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Abstract

In the decentralized strong stabilization problem for
linear time-invariant finite-dimensional systems, the
objective is to stabilise a given plant using a stable
decentralized controller. A solvability condition for
this problem is given in terms of a parity interlacing
property which is to be satisfied among the real un-
stable poles and real unstable decentralized blocking
zeros of the plant. The problem of synthesizing decen-
tralized stabilizing controllers with minimum number
of unstable poles is also solved.

1. Introduction

In the strong stabilization problem the objective is to
design a stable controller which internally stabilizes a
given plant [18]. It is well-known that the strong sta-
bilization problem is solvable if and only if the given
plant has an even number of real poles between each
pair of its unstable blocking zeros on the extended
real axis [18], [16]. Although there are various pro-
cedures for constructing stable stabilizing controllers
for a strongly stabilizable plant, these methods are
not directly applicable to the controllers with feed-
back constraints, such as decentralized controllers.

In this paper we consider the Decentralized Strong
Stabilization Problem (DSSP), where the objective is
to solve the decentralized stabilization problem with
stable local controllers. A motivation for DSSP is its
close relation to some reliable decentralized stabiliza-
tion problems ([8], see also [15], [9], [3], [6]). In many
cases, the reliable decentralized stabilization problem
can be transformed to an equivalent problem of de-
centralized strong stabilization problem (see e.g. [15],
{11, Sections 2, 3]). Another motivation for DSSP
is that the solution to the problem yields an under-
standing of how the total number of unstable poles
of the overall controller can be distributed between
the local controllers. This requires an extension of
the solution of DSSP similarly to Theorem 5.3.1 of
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{16]. The problem DSSP also plays a primary role
in the solution of Decentralized Concurrent Stabilize-
tion Problem (see Conclusions). In case of 2x 2 plants
DSSP has been previously considered in [8] and some
partial results have been obtained.

In the next section we give the solution of DSSP in
Theorem 1. We show that the problem is solvable
if and only if the plant has no unstable decentral-
ized fixed modes and it satisfies a certain interlac-
ing property among its real unstable poles and real
unstable decentralized blocking zeros. In Section 3,
the solution of DSSP is extended to obtain the mini-
mum number of unstable poles that any decentralized
stabilizing controller should have. The distribution
of these poles between the controllers has also been
considered. The main result of Section 3 is stated
in Theorem 2 which is a decentralized counterpart of
Theorem 5.3.1 of [16]. Some concluding remarks are
given in Conclusions.

We restrict the exposition in this paper to 2-channel
systems. All the results stated in Theorems 1 and 2
can be extended to general N-channel systems.

Notation and Terminology: We denote by P and 8,
the rings of proper rational functions and its subring,
stable proper rational functions, respectively. The
set of complex numbers and the set of extended com-
plex numbers including infinity are denoted by C and
C., respectively. The closed right half complex plane
including infinity (occasionally referred to as the un-
stable region) is denoted by C;.. We define R to
be the set of real numbers and let R, denote the
nonnegative real numbers including infinity. For all
other definitions and terminology in the paper we re-
fer the reader to [7]. The algebraic and topological
properties of the ring S can be found in [16].

2. Decentralized Strong Stabilization
Problem

We consider a 2-channel linear time-invariant finite-
dimensional system with the following input/output
relation:

n =Z[u1]=[zu le][“l]
Y2 uz Zyn Za uz |’
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where Z;; € PPi*"5,
strictly proper.

Decentralized Stabilization Problem (DSP).
Given Z above, determine a controller Z, =
diag{2.1,2:2}, Zei € PTi%Pi, i = 1,2, such that
(Z,2,) is internally stable.

