2014 IEEE International Conference on Robotics & Automation (ICRA)

Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

Linear Planning Logic: An Efficient Language and Theorem Prover for
Robotic Task Planning

Sitar Kortik! and Uluc Saranli?

Abstract—In this paper, we introduce a novel logic language
and theorem prover for robotic task planning. Our language,
which we call Linear Planning Logic (LPL), is a fragment of
linear logic whose resource-conscious semantics are well suited
for reasoning with dynamic state, while its structure admits
efficient theorem provers for automatic plan construction. LPL
can be considered as an extension of Linear Hereditary Harrop
Formulas (LHHF), whose careful design allows the minimiza-
tion of nondeterminism in proof search, providing a sufficient
basis for the design of linear logic programming languages such
as Lolli. Our new language extends on the expressivity of LHHF,
while keeping the resulting nondeterminism in proof search
to a minimum for efficiency. This paper introduces the LPL
language, presents the main ideas behind our theorem prover
on a smaller fragment of this language and finally provides
an experimental illustration of its operation on the problem of
task planning for the hexapod robot RHex.

I. INTRODUCTION

As a result of rapid developments and decreased cost
for mobile robotic systems, they promise to become more
ubiquitous. From simple applications such as cleaning robots
[1] to more sophisticated systems such as Mars rovers [2],
mobile robots have been tasked with increasingly important
roles. However, as these roles become more complex, the
need for autonomy for robotic systems also increases. Even
though teleoperation has been successfully used to overcome
difficulties associated with operating a robot in remote and
potentially hazardous environments [3], it suffers from in-
herent problems in terms of its scalability and speed. Conse-
quently, autonomy for mobile robotic platforms remains to
be a difficult but important challenge.

Our work in this context focuses on task planning [4],
which is the problem of finding a list of actions (plan) that
can be used to reach a given goal in the presence of well-
defined actions and resources. In general, each action is
formally defined as having certain preconditions and effects,
expressed in a suitable language. Preconditions must be
satisfied using existing resources before an action can be
used. If an admissible action is chosen for execution, the
environment is modified with its effects, usually represented
as new resources or facts. Plan search consists of finding a
total or partial order of such actions, at the end of which the
desired goal should be reached [5].

This general idea is not new [6] and has been instantiated
in numerous different languages and methods. Among these,

1Sitar Kortik is with the Department of Computer Engineering, Bilkent
University, 06800, Ankara, Turkey, sitar@cs.bilkent.edu.tr
1Uluc Saranli is with the Department of Computer Engineering,

linear logic has been proposed in the literature as having
sufficient expressivity to handle real-world planning prob-
lems [7] as a result of its linearity, allowing native support
for representing dynamic state as single-use (or consumable)
resources [8], that are in stark contrast to fact representations
in classical logic that can be used multiple times or not at
all. As such, linear logic is capable of effectively addressing
the well-known frame problem (the need and challenge of
representing possibly irrelevant non-effects of an action in
addition to its effects) that often occurs in embeddings of
planning problems within logical formalisms [9, 10].

Unfortunately, the use of logical reasoning methods and
theorem provers for practical domains such as task planning
consistently runs into fundamental issues with computational
complexity due to “extra” freedom in the multitude of
valid proofs, resulting in nondeterminism beyond what is
inherent in the problem domain itself, hence making the
search problem much bigger [11]. Most research efforts
to address this problem either focus on simplifying the
representational language, or attempt to impose a particular
structure on proof search without compromising the semantic
soundness and completeness of the logic [12]. Our approach
is a combination of both, providing increased expressivity
relative to simpler but very efficient linear logic programming
languages such as Lolli [13], while managing to keep the
out-of-domain nondeterminism to a minimum.

To this end, we introduce a new language called Linear
Planning Logic (LPL), which extends on Linear Hereditary
Harrop formulas (LHHF) [13] that underlie linear logic
programming languages such as Lolli. We propose a new
proof theory for this language, preserving the deterministic
back-chaining structure of provers designed for LHHF, while
allowing negative occurrences of conjunction (representing
multiple simultaneous preconditions for an action) that prove
to be particularly problematic for linear logic. In order to
keep the presentation clear and concise, we present our ideas
in the context of a simplified language, mini-LPL, that pre-
serves LPL’s critical features. We illustrate an experimental
application of our new planning formalism on the problem
of behavioral planning for a hexapod robot navigating in an
environment populated with visual landmarks and show the
feasibility of using LPL for task planning.

