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Abstract 

LQ optimal repetitive control is developed in single- 
input single-output discrete-time signal/system frame- 
work. For a given plant and a stabilizing controller, the 
LQ optimal repetitive control system can be obtained 
by the addition of a plug-in unit to the existing control 
system. The overall behaviour (stochastic behaviour, 
stability robustness etc.) of the new system can be im- 
proved by the appropriate choice/tuning of the design 
parameters. 

Keywords : Control design, LQ control, Repetitive 
control. 

in which the reference/disturbance signals are known 
to be periodic. In the next section, we summarize the 
discrete-time repetitive control structures of (Tomizuka 
et al, 1989) and (Chew and Tomizuka, 1990). In Sec- 
tion 3, we develop a LQ optimal repetitive controller 
and a plug-in type implementation of the proposed 
controller. We also discuss the appropriate choice of 
the design parameters for better transient performance, 
steady-state behaviour and stability robustness. Sec- 
tion 4 illustrates the effects of the design parameters 
with the help of several simulations. The paper ends 
with some concluding remarks. 

2 Discrete-Time Repetitive Control 
1 Introduction 

Various real-life systems are subject to periodic dis- 
turbances. Moreover in automation systems, repeti- 
tive tasks come into picture. These facts led to the 
evolution of a new area of study named repetitive con- 
trol, in the beginning of 80s. The basic aim in repeti- 
tive control system design is the achievement of track- 
ing/rejection goals in a periodic signal framework in 
which the period of the signals is known. For an ex- 
tensive summary of results in this area of research, the 
reader is referred to the recent survey of (Hillerstrom 
and Walgama, 1996) and the references cited therein. 

After the preceding continuoustime formal presenta- 
tion of the repetitive system design by (Hara et al, 
1988), the design is considered for discrete-time sys- 
tems in (Tomizuka et al, 1989) and a direct solution is 
presented based on the zero phase error tracking ap- 
proach of (Tomizuka, 1987). This is then modified in 
(Chew and Tomizuka, 1990) by considering the robust- 
ness and stochastic behaviour aspects. Though pointed 
out in (Hara et al, 1988) and (Chew and Tomizuka, 
1990), the case of optimal design is not fully elabw 
rated. In (Peery and Ozbay, 1997), 71, optimal control 
is considered in repetitive control framework. 

Due to the undesirable effects of high power control 
inputs in control systems, Linear Quadratic (LQ) opti- 
mal control approach is used to achieve imperfect track- 
ing/rejection with desirably less control effort. In this 
work, we consider the LQ optimal design for the case 

Throughout the paper, we consider the single-input 
single-output discrete-time systems in a linear time- 
invariant (LTI) framework. We assume a plant with 
the input/output relation 

Y(t) = P(.)u(t) + d ( t )  , (1) 

where P is a causal rational transfer function, and U ,  y 
and d are the plant input, output and the disturbance 
signals respectively. With the one degree of freedom 
control system of Figure 1, the control input supplied 
to the plant is given by 

u( t )  = CFB(z)e( t )  (2) 

where CFB is the transfer function of the LTI feedback 
controller and e is the tracking error defined as 

= r ( t )  - Y(t) I (3) 

with r being the reference signal to be tracked. With 
the sensitivity of the closed loop of Figure 1 defined as 

(4) 

it is straightforward do derive that 

A basic concern in control system design is to keep the 
tracking error small by the choice of an appropriate 
controller, which should necessarily keep the sensitiv- 
ity function small. This choice can be simplified by 
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Figure 1: Unity feedback control system. 

leaving aside the most general case and assuming spe- 
cial reference/disturbance signals. Repetitive control 
considers the case in which the signals are assumed to 
be periodic with a known period. The basic principle 
used to develop repetitive control schemes is the In- 
ternal Model Principle, which is satisfied in this case 
by the inclusion of the delayed positive feedback struc- 
ture in the feedback loop. The transfer function of this 
structure for a period of n is given by 

Discrete-time periodic signals contain finitely many fre- 
quencies in the interval [0 , 27r] and for a signal of period 
n they are given by 

(7) 
27r . w . - y a ;  1 -  i = O , l ,  ..., n - 1 .  

