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Abstract

A query language should be a part of any database
system. While the relational model has a well defined
underlying query model, the object-oriented database
systems have been crilicized for not having such a
query model. One of the most challenging steps in the
development of a theory for object-oriented fatabases
is the definition of an object algebm. A formal object-
oriented query model is described here tn lerms of an
object algebra, at least as powerful as the relational al-
gebra, by extending the latter in a consistent manner.
Both the structure and the behavior of objects are han-
dled. An operand and the oulput from a query in the
object algebra are defined to have a pair of sets, a set of
objects and a set of message expressions where a mes-
sage expression is a valid sequence of messages. Hence
the closure property is maintained in a natural way. In
addition, it is proved that the outpul from a query has
the characteristics of a class; hence the inheritance
(sub/superclass) relationship between the operand(s)
and the outpul from a query is derived. This way,
the result of)a query can be persistently placed tn ils
proper place in the lattice.
Keywords: database system, object-oriented data-
bases, query model, object algebra, query language.

1 Introduction

Object-oriented systems evolved to satisfy the de-
mand for a more appropriate representation and mod-
eling of real worlg entities. S‘zlch a demand comes
mainly from data intensive applications including
CAD/CAM, OIS and Al. To satisfy such kinds of
applications, it was agreed that an integration of
object-oriented concepts [18] with the database tech-
nology (14] leads to more appropriate representation
methods and many object-oriented data models have
been developed [10, 12, 16, 17, 21].

Comdparinf the relational model and an object-
oriented model shows that the latter is more power-
ful at the modeling stage, but yet does not support a
standard formal query model; one of the common com-
plaints against object-oriented databases [23]. While
the non-atomic domain concept is supported by the
nested relational model [1, 25], we see inheritance,
identity and encapsulation among the features that
the relational model lacks. Identity provides for object
sharing. Inheritance provides for structure and behav-
ior sharing. Encapsulation provides for abstraction.
As a result, an object-oriented query model should
benefit from such features and hence should be at least
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as powerful as the relational query model.

It is true that object-oriented databases support
implicit queries for simple operations, however a query
language is required to be a part of any database sys-
tem. For instance, the message name() when sent to
an instance in the student class, the name of the par-
ticular student is returned. While a single message is
sufficient for such an operation in the object-oriented
context, a selection and a projection are necessary to
get the same result in the relational model. An addi-
tional join should precede when name is not a column
of the student relation. Another example can be seen
in sending the message courses() to a student and the
message grade() to the result obtained by the first
message. Although it is handled due to the implicit
join [20] present in object-oriented models, this corre-
sponds to an explicit join in the relational model. The
two messages courses() and grade() form a message
expression. In general, a message expression is defined
to be a valid sequence of messages m;...m,, with n>1.

While message expressions give superiority to
object-oriented systems over the relational model, an
object-oriented query language is still needed for more
complex situations and to support associative access.
In other words, although the modeling power of an
object-oriented database supports implicit joins [20]
by allowing instances in a class to form the domain
for an instance variable in another class, an explicit
join is necessary in introducing new relationships into
the model; otherwise the manipulation power of the
model will be restricted. Allowing an explicit join
raises the problem of maintaining the closure prop-
erty. Therefore, it is necessary to have an object al-
gebra that facilitates the introduction of new relation-
ships and maintains the closure property; otherwise
the relational model will be more powerful.

In this paper, we describe an object algebra for
object-oriented data models [3, 4, 5, 6, 7, 8]. Our ob-
ject algebra is a superset of the relational algebra, but
with different semantics and operands. The main idea
in our work is that an operator should equally handle
objects as well as their behavior. So, an operand in
our object algebra, as well as the output of any of the
operations, has a pair of sets; a set of objects and a
set of message expressions. The set of objects includes
all objects that qualify to be in a class and in all of
its direct and indirect subclasses; hence the set of ob-
Jjects is in general heterogeneous. The set of message
expressions includes message expressions applicable to
objects in the other set of the pair. By using such pairs



as operands and in the output, the closure property is
maintained in a consistent way.

The operators of our object algebra are the five ba-
sic operators of the relational algebra in addition to
nest, one level project and aggregate function appli-
cation. While the nest operation introduces a missing
relationship into the model in a natural way, the one
level project operation evaluates a subset of the mes-
sage exgressions of the operand against objects of the
operand.