II. RELATED WORK

Among most commonly known planning algorithms is
Partial Order Planning (POP) [14], which introduced the

Middle East Technical University, 06800, Ankara, Turkey,
saranli@ceng.metu.edu.tr idea of searching in the space of plans rather than the
978-1-4799-3685-4/14/$31.00 ©2014 IEEE 3764

larger space of orderings of individual actions. Substan-
tial nondeterminism was eliminated by allowing plans to
maintain a partial order between actions, focusing only on
interactions that are relevant to the task at hand. An important
variation was introduced by the Universal Conditional Partial
Order Planner (UCPOP) method [15], which achieves greater
expressivity by incorporating constraints as conditions on
actions. UCPOP can encode actions that have variables,
conditional effects, disjunctive preconditions and universal
quantification. Despite their effectiveness, however, both the
expressivity and the semantic completeness of these methods
are impaired in the absence of formal foundations connecting
them to a logical formalism.

A more recent practical alternative to these methods is
GraphPlan [16], which proved to be faster than POP, albeit
being less expressive. Even though both methods are based
on the STRIPS [6] representation of states and actions, POP’s
use of variables is more intuitive than GraphPlan which is
restricted to propositional state components. This not only
makes GraphPlan a more restrictive language, but also in-
creases problem size when complex domains are represented
within the framework. Some existing work addresses these
problems by combining the expressivity of UCPOP with the
efficiency of GraphPlan [17] by transforming domains in the
former to their equivalent in the latter.

An alternative formalism for planning problems is Petri
Nets, which has been used for assembly planning and task
planning domains [18]. Assembly planning is finding a
sequence of operations to assemble a product, for which
Petri nets were first used by Zhang [19]. Transitions in Petri
nets can be used to represent assembly operations and places
to represent corresponding preconditions and results. Petri
nets have also been used for robot task plan representation
for modeling, analyzing and execution in [20] as well as
semantic models for linear logic [21], through which research
in this area is connected to our contributions as well.

Previous research has investigated different issues arising
from the use of linear logic for planning. In [22], the authors
argue that linear logic is appropriate for simple planning
problems where actions can be either deterministic or nonde-
terministic, having preconditions and effects represented as
linear assumptions. In deterministic action definitions, there
is only one possible set of effects. In contrast, disjunctive
actions are nondeterministic since effects of an action may
vary depending on the current state. In [23], the authors
propose a new geometric characterization of actions and
also translate conjunctive actions into plans. They define
a pseudo-plan as a finite graph composed of vertices for
actions and oriented edges for preconditions or effects of
actions. In [24], the exponential search space problem in
planning problems including functionally identical objects,
such as identical balls in a box, was addressed, exploiting the
resource conscious nature of linear logic. In [25], temporal
concepts were incorporated into actions, allowing them to
have quantitatively delayed effects. These studies focused
more on the expressivity of the language and did not in-
vestigate the efficiency of the planner, which is likely to be

intractable due to the explicit presence of the cut rule.

Among recent studies considering the use of linear logic
for planning is the implementation proposed in [26]. The
proposed framework allows an action to interact with differ-
ent agents through a dialogue, without requiring that agents
share goals, plans and representations of the world. This
allows implementation on a distributed architecture using the
linear logic programming language Lolli [13] ported onto
the distributed language Alice [27]. Our contributions in
this paper focus on increasing expressivity, while preserving
computational efficiency for planning languages based on
linear logic.

ITI. LINEAR PLANNING LOGIC

A. A Simple Robotic Planning Domain

landmark2

landmarkl

Camera

landmark3

Fig. 1. An illustration of the simple planning domain including a six-legged
robot equipped with a camera and three colored landmarks.

