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ABSTRACT 

We study the problem of sequential prediction of real-valued 
sequences under the squared error loss function. While re­
fraining from any statistical and structural assumptions on the 
underlying sequence, we introduce a competitive approach 
to this problem and compare the performance of a sequen­
tial algorithm with respect to the large and continuous class 
of parametric predictors. We define the performance differ­
ence between a sequential algorithm and the best parametric 
predictor as "regret", and introduce a guaranteed worst-case 
lower bounds to this relative performance measure. In partic­
ular, we prove that for any sequential algorithm, there always 
exists a sequence for which this regret is lower bounded by 
zero. We then extend this result by showing that the predic­
tion problem can be transformed into a parameter estimation 
problem if the class of parametric predictors satisfy a certain 
property, and provide a comprehensive lower bound to this 
case. 

Index Terms- Sequential prediction, lower bound, 
worst-case performance. 

1. INTRODUCTION 

In this paper, we investigate the generic sequential predic­
tion problem under the squared error loss function, where 
we refrain from any statistical assumptions both on the al­
gorithms and sequences [1-3]. We consider an arbitrary, de­
terministic, bounded and unknown signal {X[t]h>l, where 
Ix[t] I < A < 00 and x[t] E ill,. In this sense, we define the 
performance of a sequential algorithm with respect to a com­
parison class and try to predict the sequence as well as the 
best predictor among the comparison class. In particular, we 
define this competitive performance metric as follows 

n n 

""'(x[t] -xs [t])2 - inf ""'(x[t]-Xc[t])2, (1) � CEC � t=1 t=1 
for an arbitrary length of data n, and for any possible se­
quence {X[t]h>l, where xs[t] is the prediction at time t of 
any sequential algorithm that has only access to data from x[I] 
to x [t -1], and Xc [t] is the prediction at time t of the predictor 

c such that C E C, where C represents the class of predictors 
we compete against. We emphasize that the competition class 
does not have any restrictions while making the prediction, 
e.g., this class may contain predictors that has access to entire 
sequence {X[t]h::::1 even before processing starts (i.e., batch 
predictors). In this sense, this competitive performance metric 
in (1) can in fact, be viewed as the "regret" of the sequential 
predictor for not knowing the future. 

In order to obtain comprehensive results, we do not set 
a specific comparison class but parameterize the compari­
son classes such that the parameter set and functional form 
of these classes can be chosen as desired. Therefore, we 
uniquely identify the class of parametric predictors with their 
parameter vector of w � [WI"" , wm]T, and denote the 
regret in (1) as follows I 

n n 

n(x�) � ,,",(x[t]_Xs[t])2- inf ""'(x[t]-f(w,X�= �))2, � WElRm � t=1 t=1 
(2) 

where f (w, x;=�) is a parametric function whose parameters 
W can be set prior to prediction, and a is an arbitrary integer 
representing the tap size of the predictor. We emphasize that 
even though the parameters of a parametric predictor can be 
set prior to prediction, it is still obligated to use the data x�=� 
in order to predict x[t]. 

Under this framework, we introduce the generalized lower 
bounds for sequential prediction by transforming the predic­
tion problem to a well-known and widely studied statistical 
parameter learning problem [1-5]. Specifically, we show that 
there always exist a sequence {x[t] h> I such that the regret 
in (2) is lower bounded by zero. We push the analysis fur­
ther and prove that there always exist a sequence for which 
this regret cannot be smaller than O(ln( n)) if the parameter 
function is in a separable form, i.e., 

The organization of the paper is as follows. In Section 2, 
we present the lower bounds for a generic class of parametric 

1 All vectors are column vectors and denoted by boldface lower case let­
ters. For a vector u. u T is the ordinary transpose. We denote x� £ 
{x[tlH=a' 
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predictors. In Section 3, we consider a specific type of para­
metric predictors, namely the separable ones (the meaning of 
"separable" will be cleared in the paper), and introduce a pro­
cedure to transform the prediction problem into a parameter 
estimation problem. We finalize our paper by pointing out 
several concluding remarks. 

2. PARAMETRIC PREDICTORS 

In this section, we investigate the worst-case perfonnance of 
sequential algorithms compared to the generic class of para­
metric predictors in order to obtain guaranteed lower bounds 
on the regret. For any arbitrary data sequence {x [t] h> 1 with 
an arbitrary length n, we consider the optimal sequential pre­
dictor for that sequence and seek to find a lower bound on the 
following regret 

inf supR(xr), sES Xl� (3) 

where S is the class of all parametric predictors. For this for­
mulation, we introduce the following theorem, which relates 
the perfonnance of any sequential algorithm to the general 
class of parametric predictors. 