The values of cdpfb(Wi) are infinity which means that 
a closed loop including this transfer function will have 
perfect tracking/rejection performance for periodic ref- 
erence/disturbance signals, provided that the closed 
loop is stable. Preserving stability is not trivial and 
hence the choice of the overall feedback controller is 
important. (Tomizuka et d, 1989) proposed their zero 
phase error tracking controller (ZPETC), as the accom- 
panying part of the delayed positive feedback structure. 
ZPETC was developed in (Tomizuka, 1987) for feed- 
forward tracking purposes. If the transfer function of 
a stable and causal plant is denoted as 

with N p  and D p  being coprime numera- 
tor/denominator polynomials, the ZPETC (that 
is also suited for use in repetitive controller structure) 
is given by 

(9) 

Here the superscripts i- and - are used to denote the 
stable (Le having zeros inside the unit circle) and un- 
stable (i.e having zeros on or outside the unit circle) 

parts of the polynomials respectively (i.e. N p ( z )  = 
N $ ( z ) N F ( z ) ) .  llHllw is used to denote the well-known 
X w  norm of H which is defined in our framework as 

IlHlloo = SUP IH(w)l . 
w E [O,Zr) 

During feedforward application, the reference to be 
tracked should be known in advance due to the non- 
causality of Czp. In (Tomizuka et al, 1989), a pro- 
totype discrete-time repetitive controller is formed as 
the multiple of cdpfb and Czp with a scalar and n 
step delay, to satisfy perfect tracking/rejection for pe- 
riodic reference/disturbance signals respectively. Due 
to stability robustness and stochastic behaviour con- 
siderations, this structure is modified in (Chew and 
Tomizuka, 1990), by modifying the delayed positive 
feedback structure as 

where Fdpfb is a filter (preferably of low-pass na- 
ture due to robustness considerations) which satisfies 
IFd,,fb(w)I 5 1. The modified repetitive controller is 
then formed as 

e;;(.) = k , e p z - ~ C ~ ~ ( 2 ) C Z p ( z )  . (11) 

The control system of Figure 1 is stable with CFB = 
CF; if k,, E (0,2) and the plant is stable. The 
unmodified structure (which supplies perfect track- 
ing/rejection) can be obtained with Fdpfb(z) = 1. 

3 LQ Optimal Repetitive Control 

Perfect satisfaction of tracking/rejection goals in con- 
trol systems might not be possible or desirable due to 
the need for high power control inputs. This is because 
high power control inputs might cause actuator satu- 
ration. Also it is desirable to keep the cost low, which 
typically necessitates low power control inputs. These 
design considerations are included in the well-known 
area of Linear Quadratic (LQ) control. The infinite 
horizon (or steady-state) frequency weighted LQ cost 
is defined in SISO discrete-time signal/system frame- 
work as (see (De Bruyne et al, 1995)) 

~ T-1  

JLQ = T-m lim 1 7- C [ e ( t ) l 2  t = O  + [F(z)u(t)]’ , (12) 

where F(z) is a stable LTI filter. By minimizing the 
LQ cost, the plant output is forced to follow the refer- 
ence command in a quadratically optimal sense while 
keeping the power of the filtered control input at a de- 
sired level. The level of penalization on the power of 
the control input is determined by the frequency re- 
sponse of F and the case of F = 0 corresponds to the 
quadratically optimal perfect tracking/rejection. 
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If the control system of Figure 1 is assumed to be inter- 
nally stable and if, moreover, r - d is a quasi-stationary 
signal with power spectrum @(U), the LQ cost defined 
by (12) can equivalently be evaluated in the frequency 
domain according to 

JLQ = & la. j ( w ) ~ ( w ) d w  , (13) 

with 

j ( w )  = [ 1 - lG(w)12] -' /SCL(~) - IG(W)I'~~ + IG(w)I2 , 
( 14) 

where G is the solution of the spectral factorization 
equation 

(15) -1 - F ( z )  F (z- ') 
- F ( z ) F ( z - l )  + P ( z ) p ( z - l )  * G(z)G(z 

As easily noted, j ( w )  @(U) here serves as the cost con- 
tribution corresponding to frequency w .  This means 
that the frequency domain formula can be useful for 
the case of a spectrum consisting of impulses at finitely 
many frequencies. Periodic signals constitute such a 
family for which the following optimality condition can 
be derived. 

Theorem 1 If r - d is a periodic signal (which will 
be the case if r and d are both periodic) with period n, 
then the control system of Figure 1 is  L Q  optimal if and 
only if it is stable and the feedback controller satisfies 

where wi are the harmonics given by (7). (If P(wi) = 
00 or 0 then that i should be removed.) 