We begin our presentation by introducing a simple domain
in which concepts and algorithms for Linear Planning Logic
will be presented. The example domain consists of a mobile
robot, the RHex hexapod [28] in this case, navigating in
an environment populated with uniquely identifiable colored
landmarks. Paths between each pair of landmarks can have
surfaces with different traversability properties appropriate
for different locomotory gaits of the robot. Moreover, the
robot is assumed to have the capability of “tagging” land-
marks, corresponding to a particular action carried out at
that location. We capture this aspect of the domain with a
persistent binary state, “tagged” or “untagged”, associated
with each landmark. An illustration of this domain is shown
in Fig. 1. For the sake of simplicity, our presentation in this
paper except the last experimental example will only use two
actions, Walk(X') and Tag(X), eliminating additional actions
such as Run(X) for running on firmer ground towards land-
mark X and Seek(X) for visually searching for landmark X.
Predicate and action definitions to represent this simplified
domain are summarized in Fig. 2.

An example planning problem in this domain, as we will
show more formally in subsequent sections, would be tag a
desired set of landmarks while leaving others untagged, using
locomotory actions that are appropriate for paths traversed
during navigation. We have chosen this relatively simple
planning domain in order to ensure a clear presentation of
our logical reasoning framework.

3765

Predicates:

at(X) Robot is at the landmark X.

tagged(X) Landmark X is tagged by the robot.
untagged(X) Landmark X is not tagged by the robot.
Actions:

Walk(X) Robot walks to the landmark X.
Tag(X) Robot tags the landmark X.

Fig. 2. Predicates and actions encoding the simple robotic planning domain.

B. Intuitionistic Linear Logic: Language and Proof Theory

In logical reasoning, intuitionistic languages have the
property that proofs have a close correspondence to exe-
cutable programs as formalized by the Curry-Howard iso-
morphism [29]. This motivates a direct application to plan-
ning problems where a suitable encoding of the domain
including its state components and actions, combined with
representations of initial and goal states can be supplied to
an automatic theorem prover to generate a feasible plan in
the form of a proof. In this context, both the expressivity
of the language, as well as the efficiency of the theorem
prover are of critical importance since they directly influence
the utility and feasibility of the framework. An unfortunate
trade-off, however, is that the more expressive a logical
language is, the less efficient associated theorem provers
become due to the increase number of alternatives to consider
(i.e. nondeterminism) at each step of the proof construction.

In this context, linear logic, first introduced by Girard
[8] and later received considerable attention in the literature,
offers a promising combination of expressivity and efficiency
in proof search for encodings of problems in need of model-
ing dynamic state components. The linearity of the language
restricts assumptions to be single-use, allowing a natural
encoding of state components as consumable resources. This
section presents a gentle introduction to most important con-
nectives and their semantic properties within linear logic to
support the theoretical foundations of our proposed method.

For clarity, we limit our discussions to a smaller multi-
plicative fragment of linear logic defined by the grammar

Program formulas: D ::
Goal formulas: G =

a|D1®D2|G—OD
a|G1®Gy|D—G,

where a denotes atomic formulae (e.g. the predicates sum-
marized in Fig. 2). In the task planning domain, the simul-
taneous conjunction connective (®) is used for composing
resources or goals whereas the linear implication connective
(—o) is used for relating preconditions to effects for actions.
We call this language mini-LPL since it captures all important
aspects of the LPL to highlight our contributions.

Proof construction within logical languages is often for-
malized within sequent calculus, which encodes consequence
relations between provability statements in the form of
inference rules. The first step in such formalizations is the
definition of a sequent for a logical formalism that encodes
the provability of a goal from a set of resources. For example,
our sequent definition for a basic mini-LPL proof theory takes

the form
D17D23"'7Dana (1)

which indicates that the goal formula G is provable using
consumable resources D, through D,,, all of which must be
used exactly once. This last property is what distinguishes
linear logic from others where assumptions persist indefi-
nitely.

A,Q,B:>G oL A= G Ay = Go SR
A,Oé@ﬂéG Al,A2:>G1®G2
Fig. 3. Proof rules for simultaneous conjunction. The ®L rule on the left

defines how a conjunctive assumption can be decomposed, while the ® R
rule on the right shows how to achieve a conjunctive goal by decomposing
available resources.

Sequent calculus formulations require “left” and “right”
inference rules for each connective, encoding how reasoning
should proceed for occurrences of that connective on the
left or right side of the sequent, respectively. For example,
Fig. 3 shows left and right sequent rules for simultaneous
conjunction. Reading these rules from the bottom to the top,
the resource conscious nature of linear logic is evidenced
by the @R rule, which requires that assumptions (resources)
available on the left side of a sequent must be split into A
and A, between two subgoals G; and G5. This is in stark
contrast to traditional logic systems where an assumption
can be used as many times as desired. This property is also
enforced by sequent rules associated with linear implication
shown in Fig. 4, where the —o L splits available resources
between the proof for the premise in the implication and its
conclusion.

