
COMPRESSED MULTI-FRAMED SIGNATURE FILES:
AN INDEX STRUCTURE FOR FAST INFORMATION RETRIEVAL

Seyit Koqberber
Department of Computer Engineering and Information Science. Bilkent University,

Bilkent, Ankara 06533. Turkey, seyit@bilkent.edu.tr

Fazh Can
Department of System Analysis, Miami University, Oxford, OH 45056, U.S.A., canf@muohio.edu

Keywords: Signature Files. Inverted Files. Compression

ABSTRACT
A new indexing method. called Compressed Multi-Framed
Signature File (C-MFSF). that uses a partial query evaluation
strategy with compressed signature bit slices is presented. In
C-MFSF. a signature tile is divided into variable sized
compressed vertical frames with different on-bit densities to
optimize the response time. Experiments with a real database
of 152,850 records show that a response time less than I50
milliseconds is possible. For multi-term queries C-MFSF
obtains the query results with fewer disk accesses than the
inverted tiles. The method requires no indexing vocabulary.
These attributes have important implications; for example,
web search engines process multi-term queries in very large
databases with sizeable vocabularies.

I. INTRODUCTION

Signature tile approach is a well-known indexing technique
for information access. In signature files. the content of a
record (an instance of any kind of data will be referred to as a
record) is encoded in a bit string called record signature. In
(superimposed) signatures each term (an attribute of a record,
\rithout loss of generality. \vill be referred to as a term) is
hashed into a bit string of size F by setting S bits to “I” (on-
hrr) where F >> S. The result is called a term signafure.
Record signatures are obtained by superimposing (i.e., bit
\\ise ORing) the record term signatures [I, 2, 31. In this
paper \\e consider superimposed signatures and conjunctive
queries. Query signatures are obtained by superimposing the
query term signatures.

In this study. we propose the Compressed Multi-Framed
Signature File (C-MFSF) method that stores the sparse bit
slices of MFSF [8] with large F values in a compressed form.
C-MFSF can be used in the implementation of various types
of Information Retrieval (IR) systems such as text and
multimedia systems. on-line library catalogs. set accesses in
object-oriented databases. on-line help systems. etc. [4, 121.

permission to m&c digital or bud copia of ail or put of this wok
for persorul or cksroom use is gmnted without fee provided tht
copia arc not nude or distributed for proffl or commercial
advantage and that copies bear this notice md the full citation on
the fint page. TO copy otherwise, to republish, to post on servers
or to redistribute to lists. rcquira pria specific permission and/or s
fee.
SAC 99, San Antonio, TCXM
01998 ACM 1-58113-0864B9MHH)1 SMO

The method obtains the multi-term query results with fewer
disk accesses than the inverted tile approach. The
contribution of this study is that for very large databases,
queries containing more than two terms can be evaluated by
one disk access per query term without storing and searching
a vocabulary. This has important implications; for example,
web search engines process multi-term queries in very large
databases with enormous vocabularies.

2. MULTI-FRAMED SIGNATURE FILE (MFSF)

The query evaluation with signature tiles is conducted in two
phases. In the first phase. the query signature is compared
with the record signatures. The records whose signatures
contain at least one “0” bit (off-bit) in the corresponding
positions of on-bits of the query signature do not contain all
query terms. If a record contains all of the query terms (such
records will be referred to as matching records), its signature
will have on-bits in the corresponding bit positions of all on-
bits of the query signature. Due to hashing and
superimposition operations used in obtaining signatures, the
signature of some non-matching records may coincide with
the query signature. These records are called fake drops. In
the second phase of the query processing, false drop records
(if any) are eliminated by accessing the actual records.

Fur a database of N records, the signature file can be viewed
as an N by F bit matrix. Signature file processing can be
done by considering only the columns (bit slices)
corresponding to the on-bits of the query signature [9, IO].

In BSSF (bit-sliced signature files), the time required to
complete the first phase of the query evaluation increases as
the number of on-bits of the query signature, i.e., query
weight. increases [IO]. MFSF solves this problem by
employing a partial evaluation strategy and considering the
submission probabilities of queries with different number of
terms in multi-term query environments [6, 81. Our query
evaluation technique employs a stopping condition that tries
to complete the first phase of the query evaluation without
using all on-bits of the query signature, i.e., by partial
evaluatron (71. This approach stops bit-slice processing and
switches to the false drop elimination when the expected cost
of false drop elimination is less than that of the bit slice
processing.

