
An Approximation Algorithm for Computing the Visibility Region of a
Point on a Terrain and Visibility Testing

Sharareh Alipour1, Mohammad Ghodsi2, Ugur Gudukbay3 and Morteza Golkari1
1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

2Department of Computer Engineering,
Sharif University of Technology and Institute for Research in Fundamental Sciences (IPM), Tehran, Iran∗

3Department of Computer Engineering, Bilkent University, Ankara, Turkey
shalipour@cs.sharif.edu, ghodsi@sharif.ir, gudukbay@cs.bilkent.edu.tr, golkari@ce.sharif.edu

Keywords: Computational Geometry, Visibility, Approximation Algorithm, Terrain.

Abstract: Given a terrain and a query point p on or above it, we want to count the number of triangles of terrain that are
visible from p. We present an approximation algorithm to solve this problem. We implement the algorithm
and then we run it on the real data sets. The experimental results show that our approximation solution is
very close to the real solution and compare to the other similar works, the running time of our algorithm is
better than their algorithm. The analysis of time complexity of algorithm is also presented. Also, we consider
visibility testing problem, where the goal is to test whether p and a given triangle of train are visible or not.
We propose an algorithm for this problem and show that the average running time of this algorithm will be the
same as running time of the case where we want to test the visibility between two query point p and q.

1 INTRODUCTION

Problem Statement. Suppose that T is a set of n
disjoint triangles representing a terrain. Two points
p,q ∈ R3 are visible to each other with respect to
(w.r.t.) T if the line segment pq does not intersect
any triangle of T . A triangle ∆ ∈ T is also considered
to be visible (w.r.t. T) from a point p if there exists
a point q ∈ ∆ such that p and q are visible to each
other. Here, the visibility counting problem (VCP) is
to find the number of triangles of T which are visible
from any query point p. The visibility testing prob-
lem (VTP) is also defined as follows: given a query
point p and a triangle ∆ ∈ T we want to test whether
p and ∆ are visible or not.

Definition 1.1. The set of all points that are visible
from a query point p is the visibility region of p de-
noted by V R(p).

Related Work. Computing the visible region of a
point is a well-known problem appearing in numerous
applications (see, e.g., (Cohen-Or and Shaked, 1995;
Cole and Sharir, 1989; Floriani and Magillo, 1994;
Floriani and Magillo, 1996; Franklin et al., 1994;
Goodchild and Lee, 1989; Stewart, 1998)). For ex-

∗This research was in part supported by a grant from
IPM. (No. CS1390-2-01)

ample, the coverage area of an antenna for which line
of sight is required may be approximated by clipping
the region that is visible from the tip of the antenna
with an appropriate disk centered at the antenna. As a
similar problem, natural resource extractors may wish
to site visual nuisances, such as clearcut forests and
open-pit mines, where they cannot be seen from pub-
lic roads. Also, zoning laws in some regions, such
as the Adirondack Park of New York State, may pro-
hibit new buildings that can be seen from a public lake
(Franklin et al., 1994).

The complexity of computing the visibility region
of a point, VR(p), might be Ω(n2) (Cole and Sharir,
1989; Devai, 1986), where n is the number of trian-
gles in T . Therefore, approximation algorithms which
compute an approximation of VR(p) can highly re-
duce the running time.

Moreover, a good approximation of the visible re-
gion is often sufficient, especially when the triangula-
tion itself is only a rough approximation of the under-
lying terrain (Ben-Moshe et al., 2008). Note that the
terrain representation is fixed and cannot be modified
during the running time of the algorithm.

In (Ben-Moshe et al., 2008) a generic radar-like
algorithm is presented for computing an approxima-
tion of V R(p). The algorithm extrapolates the visi-
ble region between two consecutive rays (emanating

from p) whenever the rays are close enough; that is,
whenever the difference between the sets of visible
segments along the cross sections in the directions
specified by the rays is below some threshold. Thus,
the density of the sampling by rays is sensitive to the
shape of the visible region. Ben-Moshe et al. sug-
gest a specific way to measure the resemblance (dif-
ference) and to extrapolate the visible region between
two consecutive rays. They also present an alterna-
tive algorithm which uses circles of increasing radii
centered at p instead of rays emanating from p. Both
algorithms compute a representation of the (approx-
imated) visible region that is especially suitable for
visibility from p queries.