Theorem 1: Given a parametric class of predictors in the 

form f(w, x�=�), where wE ill,m, we have 

inf sup R(xr) ;::: o. sES x'i'" (4) 

This theorem implies that no matter how smart a sequen­
tial algorithm is or how naive the competition class is, it is 
not possible to outperform the competition class for all se­
quences. As an example, this result demonstrates that even 
competing against the class of constant predictors, i.e., the 
most naive competition class, where xc [t] always predicts 
a constant value, any sequential algorithm, no matter how 
smart, cannot outperform this class of constant predictors for 
all sequences. 

Proof of Theorem 1.' We begin our proof by noting that 
for an arbitrary sequence of xr, the optimal sequential pre­
dictor may not be found straightforwardly. Yet, for a specific 
distribution on x7, the best predictor is the conditional mean 
on x7 under the squared error [6]. For any distribution on x7, 
we have 

inf supR(xr) ;::: inf Exn [R(xr)] , sES Xl sES 1 
(5) 

where expectation is taken with respect to this particular dis­
tribution. Hence, it is enough to lower bound the right hand 
side of (5) to get a final lower bound. By the linearity of the 
expectation, we obtain 

inf Exn [R(xr)] = Ls(Xr) -Lc(Xr), (6) sES 1 

where L s (x7) denotes the minimum loss that can be achieved 
with a sequential predictor for the sequence x7, i.e., 

and Lc(x7) denotes the loss of the optimal predictor in the 
competition class, i.e., 

Lc(Xr) £ Exn [ inf �(x[t]-f(W,x�=�))2l. 1 WEIRm � 
t=l 

We now select a parametric distribution for x7 with pa­
rameter vector 0 = [Bl"'" BmV. Then consider Ls(x7) 
and Lc (x7) terms separately. 

The squared-error loss Ex� [(x[t]-xs[t])2] is mini­
mized with the well-known minimum mean squared error 
(MMSE) predictor given by [6] 

xs[t] = E [x[t]lx[t -1], ... ,x[l]] = E [x[t] lxi-I] , (7) 

where we drop the explicit x7-dependence of the expectation 
to simplify notation. By expanding the expectation, we then 
obtain 

Ls(Xr) = EO [EXi'IO [�(X[t]-E [x[t]IXi-l])2]]. 
(8) 

Now turning our attention back to Lc(Xn, we expand the 
expectation and observe that 

Lc(Xr) :s; EO [wirlm Ex�IO [�(X[t]-f(W,x;=�))2ll· 
(9) 

Hence, for a distribution on x7 such that 

E [x[t]Ixi-l,0] = a(O)h(O,x�=�), (10) 

with some functions aU and he, .), if we can find a vector 
function g( 0) such that 

f(g(O), x�=�) = a(O) h(O, x;=�), 
then (9) can be written as 

Lc(Xr):s; EO [EXi'IO [�(X[t]-E [x[t]lxi-l,O])2]]. 
(11) 

Combining (6) with (8) and (11), we obtain 

inf Exn [R(xr)] ;::: sES 1 

Eo [ExIIO [�(X[t]-E[x[t]lxi-I])2]] 

-EO [ExIIO [�(X[t]-E[x[t]lxi-\O])2ll' 
(12) 
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which is by definition of the MMSE estimator is always lower 
bounded by zero, i.e., 

Hence, we conclude that for predictors of the form 
f( w, x;=;) for which this special parametric distribution, 
i.e., w = g( 0) exists, the best sequential predictor will 
be always outperformed by some predictor in the competi­
tion class of parametric predictors for some sequence xr. 
This means that our proof follows if a suitable distribu­
tion on xr can be found for a given f( w, x;=;) such that 
f(g( 0), x;=;) = a ( 0) h( 0, x�=;) with a suitable transforma­
tion g(O). 

We proceed by considering the following distribution on 
xr. Suppose f(w,x;=;) is bounded by some M E  R+ with 
M < (X)foralllx[tli � A, i.e., If(w,x�=;)1 � M. Then, 
given 8 from a beta distribution with parameters (C, C), C E 
R+, we generate a sequence xr such that 

, with probability 8 
, with probability 1 -8 

Then 

Hence, this concludes the proof of the Theorem 1. D 

3. SEPARABLE PARAMETRIC PREDICTORS 

In this section, we consider the restricted functional form 
f( w, x;=;) so that f( w, x;=;) is separable, i.e., 

f(w, x�=;) = f w(wf f x(x�=;), 
where f w(w) and f x(x;=;) are some vector functions. De­
noting v � f w ( w ), we obtain the regret compactly as follows 

n n 
R(xf) = 2)x[tl-xs[t])2-v�rM= 2)x[tl-vT f x(x�=;))2. 

t=I t=I 
We emphasize that this restricted form can be considered 

as the super set of entire polynomial predictors, which are 
widely used in many signal processing applications to model 
nonlinearity such as Volterra filters [7]. This filtering tech­
nique is attractive when linear filtering techniques do not pro­
vide satisfactory results, and includes cross products of the 
input signals. 

