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Abstract—We present a compression algorithm to accelerate
the solution of source reconstruction problems that are formu-
lated with integral equations and defined on arbitrary three-
dimensional surfaces. This compression technique benefits from
the adaptive cross approximation (ACA) algorithm in the first
step. A further error-controllable recompression is applied after
the ACA. The numerical results illustrate the efficiency and
accuracy of the proposed method.

I. INTRODUCTION

One way to carry out antenna characterization and diagnosis
in the far zone is to use the source reconstruction method
(SRM) [1] as an alternative to the wave mode expansion
(WME) technique [2]. The method obtains the equivalent
distribution of the electric and magnetic currents on the
reconstruction surface that radiate the same field as that of
the antenna under test at the measurement surface. Unlike the
WME technique, the SRM does not enforce any geometrical
constraint on the reconstruction and measurement surfaces and
can be applied on general 3-D surfaces [1].

The reconstruction surface is meshed using triangles on
which Rao-Wilton-Glisson basis functions are defined. Fur-
thermore, the measured field is sampled with a specific angular
resolution. Thus, the desired discretization required for the nu-
merical solution of the integral equation is achieved. Matching
tangential components of the fields radiated from equivalent
sources and the antenna under test on the measurement surface
leads to a 2L × 2N matrix equation, where L is the number
of sampling points on the measurement surface and N is the
number of unknowns. The matrix equation can be represented
as

Z(2L×2N) · a(2N×1) = v(2L×1), (1)

where the vector a contains the coefficients of the equivalent
currents and v is the right-hand-side known vector that consists
of the theta and phi components of the measured electric field,
i.e., Eθ and Eφ. Furthermore, in (1), the matrix Z(2L×2N)

consists of four submatrices of the size L×N . Alternatively,
(1) can be written asZEθ,J

(L×N) ZEθ,M
(L×N)

Z
Eφ,J

(L×N) Z
Eφ,M

(L×N)

 · [aJ (N×1)
aM (N×1)

]
=

[
vEθ,(L×1)
vEφ,(L×1)

]
, (2)

where ZEX ,J is a submatrix relating the aJ coefficients with
the X component of the electric field and ZEX ,M relating

the aM coefficients to the X component of the electric field
on the measurement surface (X ∈ {θ, φ}) [1]. For the least-
squares solution of the matrix equation in (2), we perform the
transformation

Z · a = v → ZH ·Z · a = ZH · v, (3)

with ZH =
{
ZT
}?

. In (3), the superscript “H” stands for
the transpose and complex conjugate operation and ZH · Z
is a Hermitian matrix. The resulting matrix equation in (3)
is ill conditioned and requires an appropriate regularization.
To this end, a common technique is to use the singular value
decomposition (SVD) method, which leads to a high-quality
solution [3].

The iterative solution of (1) requires O(LN) operations,
which becomes a bottleneck for problems with large L and N .
The situation worsens when SVD is applied for regularization
with a computational cost of O(N2 max(N,L)). Several fast
methods are applied to reduce the computational cost of the
SRM, such as techniques based on the fast multipole method,
its multilevel version [4], and adaptive cross approximation
(ACA) [5], [6]. In this work, we incorporate the recompressed
ACA (RACA) [7] to reduce the memory usage and solution
time of the SRM. A major advantage of RACA is that it is
purely algebraic and, unlike SVD, it does not depend on the
full knowledge of all matrix elements. Using RACA, we can
compute SVD with low computational cost. Section II outlines
the implementation details, Section III provides the numerical
and we conclude in Section IV.

II. IMPLEMENTATION

In the first step, we will apply ACA on the Z matrix in (1)
to obtain

Z(2L×2N) = U (2L×k) · V H
(k×2N), (4)

where U and V are complex matrices of rank k. By incor-
porating the QR decomposition and computing the SVD, as
shown in Algorithm 1, the matrix equation in (3) becomes

V (2N×k′) ·UH
(k′×2L) ·U (2L×k′) · V H

(k′×2N) · a(2N×1)

= V (2N×k′) ·UH
(k′×2L) · v(2L×1), (5)

where k′ is the effective rank. Once (5) is obtained, the
required matrix-vector multiplications in the iterative solver

151978-1-4799-3540-6/14/$31.00 ©2014 IEEE AP-S 2014



are efficiently computed with 2k′(N + L) operations. The
proposed method also benefits from reduced memory con-
sumption. The computational complexity of the provided com-
pression technique is less than the SVD [7]. Furthermore, the
ill-conditioned matrix equation in (3) is regularized by keeping
the first k′ significant singular values.

Algorithm 1 Recompression Algorithm

procedure RECOMPRESS(U ,V , ε)
Compute a truncated QR factorization of U and V :
U = QU ·RU ; V = QV ·RV ;
R̂ = RU ·RH

V ;
Compute an SVD of R̂:
R̂ = Û · Σ̂ · V̂ H ;
k′ = 1;
while σk′ > εσ1 do

k′ = k′ + 1
end while
URACA

(m×k′) = QU · Û ; V RACA
(n×k′) = QV · V̂ · Σ̂;

end procedure

III. NUMERICAL RESULTS

To verify the proposed method, we consider the following
scenario: The operating frequency is 1 GHz. A 4× 1-element
array of z-oriented dipoles with half-wavelength separation are
placed on the z-axis, as shown in Fig. 1. The array is enclosed
by a sphere of radius 1λ and the equivalent sources will be
reconstructed on this sphere. The measurement surface is a
sphere of radius 2.5λ. The theta component of the electric-field
patterns on a path with r = 5λ, φ = 0◦, and 0◦ ≤ θ ≤ 180◦

are compared and a good agreement is observed (Fig. 2). The
relative error between the fields from equivalent sources and
original sources is calculated via

Relative Error = 100×
|Eθ,orig − Eθ,equiv|

|Eθ,orig|
, (6)

and is illustrated by a green line in Fig. 2. In these simulations,
the convergence residual of the BiCGSTAB iterative solver is
set to 10−4 and the threshold for RACA is set to ε = 10−3. The
total reconstruction time using the ordinary method is 1572
seconds, whereas RACA reduces the CPU time to 184 seconds.
With RACA, a 91% reduction in memory consumption and a
speed-up of factor 8.5 are obtained. Ordinary ACA (without
recompression) would lead to 78% memory usage reduction
and a speed-up of factor 4.1. Hence, we can conclude that
RACA outperforms ordinary ACA.

IV. CONCLUSION

We propose an error-controllable matrix compression tech-
nique to reduce the computational cost of the SRM and to
obtain a low-cost regularization. With the proposed technique,
a significant reduction in memory (up to 91%) is achieved
compared to the ordinary SRM. The SRM results agree well
with the reference solutions, testifying to the accuracy of the
method.

Fig. 1. Original 4×1-element array of dipoles with 0.5λ separation (orange
arrows). The green sphere indicates the reconstruction surface.
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Fig. 2. Comparison of the fields radiated from the original and equivalent
currents on a path with r = 5λ, φ = 0◦, and 0◦ ≤ θ ≤ 180◦. The solid
red curve represents the magnitude of the theta component of the original
electric field. The dashed blue curve indicates |Eθ| that is radiated from the
equivalent currents. The green curve illustrates the percentage of the relative
error.
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