Overall they used four algorithms, Fixed ECH,
ECH, Fixed radar-like and Radar-like to approximate
V R(p). It is shown that Radar-like algorithm is the
fastest among these four algorithms.

Our Result. We present an algorithm to approx-
imate the number of visible triangles from a query
point p which is noted by mp. Moreover, the algo-
rithm can be used to approximate V R(p). We also
consider the visibility testing problem and present our
experimental results. The structure of the paper is as
follows: in section 2, we present the algorithm for
visibility testing problem and then we implement the
algorithm on real data sets. We show that the aver-
age running time of this algorithm for VTP between
a point and a triangle is O(f (n)) in which f (n) is the
running time of VTP for two points. In section 3, we
present the approximation algorithm for the visibility
counting problem and also an exact algorithm which
is used to compare the approximated solution to the
exact solution. In section 4, we provide the experi-
mental results of the proposed algorithm. We com-
pare our results to the results of (Ben-Moshe et al.,
2008).

2 VISIBILITY TESTING
PROBLEM

Suppose that we are given a set S of n triangles in R3

and a query point p. We classify the visible triangles
of S from p into two groups:

• A triangle is an edge-visible triangle if there is a
point on its edges that is visible from p.

• If the triangle is visible from p but there is not
any visible point on its edges, then it is called a
mid-visible triangle.

Lemma 2.1. If the triangles of S form a terrain, then
all the visible triangles from a query point p are edge-
visible.

Using Lemma 2.1, to compute the number of vis-
ible triangles of a terrain from a given query point p,
it is enough to consider the edges of triangles.

2.1 The Proposed Algorithm for VTP

According to Lemma 2.1, if a triangle ∆1 ∈ T is visi-
ble to a query point p, then ∆1 is edge-visible. There-
fore, for each edge of ∆1, begin from one of its ver-
tices, such as a1 . If a1 and p are visible, then ∆1
is visible to p and we break the algorithm, else we
choose the first triangle ∆2 hit by the ray emanating
from p to a1 . ∆2 covers some part of that edge. So,
it is enough to check whether the remained part of the
edge is visible to p. For the remained part, we con-
sider the first point a2 on that edge which is not cov-
ered by ∆2 . We shoot a ray from a2 to p. If a2 and p
are visible then ∆1 and p are visible, else we consider
the first triangle hit by the ray emanating from a2 to
p. The same as ∆1, we run the algorithm on ∆2. If we
reach the end of edge, then that edge is not visible to
p. If all the three edges of ∆1 are invisible to p then
∆1 is also invisible to p (See Algorithm 1).

Algorithm 1: Algorithm for VTP.
Input:
∆ ∈ T .
p: a query point
Output:
A boolean indicates whether triangle ∆ is visible to p
or not.
Method:

1: Create three line segments s1,s2 and s3 based on
∆’s edges.

2: Initialize segments queue segQueue with s1,s2
and s3.

3: while segQueue is not empty do
4: seg = segQueue.pop()
5: if At least one point on the line segment seg is

visible from p then
6: return true
7: else
8: Find the first concealer triangle TC for invis-

ible point p on the line segment seg.
9: for each segment segt of segments queue

segQueue do
10: COVER LINE SEGMENT(p,TC, segt)
11: end for
12: end if
13: end while
14: return false

2.2 Experimental Results of VTP

According to the Algorithm 1, the running time of Al-
gorithm 1 for each query point p and triangle ∆1 de-
pends on the number of ray shootings which is equal
to the number of triangles covering the edges of ∆1.
We denote this number by tp(∆1). Therefore, the run-
ning time of this algorithm is O(tp(∆) f (n)) in which
f (n) is the time for each ray shooting. In our data sets
each the terrain is represented as a height field that
for each point (i, j) on the regular 2D grid, a height
value is specified. The regular grid is triangulated
to represent the terrain. We use a regular triangula-
tion such that for every four points x1 = (i, j,k1),x2 =
(i+ 1, j,k2),x3 = (i, j + 1,k3),x4 = (i+ 1, j + 1,k4),
two triangles are constructed: ∆1 = (x1,x2,x4) and
∆2 = (x1,x3,x4). In our expriments we do not pre-
process the triangles of terrain, so f (n) = O(

√
(n)).