Al =« A275:G
A17A2,a—oﬁ=>G

Aa=G
A=a—-G °

R

—o

Fig. 4. Proof rules for linear implication. The — L rule on the left first
proves the premise, then proves the conclusion, splitting available resources
as necessary. The —o R rule attempts to prove the conclusion by adding the
premise into available resources.

The proof system becomes completed by linking atomic
assumptions to atomic goals using the init rule shown in
Fig. 5. This rule occurs at the leaves of the upside-down
proof tree whose nodes are instantiations of left and right
sequent rules as shown in Fig. 9.

=7 init

Fig. 5. The init rule connecting atomic assumptions to atomic goals.
Based on the proof theory summarized above, we will
now illustrate an important source of nondeterminism in
proof search that is directly addressed by the method we
propose in this paper. We first note that the construction of a
sequent calculus proof proceeds recursively from the bottom

3766

to the top, with the initial problem specified in the form of
a sequent. For example, the following sequent might appear
at an intermediate stage within our example domain:

at(bs) ® tagged(bs) = tagged(by) ® at(bs) .

Even though the proof for this commutativity sequent is
trivial for us humans to construct, an automated prover
with access to only the sequent rules described above must
consider all applicable alternatives, leading to substantial
nondeterminism in the search.

o
: ?
at(b2), tagged(b2) = tagged(bs) ?)
at(b2) ® tagged(b2) = tagged(b2) -=at(ba)
at(b2) ® tagged(bz) = tagged(b2) ® at(b2)

Fig. 6. Incorrect proof attempt using first the ® R rule, then the ® L rule.
The first alternative we might consider would be to eagerly
apply the ®R rule in reverse to decompose the goal into
its subgoals. This is a strategy which is adopted by logic
programming languages in general, with full decomposition
of goals followed by back-chaining. The proof tree alter-
native that results is shown in Fig. 6. Unfortunately, this
eager decomposition of the goal does not lead to a valid
proof in this case since the conjunctive goal on the left hand
side must be assigned either to the first or the second goal,
leaving the other one unprovable. The correct proof is given
in Fig. 7. The availability of these two alternatives, combined
with the combinatorial complexity of splitting resources is a
significant source of nondeterminism in proof search.

nat

at(b2) = at(bz) it tagged(b2) = tagged(bz) 9R

at(b2), tagged(bz2) = at(bz) ® tagged(b2)
at(b2) ® tagged(bz) = at(bs) ® tagged(b2)

Fig. 7. Correct proof using the ®L rule first, then the ® R rule.
Fragments of linear logic that form the basis of linear logic
programming languages address this issue by disallowing
simultaneous conjunction on the left hand side of a sequent
(i.e. negative occurrences) altogether [30,31]. In such limited
grammars, action representations become more complex,
sometimes impossible [26]. Our solution is to use a novel
resource management strategy to allow eager application of
the @R rule, keeping track of used and unused resources to
effectively postpone the decision for splitting resources.

C. Encoding the Planning Example within Linear Logic

We have already defined the vocabulary for our plan-
ning domain in Fig. 2 in the form of predicates for state
components and action labels. The next step is to associate
these actions with mini-LPL expressions to formally define
their preconditions and effects. Simple encodings for the
Walk(X) and Tag(X) actions are given in Fig. 8, defined

parametrically on the landmark identifier X. Since mini-
LPL leaves out universal quantification for simplicity, action
instances needed for the proof will be manually instantiated
but this is easily addressed by the full LPL language using
unification methods. When using the Tag(X) action, if the
robot is at an untagged landmark X, the robot tags X while
remaining in the same position. Using the second action
Walk(X) moves the robot from landmark YV to X.

Tag(X) at(X) ® untagged(X) —o at(X) ® tagged(X)
Walk(X) at(Y) —o at(X)
Fig. 8. Encodings of walking and tagging actions within mini-LPL.