In MFSF a signature tile is conceptually divided into/sub-
signature tiles. The bits of a signature tile are distributed
among the sub-signature files, frames. such that F= FI + Fr

+ Fflf< 0. Each term sets S, bits in the vth frame such The use of a very large Fl value would eliminate the need for

that S = SI + St + $(1 5 S, < Fr, I 2 r <j). Each sub- the second and the following frames. However, this would
signature file is a BSSF with its o&t F (signature size) and S increase the file size to unrealistic amounts even after

(number of bits set by each term) parameters. compression. In our case F, is kept “relatively large.” For

In the bit-sliced signature tile approach, each processed bit
slice eliminates a fraction of the false drops depending on the
on-bit density (op) of the processed bit slice (op is the
probability of a particular bit of a bit slice being an on-bit).
Lower op values eliminate false drops more rapidly during
signature tile processing and the stopping condition is
reached in fewer evaluation steps. In MFSF, since each term
sets bit(s) in each frame, more bit slices from the lower on-
bit density frames are processed in the query evaluation for
increasing number of query terms. This property of MFSF is
illustrated in Figure I.

queries with small number of terms the first frame will
eliminate insufficient number of false drops. The additional
frames are provided for further false drop elimination and
they are mainly for one and two term queries.

Reducing on-bit density while providing sufficient on-bits in
query signatures is possible by increasing the signature size
F. However. increasing F also increases the space overhead
if the bit slices are stored without compression. The
Compressed Multi-Framed Signature File (C-MFSF) method
stores the bit slices of MFSF in a compressed form. Because
of space limitation the details of compression are skipped

Wi 121).

Number of Frames v) = 3, F = F, + FJ+ Fj = 24, S= S, + S2+ Sj=3. D = 3

F,=IOS,=l op,=O.271 FJ=8 ST=' op2=0.330 FJ=6 S3=/ opj=0.421

t Number ofOn-Bits in Each Query Frame:

I I I I

2 2 2 2

3 3 3 2* I

I: number of query terms, D. number of distinct terms in a record
Different gray levels indicate different on-bit densities (op values) of the frames, opi = I - (I - Si/ F$D

(*) More than one term may set the same bit position

Figure I The number of on-bits in the frames of an example MFSF for various number of query terms.

In the esample MFSF of Figure I. there are 24 bits in each
record signature and these bits are distributed among three
frames. Since each term sets only one bit to “I” in each

frame and F/ > F2 > FJ. opt < op? < op3 holds where op, = I

- II - s,/F,F (I li 13). denotes the on-bit density in the

ith frame. Since opt has the lowest value. processing a bit

slice from the tirst frame eliminates more false drops than
processing a bit slice from the second and the third frames.
Similarly. processing a btt slice from the second frame
eliminates more false drops than processing a bit slice from
the third frame.

* In this fcrnmula SJF, indicates the probability that a (random)
record signature bit is set by a record term. (I-S/F,) indicates the

probability that a bit is not set IO I by a record term. rherefore. (I-
S,!F,)o is the probability that a bit is not set to I by any of D record

terms. rhcn (I -(I -S,/I-,)o) indicates the probability that a signature hit
ih wt IO I hy the record terms

3. TEST APPLICATION ENVIRONMENT

To estimate the performance of C-MFSF a simulation and
test environment is designed. The values of the parameters
used (see ‘Table I) in the simulation runs were determined
experimentally in a PC environment. By this way we can
validate our simulation using real data experiments. A
validated index model can be used to obtain the optimum
index structure (in our case C-MFSF) by employing new
system parameters.
We used MARC (MAchine Readable Cataloging) records of
the Bilkent University library collection as the test database.
The database. BLISS-I, contains (N) 152.850 records and
detined by (V) 166.216 unique terms. The MARC database
size is 93.24 MB.