In each of the data sets, we choose random points and
run Algorithm 1 for each point p and each of the tri-
angles of the terrain. For each triangle ∆1 ∈ T , we
calculate tp(∆1). The experimental results indicate:

E(tp(∆1)) = ∑
n
∆i∈T tp(∆i)/n = O(1)

which means that the average number of triangles
covering a triangle for a random query point is O(1).
So, the average running time of visibility testing be-
tween a triangle and a random query point is O(f (n)).
In Table 1 the average of tp is mentioned for each data
set which is not greater than 2 in none of them. It is
shown that the average number of tp(∆) is indepen-
dent of the size of data set.

Table 1: The average number of triangles that cover a trian-
gle according to a random query point for each data set.

No. of vertices Avr. no. of covering triangles
2,400 1.70
2,400 1.18
2,400 1.06
5,400 1.58
5,400 1.09
5,400 1.03
9,600 1.53
9,600 1.10
9,600 1.04

29,400 1.48
29,400 1.02
29,400 1.08
60,000 1.51
60,000 1.37
60,000 1.08

3 THE VISIBILITY COUNTING
PROBLEM

Our visibility counting algorithm is based on count-
ing the number of triangles whose vertices are visi-
ble from the query point. So, to compute the visible
region of a query point p, we compute the triangles
whose vertices are visible from p.

3.1 Approximation Algorithm for VCP

For each query point p, if at least one of the vertices
of a triangle is visible to p, then we consider it as a
visible triangle. To compute the number of triangles
which at least one of their vertices are visible to p, we
propose the following algorithm:

First, we select the triangle ∆1 that is intersected
by the ray emanating from p to the surface of T . Ob-
viously ∆1 is visible to p. In the next step, we con-
sider the three neighbors of ∆1 ; we check whether
the vertices of these triangles are visible to p. If at
least one of the vertices of these triangles is visible
to p, then the triangle is visible to p. We run the al-
gorithm recursively on the neighbors of the triangles.
Otherwise, we decide that the triangle is an invisible
triangle. For each non-visible triangle, we shoot a ray
emanating from p to the vertices of visible triangles;
the first triangle hit by that ray is considered as a vis-
ible triangle and we recursively run the algorithm on
its neighbors. Algorithm 2 shows pseudo code of this
algorithm.

3.2 Time Complexity

In Algorithm 2 each triangle is entered to the queue
just once and for each triangle we shoot three rays to
the vertices of that triangle. In each step of ray shoot-
ing, we check whether there is a triangle between p
and a vertex or we want to find the first triangle hit
by a ray emanating from p to a specific direction. In
both of these ray shootings, we have to check at most
O(
√

n) triangles. So, the running time of the algo-
rithm is O(

√
nmp) (where mp is the number of vis-

ible triangles). Note that if we preprocess the trian-
gles, each ray shooting takes O(logn) time and this
reduces the running time. In our algorithm, we do not
preprocess the triangles.

3.3 Exact Algorithm for VCP

Using Algorithm 1, we test whether each triangle of T
is visible to p. So, we can compute the exact number
of visible triangles. The running time of this algo-
rithm is not important and we only use it in our exper-

(a) Approximated visible region (b) Actual visible region (c) Subtraction a from b
Figure 1: The approximate (a) and the exact (b) visible region of the query point p(3.3,242.5,2089.5). The query point shown
in red.