Using the object algebra operators, object algebra
expressions are built and it is proved that every object
algebra expression has the characteristics of a class.
Moreover, the inheritance (sub/superclass) relation-
ship between the result of an object algebra expres-
sion and the operand&s) is considered. Therefore, the
result of any object algebra expression can be persis-
tently and properly placed in the lattice in a natural
way.

To sum up, the contributions of our work described
in this paper can be enumerated as follows. Operands
and the result of a query are defined in a way not to
violate object-oriented constructs and to maintain the
closure property. Behavior is equally handled as ob-
jects; creation of methods as well as objects in terms
of other existing ones is facilitated. The addition of
new classes is facilitated where we specify the char-
acteristics of a class derived in terms of existing ones
and handle its proper placement in the lattice. Ag-
gregation functions are supported in a consistent way
so that the result could be used as an operand. All
of these are satisfied without loss of generality and
formality in the description.

The rest of the paper is organized as follows. The
related work is discussed in section 2. In section 3, the
data model is described where the basic terminology
used in the formalization is introduced. In section 4,
the object algebra is defined by constructing object
algebra expressions. Also, characteristics of the re-
sult of an object algebra expression are proved to be
the same as the characteristics of a class and the rela-
tionship between an object algebra expression and the
operand(s) is derived. Some 1llustrative examples are
given in section 5. Section 6 is the conclusions.

2 Related Work

Several query languages such as those of Gem-
Stone [21(1, O, (13, 16]), EXODUS [12, 30], IRIS [17],
ORION [11, 20], OSAM* [2], Postgres [26], PDM [15,
22], ENCORE [27] and the formal calculi and algebra

developed by Straube and T. Ozsu [29] in addition to
others [9, 24] have been proposed.
These languages are classified as either preserv-
ing objects in the database [2, 11, 12, 21, 29] or
roviding operators for the creation of new objects
FIB, 15, 20, 22, 24, 27]. Such a distinction is due to
the disagreement on whether it is possible to have all
required relationships defined at the modeling phase.
We and others, e.g., [24, 27], argue that the definition
of new relationships and the creation of new objects,
should be supported by a query model. However, it
is necessary to resolve problems that arise due to the
creation of objects; otherwise there will be inconsisten-
cies. Among such problems is to maintain the closure
property [2f In other words, the output of a query
should be allowed as an operand in the model.
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A major drawback of languages such as those de-
scribed in [11, 21, 29] is that tiey do not maintain
the closure property. Others introduce non-object-
oriented constructs in maintaining the closure prop-
erty. Although operands in such languages have
object-oriented properties, the outputs are relations
which do not have the same structural and behavioral
properties as the original objects. Consequently, the
result of a query cannot be further processed by the
same set of language operators without violating en-
capsulation, for example. For instance in O3 [13, 16]
the value concept was introduced. O, has an object al-
gebra which handles values as well as objects and this
leads to a kind of mismatch in having some operands
violating encapsulation while others not. The query
languages of £9, 12, 26]) use nested relations as their
logical view of object-oriented databases.

The Postgres data model is an extended relational
data model which includes abstract data types, data
of type procedures and attribute and procedure inheri-
tance. Its query language POSTQUEL is an extension
of QUEL to satisfy the new constructs.

The algebra described in E}Og has an expressive
power equivalent to the EXCESS query language of
the EXTRA data model described in fl?] The al-
gebra of PDM (15, 22] is based on an extension of
the Daplex functional data model {28]. While Daplex
supports only functions whose values are stored in the
database, PDM has been extended to include func-
tions whose values are derived from other values or
computed by arbitrary procedures. PDM modifies the
relational algebra to handle functions, i.e., the opera-
tors and the result are functions. A major restriction
is that object identity is not supported and only union
compatible items are allowed as operands to set-based
operators. In the algebra of ENCORE [27], the out-
put of a query is of the Tuple type which is essentially
the nested relational representation, since it allows the
nesting of tuples.

Straube and Ozsu developed a set-based object-
oriented query algebra and a corresponding calculus,
but their algebra does not satisfy the closure property.
Also, they studied the problem of type unions in some
detail. However, although it has a formal basis, their
algebra is less expressive compared to others described
in the literature. Osborn’s object algebra [24] was de-
veloped for a general object-oriented data model de-
fined on three generic classes of atomic, aggregate and
set objects. She extends relational algeira. A ma-
jor drawback of Osborn’s algebra is that it does not
support encapsulation and the closure property is not
welf)maint.ained; set operations do not accept atom
and aggregate objects produced by other operations.