We now describe a simple scenario to illustrate the use of
mini-LPL for task planning. Suppose we initially have two
landmarks, b; and b, both untagged. The robot is initially
at by and the final desired position of the robot is b with
the property tagged(bs) asserted. Formally, the initial state
of the environment and the robot is given by the resource

at(b1) ® untagged(b2) € A |
while the goal state can be encoded as
G = at(by) ® tagged(bs) .

In order to satisfy the first subgoal, at(bs), the robot must
walk from its initial position to by. For the second subgoal,
tagged(bs), the robot must use the Tag(bs) action to conclude
the plan. Finally, the resolved plan for this example should
be the sequence of actions [Walk(bs), Tag(bs)]. The proof
tree corresponding to this example is given in Fig. 9.

D. Efficient Proof Search for mini-LPL

The main idea underlying our efficient proof theory for
mini-LPL is a combination of resource management ideas
for linear logic [31] with formalizations of back-chaining in
LHHF [13]. In particular, we define a new sequent,

A\Ap =G, 2)

which indicates that the goal GG can be proven using resources
from the multiset A, leaving resources in the “output”
multiset Ap unused. Previous implementations of resource
management relied on the assumption Ao C A [31],
whereas we will allow decomposed, partial resources to
be leftover for later use. The proof system we construct
focuses on decomposing the goals into the smallest atomic
subgoals, following which it employs back-chaining through
a residuation judgment analyzing each resource in turn. This
new judgment takes the form

D> y\Ag> Ao, 3)

which indicates that when the resource D is used to prove
the atomic goal +, additional subgoals in Ag must be
proven, and the additional leftover resources in Ao must be
considered later for consumption. Our approach eliminates
the need to try different orderings of the ® R and ®L rules,

3767

at(b) = at(ba) " tg(ba) = tg(bs)

at(b) = at(ba) "

ut(bz) = ut(bz2)

init at(b2), tg(b2) = at(bhs) ® tg(b2)

(
at(bg), ut(bz) = at(bz) ® ut(bg)

at(bg) ® tg(bg) = at(bg) ® tg(bg)

at(by) = at(by) " at(ba), at(b1), (at(bs

® ut(bz) —o at(b2 ® tg(bz)), ut(bz) = at(bz) X tg(bz)

—o L(Tag(b2))

)
(at(bl) —o at(bz), at(bl), (at(bz) X ut(bz)

—o at(bz) X tg(bz),ut(bz) = at(bz) (24 tg(bz)

—o L(Walk(bs))

)
)

(at(bl) —o at(bz)
(at(b1) —o at(b2))

)

)
,at(b1), (at(b2) @ ut(bz) —o at(b2) @ tg(b2)) ® ut(b2) = at(b2) ® tg(b2)
,at(bl) %) (at(bz) 4 ut(bg) —o at(bz) X tg(bz)) %) ut(bz) = at(bz) %) tg(bz)

(at(bl) —o at(bg)) ® at(bl) ® (at(bg) ® ut(bg) —o at(bg) ® tg(bg)) ® ut(bg) = at(bg) ® tg(bg)

Fig. 9. Proof tree for the goal at(bz) ® tagged(bz). Predicates tagged(X') and untagged(X') have been shortened as tg(X') and ut(X), respectively.

decreasing the complexity of proof search, for which a more
precise quantification will be completed in future work.

We have constructed specialized inference rules to for-
mally define these sequents. In order to maintain a reasonable
length, we have not included these inference rules in this
paper, but interested readers can refer to [32] for details.

IV. TASK PLANNING WITH THE RHEX HEXAPOD
A. Extended Domain Specification

In this section, we present extensions to the simple do-
main definition we presented in Sec. III-A, incorporating
support for different terrain types and associated behaviors
as well as a new action for seeking specific landmarks. In
particular, a path between two landmarks can now be mud,
rough, smooth, allowing no movement, walking or running
respectively. A new action, Seek(X) can be used by the robot
to search for a specific landmark X by continually turning in
place while visually scanning the environment. In addition
to the definitions of Fig. 2, encodings for these additional
predicates and actions are given in Fig. 10, with the walking
action modified to check for the surface type.

New Predicates:
see(X)
surface(X,Y, Z)
New Actions:
Run(X)
Seek(X)

Robot can see landmark X.
Path between X and Y has type Z.

Robot runs to the landmark X.
Robot searches for landmark X.