(a) Approximated visible region (b) Actual visible region (c) Subtraction a from b

Figure 2: The approximate (a) and the exact (b) visible region of the query point p(468.8,232.5,3228.6). The query point
shown in red.

imental result to show that the approximate number of
visible triangles is close to the exact number of visible
triangles.

4 EXPERIMENTAL RESULTS OF
VCP

We ran the approximation algorithm on three real ter-
rain data sets. As it is said, the terrain is represented
as a height field that for each point (i, j) on the reg-
ular 2D grid, a height value is specified. The regular
grid is triangulated to represent the terrain. We use
a regular triangulation such that for every four points
x1 = (i, j,k1),x2 = (i+1, j,k2),x3 = (i, j+1,k3),x4 =
(i+ 1, j+ 1,k4), two triangles are constructed: ∆1 =
(x1,x2,x4) and ∆2 =(x1,x3,x4). Then, we run the pro-
posed algorithm on height-field representation of the
terrain.

Figures 1 and 2 show the actual and approximate
visible regions of two query points. We calculate the
approximate visible region of a query point using Al-
gorithm 2 and use the exact algorithm to calculate the
exact number of visible region of a query point. It
is seen that the approximated visibility region of a

query point is close to the actual visibility region of
that point.

We define the following error measure. Let m′p be
the number of approximated visible triangles. Then
the error associated with m′p is (mp −m′p) divided
by mp. For each data set, we choose 1000 random
query points and for each query point p, we calcu-
late the value of mp and m′p and then the error of the
algorithm. Each random point is chosen in different
heights above the terrain. It is obvious that the in-
crease in the height of a point results in the increase
of the number of visible triangles and the running time
as well. In Table 2 the average time and average error
are mentioned for each data set.

We compare our results to the results of the ap-
proach proposed by Ben-Moshe et al. (Ben-Moshe
et al., 2008). They proposed four algorithms and mea-
sured the performances of these algorithms. We use
data sets similar to the ones used in the experiments
presented in (Ben-Moshe et al., 2008). In their ex-
periment, they have considered ten input terrains rep-
resenting ten different and varied geographic regions.
Each input terrain covers a rectangular area of approx-
imately 5000−10000 triangle vertices. For each ter-
rain, they picked several view points (x, y coordinates)

Table 2: The average running time for each data set. For
each data set, the height of some random points are chosen
as specific values.

No. of vertices Running time (ms) Error (%)
2,400 17 1.39
2,400 14 0.45
2,400 13 0.41
5,400 44 2.03
5,400 36 0.89
5,400 28 0.45
9,600 90 2.28
9,600 80 1.17
9,600 66 0.90

29,400 355 3.92
29,400 396 1.78
29,400 365 2.47
60,000 840 5.28
60,000 870 3.17
60,000 954 3.70

Algorithm 2: Approximation algorithm for computing the
visible triangles.
Input:
T : A 2D array of triangles.
e: A query point p.
Output:
The number of visible segments from p.
Method:

1: Create empty Queue, bfsQueue.
2: Find triangle ∆1 that is intersected by the ray em-

anating from p to the surface of terrain.
3: Add ∆1 to bfsQueue.
4: while bfsQueue is not empty do
5: ∆t = bfsQuere.pop()
6: if At least one vertex of triangle ∆t is visible

from p then
7: Add three neighbors of ∆1 to bfsQueue.
8: else
9: Find first triangles cover vertices of triangle

∆t .
10: Shoot rays from p to the vertices of these

triangles
11: Find hit points of shooting ray and surface

of terrain.
12: Add triangles corresponding to the hit

points, to bfsQueue.
13: end if
14: end while

nates) randomly. For each query point p, they ap-
plied each of the four approximation algorithms (as
well as the exact algorithm) 20 times: once for each
combination of height (either 1, 10, 20, or 50 meters
above the surface of T) and range of sight (either 500,

1000, 1500, 2500, or 3500 meters). For each (approx-
imated) region that was obtained, they computed the
associated error, according to their defined error mea-
sure.

