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Abstract 

It is known that under energy constraints it is best to 
have each codeword of a code satisfy the constraint 
with equality, rather than having the constraint sat- 
isfied only in an average sense over all codewords. 
This suggests the use of fixed-composition codes on 
additive gaussian noise channels, for which the cod- 
ing gains achievable by this method are significant, 
especially in the high SNR case. Here, we examine 
the possibility of achieving these gains by using fixed- 
composition trellis codes. 

1. The Problem 

Consider a discrete-time, memoryless, additive gaus- 
sian noise channel y = I + z where y is the channel 
output; 2, an arbitrary real number, is the channel 
input; and z is a gaussian random variable with mean 
0 and variance uz. A block code with M codewords 
and blocklength n is said to satisfy an average power 
constraint if 

M n 

(1/W z;,; I np, (1) 
m=l i=1 

where zm,, is the i’th letter of the m’th codeword, and 
P is a given constant. 

Shannon [I] showed that if one wishes to mini- 
mize the probability of maximum-likelihood decoding 
error under an average power constraint, one may re- 
strict attention to codes satisfying the (more restric- 
tive) shell constraint, i.e. codes for which each code- 
word satisfies 

Shannon’s results indicate that a block code se- 
lected at random from the ensemble of shell-constrained 
codes is near-optimal with probability approaching 
one in the limit as the blocklength goes to infinity. 
Unfortunately, no practical method is known for de- 
coding near-optimal block codes. 

Shell-constrained trellis codes are more promising 
in this regard, since they can be decoded by sequential 
decoding at least at rates below the computational 
cutoff rate. The purpose of this paper is to examine 
such trellis codes. 

2. Shell-Constrained Trellis Codes 

A trellis code is said to satisfy a shell constraint if 
each path zl, 22,. . . through the trellis satisfies 

(3) 

for every integer k 2 0, where n and P are given 
const ants. 

Since we consider using a sequential decoder, the 
channel parameter of primary interest here is the cut- 
off rate. For the ensemble of shell-constrained trellis 
codes, the cutoff rate (in bits) is given by [l], [2] 

where A = P/a2 is the SNR, e is the base of natural 
logarithm, and the logarithms are to base 2 through- 
out the paper. 

Table 1 lists the capacity C = (1/2)log(l + A) 
and the cutoff rate R;, for various values of A. Also 
listed in Table 1 is & = (1/2)log(l + A/2), which 
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A 11 0.1 I 1 I 5 I 10 I 20 I 100 
C 11 0.069 I 0.50 I 1.29 I 1.73 I 2.20 I 3.33 
R;, 
& 

0.036 0.32 1.02 1.45 1.92 I 3.05 
0.035 0.29 0.90 1.29 1.73 I 2.84 

Table 1: Capacity and cutoff rates. 

is the cutoff rate for the independent- le t ters  ensemble 
in which the trellis symbols are selected independently 
from a gaussian distribution with mean 0 and variance 
P. (The choice of gaussian distribution is somewhat 
arbitrary here; it does not maximize the cutoff rate of 
independent-letters ensembles.) 

While the shell-constrained ensemble yields the 
largest possible cutoff rate for a given SNR, encoding 
and decoding a shell-constrained trellis code can be 
difficult. On the other hand, for independent-letters 
ensembles, such difficulties are minimal. So, in de- 
ciding whether it is worth using a shell-constrained 
code, a table listing the cutoff rates for various can- 
didate ensembles proves helpful. This is the point of 
view originally put forward in [4]. 

Table 1 shows that the performance advantage of 
the shell-constrained ensemble over the gaussian en- 
semble increases with the SNR, though it saturates 
beyond some point. The table also shows that at very 
low SNR’s the superiority of the shell-constrained en- 
semble becomes insignificant. 

In a paper [3], which motivated the present work, 
Gallager gave the following asymptotic results, which 
clarify these observations. At high SNR’s ( A  > 20) 

1 
2 

R;, - Rh M -(loge - 1) = 0.22 bits (5) 

and 
C - R,, M 1 - (loge)/2 = 0.28 bits (6) 

At low SNR’s ( A  < O.l), 

R,, M I& M C/2 M A/4 (7) 

So, the payoff for the extra complications of shell- 
constrained trellis coding may be significant only at 
moderate to high SNR’s. 