It is known that DSP is solvable if and only if Z
has no unstable decentralized fized modes [17]. These
are the unstable open loop eigenvalues of a minimal
state-space realization of Z, that remain unchanged
under all constant decentralized output feedback con-
trollers. An alternative solvability condition for DSP
can be given in terms of the notion of completeness

[4), (7], [5]. Let

i,j = 1,2, and Z1, 233 are

[ 7 |atrura (1)

be a bicoprime fraction of Z over S, where Q € S1*1,
P; € SP*1 and R; € S*%", i = 1,2. Then, DSP is
solvable if and only if

S Blozim [ 3 Bloz
@)

for all z € C; ([7], [10]). Any unstable z € C, for
which the rank condition in (2) fails is an unstable
decentralized fixed mode of Z ([4], [1]).

We now define the main problem considered in this
paper.

Decentralizsed Strong Stabilization Problem
(DSSP). Given Z above, determine a stable decen-
tralized controller Z, = diag{Z.,, 2.2}, Z; € STi*P:,
i=1,2, such that (Z, Z.) is internally stable.

In the solution of DSSP we restrict our attention to
strongly connected systems [4], i.e., to those systems
for which Z;; and Z3; are both nonzero. If Z is not
strongly connected, DSSP can be easily shown to have
a solution if and only if Z has no unstable decentral-
ized fixed modes and the subplants Z;; and Z3; are
both strongly stabilizable (see [10, Lemma 4.1]).

In order to state the main result of the paper define
the decentralized blocking zeros of Z to be the ele-
ments of the set

sz:={zec.|[§;: z,,}(’) 0or [Z“ le]()

Also let ¥ = Sz NR,.. Thus, ¥ is the set of real
unstable decentralized blocking zeros of Z. Note that

¥ = {intersection of unstable real blocking zeros of

Zq11 and Z)g}n
{union of unstable real blocking zeros of
Zu and Zn}.
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Theorem 1. Let Z satisfy
rank Z12 > 2 or rankZy > 2. 3)

Then, DSSP is solvable if and only if (i) Z is free
of unstable decentralized fized modes and (ii) Z has
an cven number of real poles counting with multiplic-
ities between each pair of real wnstable decentralized
blocking zeros of Z.

Proof. [Only If] By the problem definition, the
solvability of DSP is necessary for the solvability of
DSSP. Hence, Z is free of unstable decentralized fixed
modes. The set of unstable zeros of det(Q) is precisely
the set of unstable poles of Z. As a consequence of
these, it can be shown that the set of unstable zeros
of det(Q) and ¥ are disjoint. Also, if z € ¥ is such
that [Z{; Z3,)'(z) =0, then

rank | —P» 0 |(2)=gq. (4)
- 0

If z € ¥ satisfies [Z;; Z15](2) = 0, on the other hand,
it holds that

Q R R

k[ 3 0 Blw=e  ©

Let Z4; € S"* § = 1,2, be such that
(Z,diag{Z.1,2Z.2}) is internally stable. Then, from
Theorem 3.2 of [7]

ma[ 3, *]'[%)

is a bicoprime fraction over S. Moreover, (Z,Z,l) is
internally stable. For any z € R4., for which (4) or
(5) holds, it is easy to show, using the fact th:
fraction in (6) is bicoprime, that

Q RZs R
rank | —P; I 0 |[(z)=q+pa,
=P 0 0

ie., every z € ¥ is an R4, blocking zero of Z of
(6). Let '! = { 0y, 03, ..., 01}, where o; < 041,
i=12.,t-1 ﬁomTheoremS.’flof[lG] Zey
rna.lly stablhzes Z just in case Z has even num-
‘of poles between each pair of elements in the set
{o1,02,...,0¢}, or equivalently the determinant of the

matrix Q Rz
2 c2
=[5 "]
has no sign changes in the sequence ¢y, o3, ..., o;.