The basic motivation in the introduction of the modi- 
fied delayed positive feedback structure of (10) in place 
of (6) was the improvement of the control system ro- 
bustness (see (Tsao and Tomizuka, 1988)). The effect 
of this modification on the control input will be depen- 
dent on the choice of the filter FdPfb. Though the choice 
of Fdpfb is formalized in (Tomizuka, 1993) (a low-pass 
filter of zero-phase nature is proposed), LQ optimal- 
ity issue is not considered. It can be shown that the 
modified repetitive controller of (11) satisfies an LQ 
optimality criterion for stable plants with an appropri- 
ate choice of Fdpfi. For the case of unstable plants, 
the plant should first be stabilized and the repetitive 
controller should be designed using the overall trans- 
fer function of the stabilized loop. In this case, LQ 
optimality condition will, most probably, be violated. 

In this section, we propose a controller which is LQ 
optimal for both stable and unstable plants with peri- 
odic signals under consideration, and analyze its over- 
all performance. The leading idea is to use the delayed 

positive feedback structure of (6) to satisfy the LQ o p  
timality condition of (16) at the harmonics w i .  We 
first assume a causal and stabilizing controller (C)  of 
the form 

where NC and D c  are coprime polynomials. The char- 
acteristic polynomial of the closed loop formed by P 
and CFB = C (see Figure 1) is then given by Q,  where 

Q ( z )  = N p ( z ) N c ( z )  + D ~ ( z ) D c ( z )  . (18) 

The fact that C is stabilizing is equivalent to stating 
that Q is stable. In order to determine a stabilizing con- 
troller for a given plant, equation (18), which is known 
as the Diophantine equation, is to be solved for some 
stable Q. Similarly, we assume that the transfer func- 
tion of the frequency shaping filter F is given by 

where N F  and DF are polynomials which are both 
stable and coprime. We, moreover, assume that F is 
causal. Using the notation 

" ( z )  = H ( z - ' ) ,  

and dropping the z dependency of the polynomials, we 
can represent a controller satisfying the LQ optimality 
condition given by (16), as 

Here M is a stable polynomial which is not identically 
equal to zero, and k,, is a constant which we will call 
as the repetitive control gain, in accordance with the 
other works (see (Tomizuka et al, 1989) and (Chew 
and Tomizuka, 1990)). 

In accordance with (15), we define the polynomials NG 
and DG as the stable solutions of the spectral factor- 
ization equations 

(21) NGNG = N p N > D p D >  , 
DGDG = N F N > D ~ D >  + DFD>NPNG . (22) 

The characteristic polynomial of the feedback system 
formed by P and CFB = Cr< is given by 

SF< = z"Q(z)Qrep(z)  1 (23) 

where 

The following theorem gives a similar stability condi- 
tion to that of zero phase error controller of (11). 
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Theorem 2 Consider the unity feedback control sys- 
t em of Figure 1, with the transfer function of the plant 
given by (8). Let the closed loop with CFB = C ,  where 
C is given by (l7), be internally stable. The feedback 
system formed by P and CE6 is  internally stable for 
0 < IC,  < 2 and is LQ optimal for periodic refer- 
ence/disturbance signals of period n, if  M i s  chosen to  
satisjy 

l l M D ~ l l ~  = 1 . (25) 

In order to design an LQ optimal controller for a given 
plant, the Diophantine equation of (18) is to be solved 
for some arbitrary stable polynomial Q. An LQ opti- 
mal controller can also be obtained by the polynomial 
approach to the LQ problem (see ( h t r o m  and Witten- 
mark, 1997)), however this approach necessitates the 
solution of a spectral factorization problem and a more 
complex Diophantine equation. Also the knowledge of 
the spectrum of the signal is necessary. The above ap- 
proach, on the other hand, has the flexibility of choos- 
ing the stable polynomial Q .  If a controller is known to 
be stabilizing, Q can directly be found with the help of 
(18). The case of a stable plant thus possesses a direct 
solution which can be obtained with NC = 0, Dc = 1 
and Q = Dp. 

There are infinitely many possible choices for M which 
can satisfy the stability condition given by (25), and 
this is helpful in the sense that the overall performance 
(convergence, stochastic behaviour and robustness) of 
the LQ optimal repetitive controller can be improved 
by appropriate choices. A trivial choice for M can be 
seen to be M = llD~ll;l. A more preferrable one is a 
polynomial approximating Dc' . This choice prevents 
an arbitrary variation for Qrep(w) which is important 
for robust stability. 

3.1 Implementation 
With np  = degDp, n c  = degDc, nF = degDF, 
nM = deg M and ng = np + nC, we can rewrite the 
controller of (20) as 

Frl(z) = z - " ~ - " Q Q M M *  , (28) 
FE(.) = z-"~DFD>N;, (29) 
Ffi(z) = z-"~ NFN; 0;. . (30) 

If C is causal (i.e degNc 5 degDc) and 6 2 0 
(This condition does not pose any restriction as in the 
discrete-time signal/system framework it can be satis- 
fied by viewing the period as 2n, 3n or as whatever 

Figure 2: LQ optimal repetitive control system. 

appropriate. If the design considers a sampled-data 
system, then the sampling can be done accordingly.), 
this controller can be realized by the addition of a plug- 
in unit to the stable closed loop formed by P and C as 
in Figure 2. 

