay (2010) if and only if there
exists an integer set [k1, ..., kn] such that Pick matrix
P([k1, ..., kn]),

P([k1, ..., kn]) :=

[

− logβp − log βq + j2π(kq − kp)

1− φ(zp)φ(zq)

]n

p,q=1

(13)
is positive semi definite where

φ : C+ → D : φ(s) =
s− 1

s+ 1
. (14)

Wakaiki et al. (2013) have given a solution to the modified
Nevanlinna-Pick problem which ends up with an infinite
dimensional G appearing in the designed controller, (12).
As a result, the generated controller solves the strong
and robust stabilization problem for an infinite dimensional
plant with an infinite dimensional controller.

Remark. By the above design in (12), F = WsG
is outer. In order to guarantee a bound on �F−1�∞,

Gümüşsoy and Özbay (2009) proposes a modified version
of the Nevanlinna-Pick interpolation, where a parameter σ
appears, so that �F−1�∞ ≤ eσ. In the numerical example
considered below, we will use a relatively large σ and
illustrate that this leads to a large controller gain at low
frequencies.

3. AN INTERPOLATING RATIONAL OUTER
FUNCTION

In Vidyasagar (1985) (see also Doyle et al. (1990)) a
constructive method is outlined to generate a rational
interpolating function, say U , which is guaranteed to
be outer (i.e. both the function itself and its inverse
are stable) 1 under some constraints related to parity
interlacing property.

Let us assume that we have some ai ∈ C+ and bi as the
interpolation data in the way U(ai) = bi for i = 1, ..., n.

1 An outer function need not be invertible in H∞, in fact we seek
an outer function whose inverse is also in H∞, such functions are
called unimodular in H∞. But we will look for an outer function,
then using a parameter σ > 0 as in the above remark, we will put
a bound on the inverse of the interpolating outer function, using an
idea from Gümüşsoy and Özbay (2009).

Define U1(s) = b1, so that U1(a1) = b1, clearly U1 is outer
and satisfies the first interpolation condition. Now suppose
that an outer Uk is constructed in such a way that it
satisfies the first k interpolation conditions for 1 ≤ k < n.
Then, it is possible to define Uk+1 as

Uk+1(s) = (1 + ck+1Hk+1(s))
lUk(s) (15)

where Hk+1 ∈ H∞ and such that Hk+1(ai) = 0 for
i = 1, ..., k. This choice of Hk+1 makes Uk+1(ai) = Uk(ai)
for i = 1, ..., k independent of c and l. As a result, Uk+1 is
guaranteed to satisfy the interpolation data (ai, bi)

k
i=1. If

it is possible to choose c and l such that Uk+1(ak+1) =
bk+1 and |ck+1| < 1/�Hk+1�∞ then Uk+1 satisfies the

interpolation data (ai, bi)
k+1
i=1 and it is outer. At the end of

the algorithm, U = Un satisfies all the interpolation data
and is outer.

By this method, it is possible to generate interpolating ra-
tional outer functions. It is also possible to tune the degree
of the outer function by changing the value of parameter l,
when c does not satisfy the norm condition. One additional
important point is the choice of Hi functions. Due to
the imposed requirements, zero location of the function is
obvious (i.e. zeros ofHk have to be at ai for i = 1, ..., k−1).
However, the pole location is not constrained by the re-
quirements. This means that the pole location can be a free
design parameter to be determined to shape the resulting
interpolation function. If we recall the requirements of the
modified Nevanlinna-Pick problem from Section 2, we seek
for an outer function G satisfying certain interpolation
data, and a norm condition as �G�∞ < 1. The method
described in this section gives a function satisfying the first
two conditions (i.e. interpolation data and being outer) but
not necessarily the norm constraint.

4. A COMPUTATIONAL METHOD FOR THE
PROBLEM SOLUTION

In this section, we try to make use of the method in
Section 3 in order to find a norm constrained interpolating
rational outer function to solve the modified Nevanlinna-
Pick problem defined in Wakaiki et al. (2013).

Let us first recall the problem definition. The problem
data: zi for i = 1, ..., n are the unstable zeros of the plant
P (they are assumed to be distinct). The problem is to
find a G such that

G(zi) = βi

G ∈ H∞

G−1 ∈ H∞

�G�∞ < 1.

Proposed Algorithm:

• Define r = (r1, ..., rn) to be the relative pole location
for the corresponding zi within each Hk which will
be a part of the interpolation operation. (i.e. r =
(1, ..., 1) is the case called as fixed pole location)

• Use the inner-outer factorization of the plant as given
in (6), P = MdN0/Mn

• Define lmax to be the maximum allowable relative
degree for the interpolant G.