On the other hand, for any z € ¥, one has Z2y(z) =
0. Therefore, det(K) and det(Q) take the same sign



at the sequence o, 03, ..., 0;. Hence, for DSSP to
be solvable det(Q) should take the same sign at the
sequence 01, 03, ..., 0y. This holds if and only if Z
has even number of real poles between each pair of
elements in the set {03, 73, ..., 04}

[If] Using the assumption that Z has no unstable de-
centralized fixed modes, it is straightforward to show
that the set of unstable zeros of det(Q) and ¥ are
disjoint. Let some left and right coprime fractions of
Z32 over S be given by Z3; = D,"N:.= N.D;1. Let
§ = gclf(Q, Ry), 90 that Q = %4Q, R; = 4 R,,
for a left coprime pair of matrices (Q, R3). Also let
Q= yc"f(Q, P,) 50 that @ = QQ,, P2 = P,Q,, for
a right coprime pair of matrices (Q, P;). Then, a bi-
coprime fraction of Z3; over S is given by P,Q~1R,.
Also note that det(D;) = det(D,) = det(Q). Let

2 := {z € Ry|det(h)det(Q,)(z) # 0},
D := {z € Ry.ldet(Dr)(2) = 0},

=0 N{DU{z € Ryl [Z11 Z13)(z) =00r
(21, 251 (2) = 0}},

{z € ¥|Z33(z) = 0}, and

\iv

Note that @ is the set of extended real num-
bers excluding the input-output decoupling zeros of
(P2,Q, R3), and D is the set of unstable real poles
of Z32. Observe that z € '1 xmphes [Zu ng](z) or
(24, 25,)/(2) is zero, i.e., z € ¥, implies z € ¥. Also
for any z € ¥3, Ni(z) is nonzero. Without loss of
generality assume that det(Q) takes positive sign at
the sequence 0y, 02, ..., 0. Now, construct Z.; us-
ing known interpolation techniques and the genericity
properties of the ring S, to satisfy

(a) (I + Z222.2)"" is well-defined,

(b) det(S2)det(02, )det(D; + NiZ.3) takes nonzero val-
ues with positive sign on the elements of ¥; (see the
proof of Theorem 2.2 in [11}),

(c) The pairs (D,, Z,;) and ( Dy, Z.3) are left and right
coprime respectively ([16, Lemma 7.6.31)),

(d) The transfer matrix defined by (6) is bicoprime
({10, Theorem 4.1}).

Note that the property (b) yields that det(€;) det(S1,)
det(D; + Ni Z.3) takes positive sign at each element
of ¥. (This can be more clearly seen as follows: If
z€ ¥, it belongs to either W, or ¥,. If z € ¥, then
z € ¥ also, and det(§);)det(Q, )det(Dr + NiZ.2)(z) =
det(Q)(z) > 0. If z € ¥;, on the other hand, the con-
struction of Z,; ensures that det(S;)det(S2, )det(D; +
NiZ.3)(z) > 0.) Also the properties (a), (b), (c), (d)
sbove still continue to hold under sufficiently small

‘) ‘)
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perturbations on Z.,, with respect to the graph topol-
ogy [16]. We will mow show that by an arbitrerily
small perturbation on Z.3 the set of Ry blocbug ze-
ros of Z above can be made 1o be contained in the set
¥. Since det($;)det(, )det(Dy + NiZ.2) is equal to

det( _?p, Rﬁ,z" ]).

the italicized statement implies by [16, Theorem
5.3.1] that Z can be internally stabilised by some sta-

ble compensator Z.;. Consequently, there exist Z.;,
Z3 such that (Z,diag{Z.,, Z.3}) is internally stable.

We now prove the italicized statement above. Let
T := Zeg(I + Z22Ze3)™" and let T;'Ty = T be
a left coprime fraction of T. It holds that Z.; =
D.-(T;D, — T3N,)"'T;. Since (D,,Z,g) is left co-
prime, (T D, — T3N,)D;! is over S e, T = ToDy
forsomematnxTz over S. LetT"’ Tz Tﬂ‘l‘l,for
a right coprime pair of matrices (T3, T). 1t follows
that Zcz = Tz(Tl NxTz) 1p,. By the left coprime-
ness (T1 Nng,Tg),md by the right coprimeness of
(D1, Z.3) it easily follows that D; = (T} -~ NiT)V
for some unimodular V over S. Observe that for any
A € S"2*P, satisfying [|A|| < 1/|[VN||, V= - N.A
is unimodular. Using Lemma A.2 in [11] and the con-
nectivity assumption (3), it can be shown that there
exists an open and dense subset X' of S™2XP> guch
that for any fixed but otherwise arbitrary A € X, the
implication