Although, in the query model of ORION [20] the
result of a query operation is a class, but the improper
placement of resulting classes in the lattice leads to du-
plication of class contents; hence ORION violates the
reusability feature of object-oriented systems. How-
ever, we argue that it is an overhead to have a class
as the output of a temporary query, as ORION does.
In this paper we describe the output of a query by
the minimum requirements of an operand and from
such characteristics we can derive the characteristics
of a class when it is required to have the result per-
sistent [3, 4]. In OSAM* operands in a query are the
database itself and all subdatabases derived from the



original database by query operations; the result of a
query is a subdatabase.

3 The Data Model
The object algebra described in this paper is based on
a data model that includes classes, objects and meth-
ods. A class definition includes a set of instance vari-
ables that reflects properties of objects in the class,
a set of methods &perations) applicable to objects
in the class, to support encapsulation and information
hiding, and a set of superclasses to provide reusability.
Related to a class ¢ we use the following notations:-
o instances(c) is the set of objects in class ¢ but not
in any of its subclasses.

L4 T;nstancea(c)=in5tances(c)U,?:id(S)nnstanus(si)
where S = {51,552, ..., Scard(s)} 1s the set of di-
rect subclasses of class c.

® Lyariabies(c) is the set of all instance variables de-
ned in or inherited by class ¢. For any instance
variable v, domain(iv) and value(iv) denote the
domain and the value of instance variable iv. A
domain is either atomic such as the set of inte-
ers, the set of characters, etc, or Tinstances(€i)
or any class ¢;. A value i1s drawn from the un-
derlying domain; either an element or a subset *
of the underlying domain.

e messages(c) is the set of messages used to invoke
any of the methods defined in or inherited by class
c.
Elements of messages(s) are used only to invoke meth-
ods in class ¢. When the result is an object o;, mes-
sages in the class of object o; are used to invoke meth-
ods applicable to it. So combining from class ¢ a
message which returns an object o; as a result with
any of the messages in the class of object o; will forin
pairs applicable to objects in class ¢ to access possible
values In related objects from the class of object o;.
Also when any of such pairs returns an object as a
result, messages in the class of the latter object could
be combined with that pair forming triples applicable
to objects in class ¢. By the same way, quadruples,
quintuples and so on, could be formed. For instance,
let 0; be an object in the student class; a method
in the student class could be courses() to invoke the
method implemented to return the set of courses reg-
istered by a given student and so 0; courses() returns
objects from the course class. Any of the messages
in the course class, e.g. code(), could be applied to a
returned object. At this point one could say that the
combination courses() codeg) could be applied to an
object in the student class. It is recognized that both
courses() and courses() code() are elements of the
superset of messages(student) which does not include
the element courses() code(). We call such a superset
the set of message expressions of class student and ev-
ery element of tiis set is called a message ezpression.
M.(c) is the set of message expressions of class ¢. Ev-
ery element of M.(c) returns either a stored value or
a derived value. As formally stated in the followin,
definition, elements of M.(c) are recursively define
in terms of messages, starting with messages(c).

*since ¢ is subset of any set, nil is a value representing the
empty set
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Definition 3.1 (Message expressions)
Given a class c, the set M.(c) is defined by:
- messages(c)CM.(c)

- if z€M.(c) and z returns a value from
Tinstances(cl) then (:L‘ messages(cl))t g Me(c)
Therefore, starting from messages(c) we can deter-

mine elements of M.(c).

We use len(z) to denote the length of message expres-
sion z, i.e., the number of messages constituting x.

After introducing message expressions, it is neces-
sary to decide on the relationship between the sets of
message expressions and the sets of messages of two
classes.

Lemma 3.1 Given two classes ¢; and co )
M.(c1)CM,(c2) <> messages(ci )Cmessages(cz),i.e.,
VzeM.{(c1) such that len(z)=1 we have zEM,(c2). D

Lemma 3.1 will be utilized while constructing object
algebra expressions in definition 4.2 and while deciding
on the inheritance relationship between classes that
correspond to object algebra expressions in section 4.
A message expression when received by an object, re-
turns a value from a particular domain. This particu-
lar domain is the range of the last message in the mes-
sage expression. A returned value is either a stored or
a gerived value, a property that gives a full computa-
tional power to the user without having an embedded
query language leading to impedance mismatch.