• At each step fix r to find maximum possible K as
follows:

while(bilinear search over K)
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- Define W = KW0 with current K
- Estimate Ws by using the MATLAB function
fitmagfrd as explained in Wakaiki et al. (2013)

- Calculate βi = W (zi)/Md(zi)Ws(zi) for i =
1, ...n

- Let U1(s) = β1

for k = 2 : n
while (l < lmax)
Uk = (1 + ckHk)

lUk−1

Find ck from Uk(zk) = βk

if ((�Uk�∞ < 1) and (ck < 1/�Hk�∞))
Conditions are satisfied, break while
else
l = l+ 1
end if
end while
end for
G = Un

if a feasible G is constructed
increase K

else
decrease K

end if
end while

The proposed algorithm is best explained with an example.

5. AN ILLUSTRATIVE EXAMPLE

Wakaiki et al. (2013) have studied a numerical example
and derived upper and lower bounds for the multiplicative
uncertainty under which a stable controller can be gener-
ated. The example is formed by the plant given in (5) and
the factorization in (6) and the rest of the problem data
is as follows:

W (s) = K
s+ 1

s+ 10

ρ = 1

2 ≤ α < 10

K > 0



































(16)

See Figure 2 of Wakaiki et al. (2013) for the lower and
upper bounds of the largest allowable K for which the
robust strong stabilization problem is solvable with data
given in (16) for the plant (5), with α ∈ (2 , 10). In
what follows we illustrate the application of the algorithm
proposed in Section 4. Our objective is to find a finite
dimensional G as an alternative to the infinite dimensional
one constructed in Wakaiki et al. (2013).

5.1 Interpolating Rational Outer Function by an Inner
H(s)

Having reached the original results from Wakaiki et al.
(2013), we started to replace the interpolation function
generating part with the method of Section 3. For the given
numerical example, Ws and Wn are generated by Matlab

built-in function fitmagfrd and the interpolation data
calculated as z1 = α, β1 = W (α)/(Md(α)Ws(α)) and
z2 = p = 0.7990, β2 = W (p)/(Md(p)Ws(p)). Recall that p
is the only unstable zero of the infinite dimensional part
of the plant and α is the simple zero of the plant. The
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Outer interpolation method with varying pole position

 

 
Wakaiki Lower Bound
Wakaiki Upper Bound
Outer Int. Lower Bound
Outer Int. Upper Bound

Fig. 2. Upper and lower bounds calculated for the maxi-
mum allowable multiplicative uncertainty by a finite
dimensional interpolation function which is generated
by the outer interpolation method of Section 3 using
varying pole location in H(s) as the interstage func-
tion, having degree l < 5.
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Wakaiki Lower Bound
Wakaiki Upper Bound
Outer Int. Lower L = 3
Outer Int. Lower L = 5
Outer Int. Lower L = 7
Outer Int. Lower L = 10

Fig. 3. Lower bounds calculated for the maximum allow-
able multiplicative uncertainty by a finite dimensional
interpolation function which is generated by the outer
interpolation method of Section 3 using varying pole
location in H(s) as the interstage function, having
degree l ∈ {3, 5, 7, 10}.

objective is to calculate the maximum allowable multi-
plicative uncertainty bound under which a stable robust
controller can be generated. Ws is replaced by Wn for
upper bound calculations. Since we have two interpolation
conditions, and both zeros are real, we just need to design
a single H function for the second interpolation phase.

The simplest and immediate choice is H(s) = (s−α)
(s+α) for

which H becomes inner. It is observed that the bounds
calculated by this choice ofH are far away from the bounds
determined in Wakaiki et al. (2013). So, the next step is to
investigate different choices of H and if necessary increase
the order l.

5.2 Outer Interpolation by Varying Pole Location

After having the unsatisfactory results which are explained
in Section 5.1, we now introduce a new parameter to the
problem as the pole location of the interstage function H .

Accordingly, set H(s) = (s−α)
(s+rα) where r > 0 is the design

parameter. We search for the optimum r which maximizes
the upper and lower bounds for a fixed α. The results are
shown in the Figure 2.

As it was clearly observed that letting pole location to
vary, instead of fixing it to make H inner, significantly
improves both the upper and lower bound approximations.
It is also important to understand what upper and lower
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Fig. 4. Upper bounds calculated for the maximum allow-
able multiplicative uncertainty by a finite dimensional
interpolation function which is generated by the outer
interpolation method of Section 3 using varying pole
location F (s) as the interstage function, having degree
l ∈ {3, 5, 7, 10}.