Similar to the previous section, for any arbitrary data se­
quence {X[t]} t>I with an arbitrary length n, we consider the 
optimal sequential predictor for that sequence and seek to find 
a lower bound on the following regret 

inf sup R(xf), sES xi'" 

where S is the class of all parametric predictors. 
In Section 2, we have proven that there always exists a 

sequence such that the performance of any sequential algo­
rithm compared to the generic class of parametric predictors 
is lower bounded by zero. In the following theorem, we com­
pare the performance of any sequential algorithm with respect 
to the class of separable parametric predictors and introduce 
the following theorem. 

Theorem 2: For any sequential algorithm, there always 

exist a sequence for which the performance of a sequential 

algorithm with respect to the class of separable parametric 

predictors will always be lower bounded by O(ln(n)), i. e. ,  

inf supR(xf) � O(ln(n)). sES Xl 

This theorem indicates that when the competition class 
only consists of separable parametric predictors, the predic­
tion problem can be transformed into a parameter estimation 
problem. By doing so, we show that no matter how smart a se­
quential algorithm can be, it cannot possibly achieve a better 
learning rate than O(ln( n)) for all sequences. The algorithms 
that are claimed to achieve a better learning rate are certainly 

based on some ad-hoc assumptions such as a priori knowl­
edge on the underlying sequence and cannot be guaranteed to 
achieve the claimed learning rate for all sequences. In fact, if 
one finds an algorithm with an upper bound of O(ln( n)), then 
the performance of that algorithm cannot be further improved 
for all sequences. 

Proof of Theorem 2: Since we consider the class of sepa­
rable parametric predictors, we have 

E [x[tllxi-I,O] = fw(g(O))T fx(x�=;),. 
We then generate the underlying sequence xr as follows. De­
noting 

( t-I) !o. [f ( t-I) f ( t-I)lT f X Xt-a = 1 Xt-a , . . .  , p Xt-a , 
for some integer p, and given 8 from a beta distribution with 
parameters (C, C), C E R+, we generate a sequence xr hav­
ing only two values, A and -A, such that 

, with probability 8 
, with probability 1 -8 ' 

where 

f ( t-I) !o. A f ( t-I) n Xt-a = 
M 1 Xt-r , 

i.e., the normalized version of h(x�=�). Thus, given 8, xr 
forms a two-state Markov chain with transition probability 
(1 -8). We then have 

E [x[tllxi-I,8] = (28 -l)fn(x�=;). 
Since we have 

inf sup R(xf) � inf EXi' [R(xf)l , sES Xl sES 
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we obtain the lower bound for the regret as follows 

inf Ex" [R(xf)] = E [(x[t] -(28 -1)fn(x;=;))2] sES 1 

-E [(x[t] -(2B -1)fn(x;=;))2] , 
where we have the optimal sequential predictor in the follow­
ing form 

After some algebra we achieve 

inf Ex" [R(xf)] = -4E[8x[t]fn(x;=;)] 
sES 1 

+ 4E[BX[t]jn(X;=;)] + E[(28 -1)2] -E[(2B -1)2]. 
(13) 

Now considering the first term of (13), we observe that 

8 = E[Blxt-l] = 
t -2 -Ft-2 + C 

I t -2 + 2C ' 
where Ft-2 is the total number of transitions between the two 
states in a sequence of length (t -1), i.e., 8 is ratio of number 
of transitions to time period. Hence, 

, t-I [ t -2 -Ft-2 + C t-I ] E[B x[t] fn(xt-a)] = E t _ 2 + 2C x[t] fn(xt-a) 
t -2 + C t-I = t -2 + 2C E[x[t] fn(xt-a)] 

1 t I -- ---,-C E[Ft-2 x[t] fn(xt -a)] t-2+2 -
1 -t -- 2 -+-2C-=- E[(l -B)(t -2) x[t] fn(x�=;)] 

t-2 [ [ ] tl ] t-2+2C E B x t  fn(xt=a) , 
where the third line follows since 

and 

since Ft-2 is a binomial random variable with parameters 
(1 -B) and size (t -2). Thus, we obtain 

After this line the derivation follows similar lines to Theorem 
3 of [3], which results in 

inf Ex" [R(xf)] � O(ln(n)). 
sES 1 

This concludes the proof of Theorem 2. D 

4. CONCLUDING REMARKS 

In this paper, we consider the problem of sequential pre­
diction from a mixture of experts perspective. We intro­
duce comprehensive lower bounds on the sequential learning 
framework by proving that for any sequential algorithm, there 
always exists a sequence for which the sequential predictor 
cannot outperform the class of parametric predictors, whose 
parameters are set non-casually. We then consider a specific 
type of parametric predictors (i.e., separable parametric pre­
dictors), where we emphasize that this class of predictors 
are still a comprehensive one, e.g., all linear and polynomial 
predictors are subsets of separable parametric predictors. In 
this framework, we transform the prediction problem to a 
parameter estimation problem and show that there always 
exists a sequence such that the regret of a sequential predictor 
is lower bounded by O(ln(n)). 
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