Fig. 10. New predicates and actions in the extended planning domain.

The mini-LPL encodings of new actions introduced for the
extended planning domain are given in Fig. 11. The Seek(X)
action can be invoked whenever the robot can see an arbitrary
landmark Y, but upon completing the action it will have
found the desired landmark X. Note that this assumes the
robot has a primitive behavior that is guaranteed to find the
landmark being searched. The Walk(X) and Run(X) actions
first check for the current location and the visibility of the
target as well as the path surface, then relocate the robot to
the new landmark X using the appropriate behavior.

B. Experimental Setup and the Example Planning Problem

With the extended set of predicates and actions described
in Sec. IV-A, we now describe a planning scenario that

Seek(X) see(Y) —o see(X)
Walk(X) at(Y) ® see(X) ® surface(Y, X, rough) —o
at(X) ® see(X) ® surface(Y, X, rough))
Run(X) : at(Y) ® see(X) @ surface(Y, X, smooth) —o
at(X) ® see(X) ® surface(Y, X, smooth)
Fig. 11. Additional actions in the extended domain encoded in mini-LPL.

Fig. 12. A snapshot from the experimental setup in its initial state. Six
colored landmarks are scattered throughout the environment, observable
through a camera mounted on the RHex robot.

we will deploy on the physical robot. Fig. 12 shows the
experimental setup with six uniquely colored landmarks.
Initially, the robot is at the special location Start. Landmark
tags and road surfaces between different pairs of landmarks
are as given by the mini-LPL encoding of the initial state as

D; = at(Start) ® untagged(b3) ® untagged(bs)
® surface(Start, b1, rough) ® surface(b1, bo, rough)
® surface(bo, bz, rough) ® surface(bs, b, smooth)
® surface (b4, b2, smooth) ® surface(bz, bs, smooth)
® see(bo) ,
also indicating that the landmark by is initially visible.
In the final state, the robot is expected to be at the

landmark b5 and landmarks b3 and b; should be tagged. We
encode the goal state as

G = at(bs) ® tagged(b3) ® tagged(bs) @ T .

The “truth” symbol T at the end of the goal formula is used
to indicate that whichever resources are leftover at the end of
the reasoning are not to be considered and can be consumed.
The full LPL language incorporates this constant to increase

3768

the expressivity of the language. Note, also, that our encoding
of this planning problem does not preclude the possibility of
multiple plans, which would be exposed by searching for all
possible proofs for a given sequent.

C. Visual Tracking of Colored Landmarks

Our example domain requires navigation on the horizontal
plane. Consequently, it is sufficient for RHex to find bearing
and distance information associated with each landmark to
be able to implement the Seek(X) action and movement
between landmarks. To this end, we have chosen to use
cylindrical landmarks with a height of 1.5m and a radius of
8cm each. Each landmark consists of two of three distinct
colors (red, yellow and blue), whose relative ordering (top
vs. bottom) distinguishes it from others. An example of such
a landmark is shown on the left side of Fig. 13.

Fig. 13. Left: A red-yellow landmark as seen by the robot. Right:
blobs extracted from the image with their centers marked with a “+” sign.
Computed landmark location is the midpoint of the two blobs and is marked
with a white circle.

The RHex robot has two on-board RTD CMEI37LX
single-board computer units, one of which is used for visual
processing of color frames captured by a Point Grey Flea2
camera at SHz. Our image processing algorithm first applies
a color filtering algorithm based on a color model based
on Mahalanobis distance in RGB space (calibrated through
data collected offline) to convert the original colored image
into a labeled bitmap. Connected blobs in this bitmap are
then extracted using the cvBlob library [33], filtered by
domain specific conditions such as blob size, aspect ratio and
orientation. Subsequently, pairs of blobs are associated with
each other based on their relative locations constrained by the
structure of our landmark design, yielding the final landmark
locations as shown in the right side of Fig. 13. Once the pair
is known, landmark location is determined as the midpoint of
its two blobs, and the distance to the landmark is determined
through the total blob area. Robot pose information relative
to the landmark is then communicated to a Matlab script
running on an external computer.