Related with the subclass/superclass relationship
between classes, we define a partial ordering (<.)
among classes.

Definition 3.2 [Partial ordering (K,) among classeq
Given two classes ¢y and cg, we say that ¢; <.c2 iff:

o lyariables (Cz) - Lyariables (61)

i.e., Yive€lyariabies (62) Jivi Elyariabies (cl) such
that, ivy=ivy A (domain(ivy )< domain(ivy)
V domain(ivy )=domain(iv, ))

o methods(cy) C methods(cy) w]
An object has an identity, a value and belongs to a cer-
tain class. Related to an object o we use value(o) to
denote the value (The value of an object is a set of val-
ues of the instance variables defined in its class; sim-
ple values or identities of nested objects). Similarly,

tdentity(o) denotes the identity of object 0. Based on
the notion of value and identily we define equality of
objects:

Definition 3.3 (Equality of objects)
Two objects 0, and oy are:
- identical (01 = 03) iff identity(o; )=identity(os)
- shallow-equal (0;=03) iff value(o, )=value(oz)
- deep-equal (01=0,) iff by recursively replacing
every object o; in value(oy) or value(oz)

by value(o; ), equal values are obtained. n]

tz is concatenated with every element of the set of mes-
sages of class ¢;. For example, (z {m1,m2})={z11,221} where
zy1=(z m,) and z21=(x m2)



A method implements a certain function and has a
number of arguments, n>0. Every method is invoked
via a corresponding message. We address properties
of an object by using messages. Therefore, meth-
ods are used either to deal with properties of objects,
stored values, or to derive some values in terms of
properties of objects. For instance, the method in-
voked by the message name() implements the function

fi : Tinstances(person) — string.
Function f; does not expect any argument because
corresponding domains are not specified. The mes-
sage increase-salary(i) invokes the method implement-
ing the function

f2:Tinstances(staf f) xinteger——integer,
where given 0€Tinstances(staff),

fa(o0,%) = (osalary()) + i
The domain of the receiver of f; is Tinstances(staff)
and f; expects a single argument from the domain
that is the set of integers. Also, the result of f; is
from the set of integers, i.e., range of f; is the set of
Integers.

4 The Object Algebra

In this section, the object algebra is described. An
operand e in the object algebra should have a pair
of sets, a set of objects and a set of message expres-
sions, denoted by <Tinstances(€), Me(€)>; elements of
Tinstances(€) can be accessed using elements of M,(e).

Ince a class has a defined set of objects and a derived
set of message expressions, a class can be an operand.
The output of an operation as well should have a pair
of sets derived in terms of the pair(s) of operand(s).
Thus, an operand in a query could be replaced by an-
other query whose output is the actual operand. Any
operand, whether an actual pair or an unevaluated
query is called an object algebra expression.

Concerning the operators, the object algebra in-
cludes the five basic operators of the relational alge-
bra in addition to nest, one level project and aggre-
gate function applications. The selection operation
presents a restriction on objects of the operand. In
the object algebra, the selection has a single operand
and produces an output consisting of a pair, where the
included objects are those satisfying a stated predicate
expression, defined next. The set of message expres-
sions of the resulting pair is the same as that of the
operand.

Definition 4.1 (Predicate expressions)
The following are predicale erpressions:

P1: T and F are predicate ezxpressions representing
true and false.
P2: Given two values y; and y; with the same un-

1
derlying domain suc% that at leasty; oryy is of the
form (ox), whereois an object variable bound to
objects of an operand in a query and T is a mes-
sage ezpression applicable to objects substituting
o

P2.1: yiopys is a predicate expression where,
{=,#,<, if both y, and y, are single
>,>,<} wvalues from an atomic domain
{e. ¢} if y1 is a single value and

y2 1s a set of values
op € {{C,Z, ifboth y1 and yo are sets of
=,#} values, y2 may be T,-,.mmce_,(e)
where e is a query ezpression
{=,=,=}if both y1 and y, are sets of
from a non-atomic domain, i.e.,
\ Tinstances(c) for some class c.
P2.2: V/3z€y; A z op y,  is a predicate expression

P2.3:
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where, y; is a set of values and