To measure the performance of C-MFSF we considered three
different query cases: Low Weight (LW). Uniform
Distribution (IiD), and High Weight (HW) queries. (The
weight of a signature means the number of Is in the

signature; therefore, a LW query contains least number of Is

among all query types.) The values of P, (I It IS) where Pt

denotes the probability of submitting a t term query, for these
query cases are given in Table II.

Table 1. System Parameter Values of the Application Environment

Bsize, size of a disk block (bytes) 8192

Psize, size of a record pointer (bytes) 4

Thyteop, time required to perform bit operations
between two bytes (milliseconds. ms) 0.00127
T,,,d, time required to read a disk block (ms) 1 5.77

I

T scan, average time required to match an actual I
record with a query for false drop resolution (ins) 45

I‘rilrseek. average time required to position the read

head ol’ disk to the desired block for the record tile
(includes rotational latency time) (ins)

read head of disk to the desired block for the
signature tile (includes rotational latency time) (ms)

‘Table II. P, Values for LW. UD. and HW Query Cases

Query Case PI P2 P3 P4 Pj

Low Weight (LW) 0.30 0.25 0.20 0.15 0.10

UniformDistribution (UD) 0 20 0.20 0.20 0.20 0.20

fligh Weight (HW) 0.10 0.15 0.20 0.25 0.30

For each query case. we gcncrated a query set containing 500
queries by considering the occurrence probabilities of the
number of query terms. For example. the HW query set
contains 50 (0.10~500) one term queries. In our experiments
wc also consider the cxccution time of queries with a specific
numhcr of terms and used tivc additional query sets: Ti. .
‘1‘5 ‘l‘hc first clricr!’ ~1. 1’1 contains 500 single term queries.
llic ~.ccontl qucr! scl. I 1. comains 500 two term queries. and
30 on.

I’crnis Posting Lists

a. Inverted File method

.\ = I

where 0 <i 5 W(Q),

where Ty~~cos, is the time required to process the sth bit slice
(which involves decompression) used in the query
evaluation, FDi is the expected number of false drops after
processing i bit slices, Trr.vo/rlr is the time required to resolve
a false drop. t is the number of query terms, and lPt@, is the
number of on-bits in the query signature. Our response time
definition ignores the time needed to access the matching
records as in other studies (for explanation see [8, 91).

The number of evaluation steps. i. and the expected number
of false drops after processing I bit slices. FD,. arc
determined as in [8]. To provide the contribution of each
query term to the query evaluation we use at least one on-bit
from each term. The C-MFSF structure is optimized with the
heuristic search algorithm given in [8].

In C-MFSF each frame may have a different op value and
hence the number of on-bits in the bit slices of C-MFSF and
the length of the compressed bit slices vary. To obtain the
addresses of the compressed bit slices a Slice Pointer Table
(SPT) with F entries is used. SPT is kept in memory and to
retrieve a bit slice. first the address of the bit slice is obtained
from SPT. To illustrate the difference between C-MFSF and
the inverted file method the storage structures of these
methods are shown in Figure 2. Compression can also be
used in posting lists of inverted tiles [12, 131.

The time required to position the read head of disk to the
desired block. seek time. depends on the size of the
processed file. Since the compressed signature files are
relatively small (approximately 15% of the record file) we
t~scd dilfcrcnt seek times for the signature file (T,,clrr,cek)

SPT Compressed Bit Slices

b. C-MFSF method.

V: Number of unique terms in the database, F: Number of hashing positions (signature size), Usually F << V
Figure 2. Storage structures of C-MFSF and the inverted tile methods.

4. SIMULATION MODEL

Like in other signature applications we use :he response lime
as the performance measure [9]. It involves the time required
to process the signature file and resolve all false drop
records. The response time after processing i bit slices, RT(i).
is estimated as follows.

and the record tile (T ,arsrrk). We estimate the time required to

TdICP---I = Re ad(Tneor.v& 7 sj,) + (2)
T h,,e,,,, [compressed bit slice size in bits]

process a compressed bit slice of ith frame as follows.

where TM,,,, is the time required to process a byte and sli is

the average number of disk blocks required to store a slice of
the ith frame and the compressed bit slice size can be
estimated using on-bit density information [6, 121.

Read(7‘,eck, b) incorporates the sequential@ probability, Sf,
to the estimation of the time required to read a bit slice
involving b disk blocks. SP is the probability of reading a
disk block without a seek operation.