3.2 Steady-State and Stochastic Behaviour 
With the sensitivity defined as in (4), we can obtain 
s;; as 

where S denotes the sensitivity of the stabilized loop 
(i.e. S = [1+ PC1-l). Obviously, the sensitivity at the 
harmonics wi are given by IG(wi)12. As the systems un- 
der consideration will have unavoidable stochastic dis- 
turbances in addition to  repetitive disturbances, large 
magnitude is not desirable for the sensitivity function. 
If M is chosen to satisfy M x DZ', 5':; can be kept 
close to S with a small (i.e. close to zero) choice for 
krep. This means that the overall sensitivity variation 
in the repetitive system can be forced to resemble the 
overall sensitivity variation in the stabilized loop, the 
design of which is at our disposal. 

3.3 Stability Robustness and Transient Be- 
haviour 
With the design polynomial M chosen to approximate 
DG1, all zeros of P Q R P  will approximately be zero 
with krep = 1. If the zeros of Q are far away from 
the unit circle, convergence to steady-state will be fast. 
Moreover the system will be robust due to the pre- 
vention of arbitrary frequency variation for Qrep. For 
multiplicative plant perturbations, the complementary 
sensitivity function (defined as TCL = 1-ScL) will indi- 
cate the degree of robustness. As described above LQ 
optimal system complementary sensitivity (Tr;) can 
be kept close to stabilized sytem complementary sensi- 
tivity (S) with a small ICrep. Yet an unstable pole/zero 
cancellation is approached as krep gets closer to zero. 
Thus it might be preferrable to tune ICrep to unity and 
increase the stability robustness by appropriate choice 
of F in the LQ cost. 
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4 Example Simulations 

In this section we present the results of several simula- 
tions realized with the stable nonminimum phase plant 
described by 

z - 2.5 
P ( z )  = 

z2 - 1.42 + 0.45 ' 

The reference ( r )  is set to zero and the disturbance is 
generated as the superposition of a periodic signal and 
stochastic signal (i.e. d ( t )  = d p ( t )  + d, ( t ) ) .  Periodic 
disturbance is arbitrarily generated and has a period 
of 20 and variance of unity, wheras the stochastic d i s  
turbance is generated from a white noise process (tu) 
of variance 0.05 as 

2 2  - 0.22 + 0.2 
d&) = z2  - 1.4% + 0.45 w( t )  

LQ optimal repetitive controller design is considered 
for 

F = 2 - z - l ,  
and M is chosen (to approximate DE1) as 
M = 0.2444z4+0.2228z3+0.1192z2+0.0458z+0.0134 . 
In Figure 3, we give the simulation results for several 
different choices of kreP and C. CMV is the minimum 
variance controller for d( t )  = d,(t), which can be found 
to be (see (Astrom and Wittenmark, 1997)) 

-0.6047~ + 0.2848 
z + 1.4047 . CMV(z)  = 

Simulation results indicate that the choice of the design 
parameters can significantly improve the quality of the 
overall design. Best response to stochastic disturbance 
is obtained with krep = 0.1 and C = CMV. This is be- 
cause the closed loop behaviour for this case resembles 
the closed loop behaviour with the minimum variance 
controller. Yet the convergence to steady-state is slow 
as krep is not close to unity. 

5 Conclusions 

We considered the LQ optimal design of repetitive con- 
trollers for discrete-time systems. Given an arbitrary 
stabilizing controller, the LQ optimal repetitive con- 
troller can directly be obtained. For stable plants, 
knowledge of the plant is enough for the design. With 
a sufficiently large period, the repetitive system can be 
obtained by the addition of a plug-in unit to the sta- 
bilized system. The proposed controller structure can 
be used to design repetitive control systems with im- 
proved robustness and stochastic behaviour by appro- 
priate choice/tuning of the design parameters. Adap- 
tive and optimal tuning of the design parameters is 
supposingly a promising direction for further research. 
Extending the development to include continous-time 
systems is a standard but nontrivial research problem. 

Figure 3: Stochastic behaviour (top: C = 0, krep = 1.0 ; 
middle-1: C=O, k,.,=0.1 ; middle-2: C=CMV, 
krep=1.0 ; bottom: C=CMV, krep=O.l ). 
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