bounds mean in terms of the solution of the modified
Nevanlinna-Pick problem. In the formulation derived by
Wakaiki et al. (2013), lower bound is the bound under
which the defined problem is certainly solvable by the
given solution method (i.e. by calculating an infinite di-
mensional G). Similarly, upper bound is the bound above
which the defined problem is certainly not solvable by the
given solution method. In other words, for a fixed α in
Figure 2 of Wakaiki et al. (2013), the optimum multi-
plicative uncertainty K under which a stable but infinite
dimensional controller can be generated is between the
defined upper and lower bounds. When this explanation is
considered, the expected behavior of the approximated up-
per and lower bounds is to approach from above and from
below, respectively. Figure 2 suggests that approximate
lower bound behaves as expected whereas the approximate
upper bound also approaches from below. To be sure about
the approaching direction of the bounds an extra computa-
tion is done. In this computation, the varying pole location
technique described in this section is used for some differ-
ent values of l ∈ {3, 5, 7, 10} to visualize the approaching
direction of the approximate bounds calculated by the
technique of Section 3. Figure 3 clearly shows that the
approximate lower bound approaches from below to the
original lower bound calculated by Wakaiki et al. (2013)
as expected. However, as Figure 4 depicts the approximate
upper bound also approaches to the original upper bound
calculated by Wakaiki et al. (2013) from below. This unex-
pected behavior seems to grant a better upper bound than
the original bound as a first impression, however, since
the problems which are solved to generate the bounds are
relaxed versions of the original problem, an approximate
solution for the upper bound calculation is not meaningful.
On the contrary, any approximate solution for the lower
bound which stays strictly below the original bound is a
suboptimal solution to the original problem. We make use
of this fact to generate a low order interpolation function
G for the case when α = 2, l = 5, K = 0.4117, r = 0.2046
as given in (17) and the controller is given by (18). The
comparison of the controller and G function designed by
Wakaiki et al. (2013) and designed by the newly proposed
method are given in Figures 5, 6, and 7. The resulting finite
dimensional G is outer, i.e. both G, G−1 ∈ H∞. The inter-
polation data that is required for the given value of K =
0.4117 is calculated by β1,2 = W (z1,2)/Md(z1,2)Ws(z1,2)
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Fig. 5. The magnitude plots of G(jω) obtained by Wakaiki
et al. (2013) and by the proposed algorithm, using
l = 5, when α = 2.
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Fig. 6. The magnitude plot of the calculated C(s) functions
by both methods with α = 2, and l = 5 for the
proposed method.
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Fig. 7. Magnitude plot of the controller in the high
frequency region.

for z1 = α = 2 and z2 = p = 0.7990 that turn out to be
(zi, βi) = {(0.7990, 0.1275), (2, 0.3955)}. For the constraint
�G−1�∞ ≤ eσ, we take σ = 30. It is a simple exercise to
check that G(0.7990) = 0.1275 and G(2) = 0.3955 by using
(17). As the last remark, Figure 5 shows that �G�∞ ≤ 1;
moreover �G−1�∞ ≤ 5.7 × 1012 < 1.0686 × 1013 = e30.
Thus, the function G constructed here is an admissible
solution to the modified Nevanlinna-Pick problem.

G(s) =
(s+ 0.001147)5

(s+ 0.4091)5
(17)

C =
W −MdWsG

MnN0WsG
(18)

Note that robust stabilization problem requires N−1
0 to be

a factor of the controller which means exact cancelation
of the minimum phase part of the plant. However, robust
stabilization problem considered here deals with uncertain
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plants of the form (2), characterized by the weight W .
If it is dangerous to invert some portions of N0 then,
the uncertainty weight W must be chosen accordingly. In
particular, as in (5) if there are infinitely many poles in
C+, any parametric uncertainty in the time delay in Md of
(6) puts the problem outside the framework of uncertainty
description of (2).

6. CONCLUSIONS

We have obtained some preliminary results towards robust
stabilization of an infinite dimensional system with a
possibly low order and stable controller. The plant of
interest can only have finitely many unstable zeros but
may posses infinitely many unstable poles. The strong
and robust stabilization of such a plant was studied by
Wakaiki et al. (2013) where the authors have proposed
two relaxed problems to calculate lower and upper bounds
for the multiplicative uncertainty under which a stable but
infinite dimensional controller can be generated.

This paper is a first step to solve these relaxed problems
by a finite dimensional controller using the rational in-
terpolating outer function method of Section 3: the inter-
polantG is finite dimensional. We used the same numerical
example as Wakaiki et al. (2013) and developed a finite
dimensional outer G to achieve robust stabilization. We
examined the effects of pole location of the interpolating
function and relative degree of G on lower and upper
bounds and concluded that the approximations get bet-
ter as the degree increases for the lower bound. We also
explained why it is not a good idea to solve the relaxed
problem for the upper bound by an approximate approach.

In future studies we will extend this method to obtain
finite dimensional strongly and robustly stabilizing con-
trollers by using approximations of Md and N0 together
with the finite dimensional G obtained here. Extension of
the method to MIMO plants is also an interesting open
problem.
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Gümüşsoy, S., Millstone, M., and Overton, M.L. (2008).
H∞ strong stabilization via HIFOO, a package for
fixed-order controller design flow controller design using
approximation of FIR filters. Proc. 47th IEEE CDC,
Cancun, pp. 4135–4140
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