Read(T,,,l,,b)=(l+(b-l).(l-SP)).~~,,,k +b.Trrcrd (3)

where T&k and Trel,d are average times required to position

the disk head to the block to be accessed and to transfer a
disk block to memory, respectively. The first disk block of
each bit slice always requires a seek operation.

The false drop resolution time for one record, Tre,,o/rfe, is
computed as follows.

Trcdw = (1 - y) . Read(Tfi,,,cek , r-1 +

ReaWfi,r,rv~ . W + T,,,,,
where T,,,,,, is the time required to compare a record with the
query and RB is the average number of disk blocks that must
be accessed to read a record. In the above equation obtaining
the record pointer can be explained as follows. PB record
pointers, each occupying Psi:e bytes, are read into a buffer

of PB. fsize bytes long at the database initialization stage.

Since this is a one time cost. it is excluded from the cost
calculations. The probability of finding a requested record

pointer in the buffer is approximately equal to PBI N For

the databases with fixed length records or when all record
pointers are stored in main memory. PB must be equal to .V.
i.e.. the cost of finding the record pointers is zero.

5. SIMULATION EXPERIMENTS

We plot the expected response time values of C-MFSF for
increasing /; values in Figure 3

$ 501 4
2,000 6,000 10,000 14.000 16.000 22,000 26,000 30.000

(F) Signature Sirs (in bits)

(Sf = I .O, .Y = 152.850)
Figure 3. Expected response time versus very large F values

for C-MFSF for LW. UD, HW.

increasing F values provides lower on-bit densities and the
stopping condition is reached in fewer slice evaluations.
Therefore. the optimization algorithm of C-MFSF selects
smaller S values for increasing signature size. This also
decreases the response time. After a certain F value the
increase in F has no effect on the response time.

The number of expected false drops depends on the number

of bit slices used in the query evaluation and the on-bit
densities of these bit slices. Large records increase the on-bit
densities of the frames and require processing more bit slices
to reach the stopping condition. Therefore, the value of S
increases to provide sufficient on-bits in the query
signatures. An increased S value in a resulting configuration
implies higher response time. To avoid this problem. i.e.. to
reach the stopping condition by processing the same number
of bit slices. F should be increased to compensate the effect
of large records.

To simulate the effect of large records we gradually
increased the &8 (average number of distinct terms in a
record) values in a new set of simulation experiments. For
increasing DuIr8 values we search the F value that requires S
= 3 which gives the best results in the experiments with the
test database BLISS-I (for efficiency, F values are increased
in steps of 50). The minimum F values with the expected FD
and RT (expected total response time in multi-term query
environments, in millisec) values are given in Table III.

Table III. Minimum F Values that Provide S = 3 for Increasing Dma
Values and Compression Performance

The experiments show that similar performance levels can be
obtained by selecting an appropriate F value for larger D,
values. Large F values compensate the increased number on
bits due to higher number of terms in the records.

6. REAL DATA EXPERIMENTS

The simulation experiments (Figure 3) show that a response
time less than I50 milliseconds is possible if large F values
are used. We tested the optimized C-MFSF configurations
with BLISS-I and validated the results of the simulation
model. The expected (denoted by Exp) and the observed
(denoted by Obs) response time values are plotted in Figure
4 (for easy comparison the observed response time values for
LW, UD, and HW repeated in Figure 4.d). In the
experiments most of the processed bit slices and MARC
records (used for false drop elimination) tit into a disk block
and therefore SP= I .O.

The observed false drop values and the response time values
are greater than the expected values. The difference between
the observed and the expected values decreases for
increasing query weight. To find the cause of this deviation
we evaluate the query sets containing specific number of
query terms (Tl, T2, T3. T4. and T5) with C-MFSF
optimized according to LW. UD, and HW query cases. We
measure the average response time and false drop values for
each query case. We give the observed response time and
false drop values for the LW query case in Table IV. Similar
results are obtained for the UD and HW query cases.

224

10,000 15,000 20,000 25,000 30,000
(F) Signature Sue (III bits)

a. LW query case.