D. Automatic Theorem Prover for LPL

Our implementation of the proof system described in
Sec. III-D was done in SWI-Prolog. Given an initial state,
action descriptions and a goal sentence in LPL, this prover
will find a plan if it exists. Intuitionistic logic languages allow
the annotation of proof structures with proof terms [34],

which can be used to effectively extract programs associated
with these intuitionistic proofs. Our prover makes use of
this idea, through which plans corresponding to the proof
structure can be extracted. Implementation details of how
this is performed are left outside the scope of this paper but
interested readers can refer to [32]. Applied to the initial and
goal states in Sec. IV-B, our LPL planner extracts the final
sequence of actions as

[Seek(by), Walk(by), Seek(bg), Walk(bg), Seek(bs),
Walk(bs), Tag(bs), Seek(by), Run(by), Seek(bs),
Run(bs), Seek(bs), Run(bs), Tag(bs)] .

E. Plan Execution on RHex

As described in Sec. IV-C, visual landmark distance and
bearing information is communicated back to an external
workstation running a Matlab program. Our LPL theorem
prover described in Sec. IV-D provides this program with a
sequence of actions to be executed with the same labellings
of landmarks as those identified by the visual tracker. The fi-
nal plan execution system brings these components together,
tracking the robot’s progress and initiating the behaviors
prescribed by the plan by communicating with the control
board on RHex. A sequence of snapshots for the resulting
plan execution are shown in Fig. 14. The video attachment
accompanying this paper shows the entire plan execution.

It is important to note that we do not address dynamic
environments or unexpected disturbances in this paper. This
would require explicit re-planning, for which different meth-
ods have been considered in the literature [35]. Our primary
contribution in this paper, however, is the formulation of the
Linear Planning Logic language and an effective theorem
prover for it that is capable of generating a long sequence of
actions (14 total, computed in 90 seconds on a Intel Pentium
Dual-Core CPU E6500 Processor 2.93GHz PC with 2 GB
of RAM with an unoptimized SWI-Prolog implementation)
that would have been infeasible for other methods based on
theorem proving such as situational calculus.

V. CONCLUSION

In this paper, we introduced a new logical language, Linear
Planing Logic (LPL), together with a robotic planner based
on theorem proving methods considering both expressivity
needs of planning problems as well as the efficiency of proof
search. Our main contributions include the design of the
language as well as a new proof theory that allows negative
occurrences of linear simultaneous conjunction through care-
ful resource management and elimination of nondeterminism
by enabling back-chaining.

We illustrated the application of this new language and
theorem prover on a hexapod robot navigating in an envi-
ronment populated with colored landmarks. We presented
a planning experiment where the execution of a plan ex-
tracted from a formal logical proof is realized on the RHex
hexapod platform. Possible future directions for this work
include a more efficient implementation of the LPL theorem
prover, integration with constraint expressions to interface

3769

Fig. 14.

with continuous properties of robotic behaviors and reactive
components to provide support for dynamic environments.

ACKNOWLEDGEMENTS

We thank to Frank Pfenning for his feedback during the
formalization of Linear Planning Logic and Mehmet Mutlu
for his support during our experiments. This project was
partially supported by TUBITAK project 109E032.

[1]
[2]
[3]

[4]
[51
[6]

[71
[8]
[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. Fiorini and E. Prassler, “Cleaning and household robots: A technol-
ogy survey,” Autonomous Robots, vol. 9, pp. 227-235, Dec. 2000.
B. Goldstein and R. Shotwell, “Phoenix: The first Mars Scout mis-
sion,” in Proc. of the IEEE Aerospace Conf., pp. 1-20, March 2009.
M. Mihelj and J. Podobnik, Haptics for Virtual Reality and Teleoper-
ation, vol. 67 of Intelligent Systems, Control and Automation: Science
and Engineering. Springer, 2012.

T. Lozano-Perez, “Task planning,” Robot motion: planning and con-
trol, pp. 463—489, 1982.

S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189-208, 1971.

L. Chrpa, “Linear logic in planning,” in Proc. of the The Int. Conf. on
Automated Planning and Scheduling, pp. 26-29, 2006.

J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50,
no. 1, pp. 1-102, 1987.

P. Kungas, “Linear logic programming for ai planning,” masters,
Institute of Cybernetic at Tallinn Technical University, May 2002.