3. Fixed-Composition Trellis Codes 

In this section, we shall consider fixed-composition 
trellis codes, which is a class of shell-constrained codes 
over a finite channel input alphabet. There will be a 

n 11 10 1 20 I 30 I 40 
R,,+(Q) 11 0.746 I 0.768 I 0.774 10.777 

Table 2: Cutoff rate improvement. 

degradation in the cutoff rate due to quantization of 
the input alphabet, but this will be compensated by 
a reduction in complexity. 

A trellis code is said to be of fixed-composition 
with parameter (n,Q), for an integer n 2 1 and a 
probability distribution Q on a finite set of real num- 
bers A = {al, . . . , ar} ,  if each trellis path 21,22,. . . 
satisfies 

(k+l)n 

&(a) = (Vn)  l{~j = a1 (8) 
j=kn+l  

for all a E A and all k 2 0, where the function 1 takes 
the value 1 or 0 according as the indicated event is 
true or false. Thus, nQ(a) is the number of times the 
letter a E A occurs in successive blocks of n symbols 
along each path in the trellis. 

A fixed-composition code satisfies the constraint 
(3) with P = CaEAQ(a)u2. The cutoff rate for the 
ensemble (n ,  Q) can be shown to be 

1 1 d(x, x’)~ 
R,,,n(Q) = -;log 7 e x p - p  

where TQ is the subset of elements in An with com- 
position Q, [TQ~ denotes the cardinality of TQ, and 
d(x, x’) is the euclidean distance between x and x’. 

XETQ x‘eTQ ITQ I 8a2 

(9) 

It should be clear that &,n(Q) approaches & as 
the parameter (n, Q) represents a finer quantization 
(subject to the power constraint) of the real line. The 
number of quantization levels (hence the constraint 
length n) necessary to achieve a given fraction of & 
increases with the SNR. 

To obtain the largest cutoff rate for a given com- 
position Q, we should consider the sequence of ensem- 
bles (nm, Q) for m = 1,2,. . . It can be shown that 
&,nm(Q) increases monotonically with m. To illus- 
trate these points, consider the composition Q(1/2) = 

suppose that u2 = 0.2. Then, P = 0.65, A = 3.25, 
and we have the cutoff rates listed in Table 2 for var- 
ious values of n. 

Q(-1/2) = 4/10, Q(3/2) = Q(-3/2) = 1/10, and 

For comparison, we have Rg = 0.787 for A = 3.25. 
Thus, even with a four-letter alphabet, it is possible to 
operate within 1.3% of R;, by using fixed-composition 
codes. 
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We also note that, for the independent-letters en- 
semble with distribution &, & = 0.713. (This is 
the optimum & over all independent-letters ensem- 
bles for the four-letter input alphabet here. For the 
gaussian ensemble, R;, = 0.696.) We thus observe a 
9% improvement in the cutoff rate in going from an 
independent-letters ensemble to a fixed-composition 
ensemble. 

4. Code Construction 

A straightforward approach to constructing a trellis 
code with a fixed composition (n ,Q) is to consider 
trellises for which the number of symbols per branch 
equals n, and to choose each branch independently 
from composition Q. Unfortunately, the degree (num- 
ber of branches emerging from a trellis state) for a 
trellis code constructed by this method equals 2nR, 
which may be too large for decoding purposes. 

For example, with n = 10 and R = 0.7 bits (num- 
bers suggested by the example in the preceding sec- 
tion), we get a trellis with degree 128, which is imprac- 
tical to decode using either a Viterbi or a sequential 
decoder. (In sequential decoding, the average number 
of metric computations per elementary step is lower- 
bounded by one half the degree of the code.) 

In the remainder of this section, we describe a 
method for constructing fixed-composition trellis codes 
with smallest possible degrees. 