250

$200

Pi/ ; ; sT

10,000 15,000 20,000 25,000 30,000

(F) Stpature Size (III bits)

c. HW query case

L

15,000 20,000 25,000 30,000

(F) Svgtature Size (in bits)

b. UD query case.

10,000 15,000 20,000 25,000
(F) Signature Size (in bits)

30,000

1 AL_--._A_---^-^_ .:-^ c__, ,I, ,,I3 --A,,,,,
“. ““bewr” rrsponx ume ,or Lvv, ““, a,u KIVI

-I

Figure 4. Expected and observed response time of C-MFSF versus F for LW, UD and HW (SP = I)

Table IV. Observed Response Time (RT) and False Drop (FD) Values for Tl, T2, T3, T4. and TS
Evaluated with the C-MFSF Optimized for LW Query Case

The table shows that the queries with more than two terms (I
> 2) generate almost no false drops and the query evaluation
is completed by accessing only the signature tile without any
actual record accesses for false drop resolution. Furthermore
observed and expected response times are closer to each
other. Therefore. we conclude that the difference between the
espected and the observed values are especially due to single
term queries. Single term queries have only three on-bits in
their query signature and if one of them shares the same bit
slice with a high frequency term, more false drops are
produced than the expected number. The number of disk
accesses is almost the same as the number of query terms for
queries with more than two terms.

7. COMPARISON OF C-MFSF AND INVERTED FILE

The number of disk accesses for index performance
evaluation is a commonly accepted measure [I I. pp. 14 -
151. In the following discussion, for the C-MFSF and
inverted file (IF) methods we assume that disk addresses of
the records are kept in main memory. In the IF method we
assume that one disk access is required per query term to
read the posting list of the term. (We ignore chained posting
lists and the method used for posting list representation.) In
IF. to obtain the locations of the posting lists, a term lookup
table is needed. If we assume only one disk access will be

required to obtain the location of the posting list of a query
term, each query term will require two disk accesses.
Therefore, in IF, a I term query will require 2.1 disk accesses.

In C-MFSF no lookup table is needed (terms are directly
used in signature generation). For F = 30,000, simulation
experiments show that reaching the stopping condition
requires processing only three bit slices even for very large
databases (N 2 106). For single term queries C-MFSF
requires three disk accesses plus false drop resolution.
Therefore, IF outperforms C-MFSF for single term queries.
However, note that single term queries are less common in
today’s databases [5] since they produce excessive number
of hits. Both methods have similar performance for queries
with two terms. IF will require one more disk access but C-
MFSF may produce false drops for t = 2. However, the
average number of false drops requires less than one disk
access (see Table IV). Therefore. the expected performance
of C-MFSF is better than IF for I = 2.

For I > 2. since the contribution of each query term to the
query evaluation is provided, C-MFSF processes I bit slices
for a I term query. Experiments with BLISS-I show that
almost no false drop is obtained for queries with more than
two terms (see Table IV). Therefore, we can assume that for
F = 30.000. C-MFSF will require only I disk accesses for

queries with t > 2, i.e.. one disk access for each query term
contrary to two disk access per query term requirement of IF.

For multi-term queries IF may process terms according to
their document frequency (from least frequent to most
frequent) and may switch to false drop resolution after
processing a certain number of terms [13]. However. this
approach implies at least t number of disk accesses just to
obtain the document frequency information of the query
terms.

The performance of IF can be improved if the lookup table
and document frequency information are kept in main
memory [13]. In this case. still one disk access for each
query term is required to read the posting list of the query
term. However. this can be avoided by switching to false
drop resolution as suggested above. If such a large memory
is available. we can store the compressed form of a C-MFSF
frame (or a part of it) in main memory. For esample, a frame
of C-MFSF for BLISS-I with op = 0.01 I (S and F values of
the frame are I and 2400. respectively) requires 3.82 MBytes
vrith “no compression.” Furthermore, in C-MFSF the value
of OJI (on-bit density) can be adjusted to fit the frame to the
available memory [6]. Since the bit slices with many on-bits
(i.e.. the frames other than the first frame) are rarely used in
query evaluation: therefore, we can keep the compressed bit
slices of the first frame in memory. It should be stated that
the time needed for decompression of one bit slice is much
shorter than the time needed for one disk I/O.