(211 - Z1a(Ta + DAY Dy Z51)(2) = 0
=
[ Zu Zu ](Z):OW[Z{l ( )
7

holds. Now choose A € A with sufficiently small
norm such that when Z,; is replaced by Z 24 = (Tz+
D,A)(V 1~ N,A)™! (a), (b), (c) and (d) above still
hold. Now Z = Z;; - szzczA(I + Z32Ze28) "1 2
=24 ~ Zu(Tz + D,A)q'_ Dy Z3;. By the fact that
(d) holds, it follows that the unstable blocking seros
of Z and the set of unstable zeros of det(;)det(9,)
are disjoint. Then, the implication in (7) shows that
the R, blocking zerce of Z are contained in ¥. This

proves the italicizsed statement.O

Remark. Note that, the connectivity assumption
(3) is used only in the sufficiency part of the proof.
Thus, every plant for which DSSP is solvable satisfies
the interlacing property indicated in Theorem 1.

2/ (z)=0,¥zeRy, D



3. Distribution of the Unstable Poles
Between the Local Compensators

The result stated in Theorem 1 can be extended to
investigate the design of decentralized stabilizing con-
trollers with minimum number of unstable poles. The
following result can be proved similarly to Theorem
1 above, [12]. For an analogy with the full-feedback
case see Theorem 5.3.1 of [16].

Given a strongly connected plant Z where (3) holds
and Z is free of unstable decentralized fixed modes,
let oy, 73, ..., 0¢ denote the elements of ¥ arranged in
the ascending order. Also let 7; denote the number of
poles of Z counted with multiplicities in the interval
(¢i,0i41), i € {1,2,...,t — 1}. Assume that 1) denotes
the number of odd integers in the sequence 7y, 2, ...,
Th-1.

Theorem 2.

L If a solution diag{Z.,, 2.2} to DSP is such that
the number of unstable poles of Z.; counted with mul-
tiplicities is equal to n;, i = 1,2, then n < n; + n,.

II. Given two nonnegative integers ny, ng such that
N = ny + na, there erists a solution diag{Z.,,Z.}
to DSP such that the number of unstable poles of Z;
counted with multiplicities is equal to n;, i = 1,2.

An interesting feature of Theorem 2 is that the un-
stable poles of the overall controller can be arbitrarily
distributed between the local controllers. The reader
is referred to [2] where some related problems are in-
vestigated.

4. Conclusions

In this paper we have introduced the notion of de-
centralized blocking zeros and obtained the solution
of Decentralized Strong Stabilization Problem where
the objective is to stabilize a system using a stable
decentralized controller. It is shown that DSSP is
solvable if and only if the real unstable poles and the
real unstable decentralized blocking zeros of the plant
satisfy a parity interlacing property. The synthe-
sis of decentralized stabilizing controllers with min-
imum number of unstable poles is also investigated.
The constructive parts of the results in the paper are
stated under the mild connectivity assumption (3).

We finally note that DSSP is the core problem of De-
centralized Concurrent Stabilization Problem which
is defined as follows.

Decentralized Concurrent Stabilization Prob-
lem (DCSP). Let the two-channel plants Z and
T = diag{T), T} be given, where the sizes of T; and

Z;; are compatible, i = 1,2. Determine & deceniral-
ized controller Z, = diag{Z.1, 2.2} such that (Z,Z.)
and (T, Z.) are both internally stable.

The problem DCSP is a special decentralized simul-
taneous stabilization problem [14]. In [12], [13] it is
shown that a solution to DCSP exists if and only
if DSSP is solvable for an auxilary plant the decen-
tralized blocking zeros of which can be explicitly de-
scribed.
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