E. Jacopin, “Classical Al planning as theorem proving: The case of a
fragment of linear logic,” in AAAI Fall Symp. on Automated Deduction
in Nonstandard Logics, (Palo Alto, CA), pp. 62-66, 1993.

M. Kanovich and J. Vauzeilles, “The classical Al planning problems in
the mirror of horn linear logic: semantics, expressibility, complexity,”
Mathematical Structures in Computer Science, vol. 11, pp. 689-716,
December 2001.

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. Pappas, “Symbolic planning and control of robot motion - grand
challenges of robotics,” IEEE Robotics & Automation Magazine,
vol. 14, pp. 61-70, March 2007.

J. S. Hodas and D. Miller, “Logic programming in a fragment of
intuitionistic linear logic,” Information and Computation, vol. 110,
no. 2, pp. 327-365, 1994.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, second ed., 2003.

J. S. Penberthy and D. S. Weld, “UCPOP: A sound, complete, partial
order planner for adl,” in Proc. of the Int. Conf. on Knowledge
Representation and Reasoning, pp. 103-114, 1992.

A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, no. 1, pp. 1636-1642, 1995.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

3770

Snapshots during the execution of the behavioral plan for RHex generated by the LPL theorem prover.

B. C. Gazen and C. A. Knoblock, “Combining the expressivity of
UCPOP with the efficiency of GraphPlan,” in Proc. of the European
Conf. on Planning, pp. 221-233, 1997.

W. M. P. Van Der Aalst, “The application of Petri Nets to workflow
management,” Journal of Circuits, Systems and Computers, vol. 08,
no. 01, pp. 21-66, 1998.

W. Zhang, “Representation of assembly and automatic robot planning
by Petri Net,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 19, pp. 418-422, Mar. 1989.

H. Costelha and P. U. Lima, “Robot task plan representation by Petri
Nets: modelling, identification, analysis and execution,” Autonomous
Robots, vol. 33, no. 4, pp. 337-360, 2012.

U. Engberg, G. Winskel, and N. Munkegade, “Petri Nets as models of
linear logic,” in Proceedings of Colloquium on Trees in Algebra and
Programming, pp. 147-161, Springer-Verlag LNCS, 1990.

M. Masseron, C. Tollu, and J. Vauzeilles, “Generating plans in linear
logic 1. actions as proofs.,” Theor. Comput. Sci., vol. 113, no. 2,
pp. 349-370, 1993.

M. Masseron, “Generating plans in linear logic: II. a geometry of
conjunctive actions,” Theoretical Computer Science, vol. 113, no. 2,
pp. 371-375, 1993.

M. I. Kanovich and J. Vauzeilles, “Strong planning under uncer-
tainty in domains with numerous but identical elements (a generic
approach).,” Theoretical Computer Science, vol. 379, no. 1-2, pp. 84—
119, 2007.

M. 1. Kanovich and J. Vauzeilles, “Linear logic as a tool for planning
under temporal uncertainty.,” Theoretical Computer Science, vol. 412,
no. 20, pp. 2072-2092, 2011.

L. Dixon, A. Smaill, and T. Tsang, “Plans, actions and dialogue using
linear logic,” Journal of Logic, Language and Information, vol. 18,
pp. 251-289, 2009.

A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka,
Alice Through the Looking Glass, vol. 5, pp. 79-96. Munich,
Germany: Intellect Books, Feb. 2006.

U. Saranli, M. Buehler, and D. E. Koditschek, “RHex: A simple
and highly mobile robot,” International Journal of Robotics Research,
vol. 20, pp. 616-631, July 2001.

S. Thompson, Type Theory and Functional Programming. Addison-
Wesley, 1991.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs
as a foundation for logic programming,” Annals of Pure and Applied
Logic, vol. 51, no. 1-2, pp. 125-157, 1991.

I. Cervesato, J. S. Hodas, and F. Pfenning, “Efficient resource man-
agement for linear logic proof search,” Theoretical Computer Science,
vol. 232, pp. 133-163, Feb. 2000.

U. Saranli and S. Kortik, “Linear planning logic,” Tech. Rep. in
preparation, Middle East Technical University, 2013.

C. C. L. nan, “cvBlob.” http://cvblob.googlecode.com.

F. Pfenning, “Lecture notes on constructive logic,” tech. rep., Carnegie
Mellon University, 2000.

S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp- 354-363, 2005.