Since we store one frame in memory, for single term queries
me of the bit slices will be in memory. Two disk accesses
will be needed to retrieve the bit slices of the other frames
(usually only the second frame) to complete the first phase of
the query processing. Similarly. for the queries with two
terms since two bit slices will be in memory only one disk
access will be needed to complete the first phase of the query
processing. For the queries containing more than two terms,
OIIC bit slice for each query term will be available in memory
and therefore no disk accesses will be required.

8. CONCLUSION

A IWV indexing method. called Compressed Multi-Framed
Signature File (C-MFSF). that uses a partial query evaluation
strategy with compressed signature bit slices is presented. In
C-MFSF. a signature tile is divided into variable sized
compressed vertical frames with different on-bit densities to
optimize the response time. A query processing simulation
model is introduced. The experiments with a real database of
152.850 records show that a response time less than IjO
milliseconds is possible and the method is readily adaptable
to large databases. For multi-term queries C-MFSF obtains
the query results with fewer disk accesses than the inverted
tilt approach. The performance of C-MFSF depends on the
on-hit density of the signature tile and it decreases the on-bit
density by increasing signature size (F) with a limited space
o\,crhead. For the databases with large records. we show that

the same performance can be obtained by increasing the
signature size. Since larger records occupy more disk space,
the relative space overhead of C-MFSF will be
approaimately the same.

The contribution of this study is that for very large databases,
queries containing more than two terms can be evaluated by
accessing and processing one bit slice per query term without
storing and searching a vocabulary. This has important
implications; for example. web search engines process multi-
term queries in very large databases with enormous
vocabularies.

REFERENCES

[II

121

[31

[41

[51

[61

171

PI

Christodoulakis. S., Faloutsos. C. 1984. Signature tiles: an
access method for documents and its analytical performance
evaluation. ACM Transactions on Information Systems. 3, 4
(Oct.). 267-288.

Faloutsos, C. 1985. Signature files: design and performance
comparison of some signature extraction methods. In
Proceedings of the ACM SIGMOD Conference (Austin, Tex.,
May). N.Y. 63-82.

Faloutsos, C.. Chan, R. 1988. Fast text access methods for
optical and large magnetic disks: design and performance
comparisons. In Proceedings of the 14th VLDB conference
(Long Beach, Calif., Aug.). 280-293.

Ishikawa, Y., Kitagawa. H, and Ohbo, N. 1993. Evaluation of
signature tiles as set access facilities in OODBs. In
Prooceedings of the ACM SIGMOD’93 Conference
(Washington, D.C., USA). 247-256.

Jansen. B. J., et al. 1998. A study of user queries on the Web.
ACMSIGIR Forum. 32, I (Spring). 5-17.

Kocberber, S., 1996. Partial query evaluation for vertically
partitioned signature files in very large unformatted databases.
Ph.D. dissertation, Dept. of Computer Eng. and Information
Science, Bilkent University, Ankara, Turkey
(http:Nwww.cs.biIkent.edu.tr/theses.html).

Kocberber, S., Can, F. 1996. Partial evaluation of queries for
bit-sliced signature tiles. information Processing Letters 60.
305-3 I I.

Kocberber, S.. Can, F. 1997. Vertical framing of
superimposed signature files using partial evaluation of
queries, lnformution Processing & Maflagemenf. 33, 3, 353-
376.

Lin. Z.. Faloutsos, C. 1992. Frame-sliced signature tiles.lEEE
Trunsuctrons on Knowledge and Dutcr Engineering. 4. (3).
281-289.

Roberts. C. S. 1979. Partial-match retrieval via the method of
superimposed codes. In Proceedings of the IEEE. 67, I2
(Dec.). 1624-1642.

Salzberg, B. 1988. File Structures: An Analytical Approach.
Prentice Hall, N.J.

Witten. I. H. Moffat, A., and Bell, T. C. 1994. :Manrrging
Gtgabytes: Compression and Indexing Documents and
lmoges. Van Nostrand Reinhold, N.Y.

Zobel. J., Moffat, A.. and Sacks-Davis, R. 1992. An efficient
indexing technique for full-text database systems. In
Proceedings of 1&h VLDB Conference. (Vancouver, British
Columbia Canada). 352-362.