Let the input alphabet A = { a l , .  . . , a [ }  and the 
parameter (n ,  Q) be specified. The method is based 
on a state diagram in which there is one state for 
every n-tuple n = ( 1 2 1 , .  . . , nr) where n; is an in- 
teger between 0 and n & ( ~ ; )  (inclusive). The state 
(nQ(al) ,  . . . , nQ(a1)) is called the initial state, and 
the state (0, .  . . ,0) the final state. There is a transi- 
tion from state n to state n' if and only if 11' is less 
than n in one coordinate, but equal in all others. Fig. 
1 illustrates the state diagram for a two-letter alpha- 
bet with n = 7 and Q = (317,417). 

It will be noted that there is a natural one-to-one 
correspondence between blocks of n channel inputs 
with composition Q and paths from the initial to the 
final state of the state diagram. 

What is needed next is a path selector, whose 
function will be to map source sequences into paths 
through the state diagram (and thereby to channel 
input sequences satisfying the fixed-composition con- 
straint). We now describe a possible implementation 
for such a path selector. 

Figure 1: Example of a state diagram. 

First, we assign certain probabilities to the tran- 
sitions in the state diagram. We assign the proba- 
bility n;/(nl + . . . + nr) to the transition from state 
(nl,. . . , n;, . . . , . I )  to state (721,.  . . , n;-1, . . . , nl). The 
probability assigned to the transition from state n to 
state n' has the significance of being equal to the frac- 
tion of paths, among all paths from state n to the final 
state, that go through state n'. The product of tran- 
sition probabilities along a path define a probability 
for that path. It can be verified easily that the path 
probabilities are equal for all paths from the initial to 
the final state. 

The mapping from source sequences to paths is 
implemented by using the circuitry in Fig. 2 in con- 
junction with the transition probabilities just defined. 
The idea here is to use the source sequence as a ran- 
dom number generator and select the path step-by- 
step in accordance with the transition probabilities. 
The details are as follows. 

s1 s2 Sm 

Figure 2: Path selector. 
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Initially, the path selector is positioned at the ini- 
tial state, and the shift-register in Fig. 2 contains only 
0’s. Each encoding step begins with a shift of R data 
bits into the shift-register. (Nonintegral values of R 
can be handled by an extension of the method.) Then, 
a set of numbers SI, .  . . , sm are computed: 

k 

si = h;,jrj mod 2 (10) 
j=1 

where hi,, are 0-1 valued connection coefficients, k de- 
notes the number of stages of the shift register, and 
rj denotes the content of the j’th stage. We regard 
these m bits as forming the binary expansion of the 
number 

m 

s = cS i2 - i  (11) 
i=l 

The value of s together with the transition proba- 
bilities determine the next state in the following man- 
ner. The interval [0,1] is thought of as partitioned 
into as many subintervals as there are transitions out 
of the present state, where the length of each subin- 
terval equals the corresponding transition probability. 
The path selector moves to the state whose subinter- 
val contains the number s. The process continues un- 
til the path selector reaches the final state, whereupon 
it returns to the initial state, initiating a new round 
of path selection. The contents of the shift register 
are not altered during this transition from the final to 
the initial state. Retaining the contents of the shift 
register from one round to next introduces memory 
into the encoding process, and is beneficial for error 
correction purposes. 

The encoder mapping that results can be repre- 
sented (for conceptual purposes) by a trellis by aug- 
menting the states of the shift register with those of 
the state diagram. In this trellis, there are 

2k-R fl (nQ(u) + 1) 
aEA 

states altogether, where the first factor is the number 
of states for the shift register and the second is that 
in the state diagram. The degree of the trellis code 
obtained by this method equals 2R, independently of 
( n ,  Q ) .  

We conclude with a few remarks on some compu- 
tational difficulties relating to the metric to be used 
in sequential decoding of fixed-composition codes. As 
with ordinary codes, there is a Fano-type metric that 
achieves the cutoff rate for fixed-composition ensem- 
bles. Unfortunately, the fixed-composition property 
introduces memory into the input ensemble and the 
metric just mentioned is no longer letterwise-additive, 

making it hard to compute. More work is needed to 
understand how much degradation results from using 
suboptimal but more easily computable metrics. 
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