Their defined error measure is as follows: Let Rp
be an approximation of Rp obtained by some approxi-
mation algorithm, where Rp is the region visible from
p. Then the error associated with Rp is the area of
the XOR of Rp and R′p, divided by the area of the
sight that is in use. Note that in the case that Rp is
little in compare with the sight and the difference be-
tween R′p and Rp is big in compare with Rp , then the
error will be very little. However, the difference be-
tween R′p and Rp is so big. Thus, our error measure
is more accurate than theirs. Each data set in their al-
gorithm contains 5000− 10000 triangle vertices. We
also choose some data sets such that the number of
triangles in each set is about 10000.

As it is shown in Table 3, the best average running
time of their algorithm is 274 ms with the error of
0.5 (using their error measure) whereas the average
running time of our proposed algorithm is 70 ms with
the error of 0.55 (using our error measure). If we use
their error measure, then our error will be 0.35.

Table 3: The results of (Ben-Moshe et al., 2008). They
define an error function for approximating the visible region
of a query point. According to each error value the running
time of their algorithms are mentioned. The best running
time is related to Radar-like algorithm.

Error 1.00 0.75 0.5
Fixed ECH 597 10045 1648
ECH 579 1012 1591
Fixed radar-like 112 192 301
Radar-like 101 168 274

The test environment for our experiment and the
one used in (Ben-Moshe et al., 2008) are mentioned
in Table 4.

Table 4: The properties of platforms of (Ben-Moshe et al.,
2008) and ours.

Ben-Moshe Pentium 4 2.4GHz Linux 8.1 Java 1.4
Our platform Pentium 4 2.8GHz Win8 Java 1.7

5 CONCLUSIONS

We propose algorithms for the visibility counting and
testing problems on a terrain. We implement our algo-
rithm for VTP. Our experimental results shows that in
our algorithm, the average running time of visibility
testing between a query point and a triangle is almost
equal to the running time of visibility testing between
two points.

We also proposed an approximation algorithm for
VCP and implemented it on real data sets. Our exper-
imental results were presented. To compare our al-
gorithm with the other related works, we considered
the results of (Ben-Moshe et al., 2008), which was a
similar work. We showed that in almost similar con-
ditions (considering the platforms, the number of tri-
angles of terrains) the running time of our algorithm
is better than their algorithm. In these algorithms we
did not preprocess the data sets. If we preprocess the
data sets, the running time of algorithms in the query
phase will significantly decrease. Also, we would like
to propose exact algorithms for VCP. We are currently
extending the proposed algorithms to the case where
triangles are in 3D.

REFERENCES

Ben-Moshe, B., Carmi, P., and Katz, M. J. (2008). Ap-
proximating the visible region of a point on a terrain.
Geoinformatica, 12(1):21–36.

Cohen-Or, D. and Shaked, A. (1995). Visibility and dead-
zones in digital terrain maps. Comput. Graph. Forum,
14(3):171–180.

Cole, R. and Sharir, M. (1989). Visibility problems for
polyhedral terrains. Journal of Symbolic Computa-
tion, 7(1):11 – 30.

Devai, F. (1986). Quadratic bounds for hidden line elim-
ination. In Proceedings of the second annual sym-
posium on Computational geometry, SCG ’86, pages
269–275, New York, NY, USA. ACM.

Floriani, L. D. and Magillo, P. (1994). Visibility algorithms
on triangulated digital terrain models. International
journal of geographical information systems, 8(1):13–
41.

Floriani, L. D. and Magillo, P. (1996). Representing the
visibility structure of a polyhedral terrain through a
horizon map. International journal of geographical
information systems, 10(5):541–561.

Franklin, W. R., Ray, C. K., and Shashank, M. (1994). Geo-
metric algorithms for siting of air defense missile bat-
teries. Battelle Inc., Columbus OH.

Goodchild, M. and Lee, J. (1989). Coverage problems and
visibility regions on topographic surfaces. Annals of
Operations Research, 18(1):175–186.

Stewart, A. (1998). Fast horizon computation at all points
of a terrain with visibility and shading applications.
Visualization and Computer Graphics, IEEE Transac-
tions on, 4(1):82–93.