{=,#,<, if y2 is a single value from an
>,>,<} atomic domain

op € {€, ¢} if y2 is a set of values, may be

{=,=,=} if y2 is a single value from
a non-atomic domain

32Cyy Az op 2 ts a predicale ezpression
where, y; is a set of values and

{S.€,=,#} ifys is a set of values,
Yo may be T;'n.stances(e)

op € where e is a query expression
{.9} if y2 s a single value
P3: if p and q are predicale ezpressions then (p),

=p, pAg and pVq are predicale expressions.D

Let s; and s2 be object variables ranging over
instances of the student class: .55598” €
s1 courses() code() is an example on P2.1 to check
students attending CS590”; 3c€sy courses() A
cEs; courses()A sy #s3 is an example on P2.2 to check
whether two given students have at least one course in
common; Vc€s, courses() A cgsq courses() is an ex-
ample on P2.2 to check whether two given students
do not have any course in common; 3cCs; courses() A
¢Css courses((} is an example on P2.3 to check whether
two given students have some courses in common.
Although the set of objects of an operand is in gen-
eral heterogeneous, the only values accessible in each
object are those specified [‘;y the set of message ex-
pressions of the pair. So, dropping some message ex-
pressions by the project operation hides some values
from the accessible objects. The inverse of the project
operation is to extend the set of message expressions
in a pair to include more message expressions appli-
cable to objects of the pair, i.e., give more facilities to
the user; this operation is defined in terms of others
as shown later in this section. On the other hand, the
one level project operation evaluates a provided set
of message expressions and forms objects out of the
obtained values; a corresponding set of message ex-
pressions is also determined to facilitate accessing the
values encapsulated within the derived objects.

instances(€); € is a query ezpression



Despite the fact that many relationships between
objects are represented by the objects themselves, an
explicit operation is required to handle cases when a
relationship is not defined in the model. Both the
cross-product and the nest operations are defined to
introduce such relationships. While the cross-product
operation is defined to be associative, the nest opera-
tion is not. However, the two operations are equivalent
under certain conditions {5}; in [5] we also present the
equivalence of some object algebra expressions. As-
sociativity of the cross-product operation is useful in

uery optimization [3, 5], although not discussed in
this paper. The cross-product operation creates new
objects, out of objects in the operands, and a set of
message expressions to handle the new objects is de-
rived. Also, the nest operation introduces missing
relationships. While the nest operation extends the
value of each object in the first operand to include a
reference to object(s) in the second operand, the result
of the cross-product operation depends on domains of
the messages of the operands as explicitly stated in
definition 4.2 given next in this section.

As mentioned before, the object algebra described
in this paper handles and produces pairs of sets, a set
of objects and a set of message expressions to handle
objects in the first set. So as we deal with sets, two
basic set operations, union and difference, are sup-
ported by the object algebra; intersection is defined
in terms of the difference operations. The union op-
eration returns a pair where the set of objects is in
general heterogeneous and the set of message expres-
sions is calculated as the intersection of the sets of
message expressions of the operands. The heteroge-
neous set of objects is the union of the sets of objects
of the operands. The difference operation is handled
in one of two ways depending on the relationship be-
tween the sets of message expressions of the operands.
If the set of message expressions of the first operand is
subset from that of the second operand, the difference
operation returns objects from the first operand which
are not in the second operand. Otherwise, it is han-
dled as a projection of objects in the first operand on
values that have no corresponding message expression
in the second operand.

After this informal description of the object alge-
bra, we move into the formal definition. Since a class
is defined to have a set of objects and a set of mes-
sage expressions can be derived for a class by defini-
tion 3.1, a class is an object algebra expression. Next
we formally define object algebra expressions. When
speaking about len(zi in any of the constraints (if-
statements) given next in this section, we will con-
sider only message expressions  such that z returns a
stored value with the underlying domain being atomic.

Definition 4.2 (Object Algebra Expressions)

Let E be the set of object algebra expressions.

Betng an object algebra ezpression, every element of

the set E must have a pair of sels -a set of objects and

a set of message expressions. Thus, formally speaking,
VecE, M, (ej is defined and Tinsiances(e) is defined.

Given e1€E and es€E; let M, (ey )=X,, M,(e3)=X>,

Tinatancco(el)-’le and Tinstances (32):T'2

Elements of E are enumerated as follows:

e Given a class ¢;, by definition M,(c;) and
Tinstances(ci) are both defined, then c;€E
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o Selection:
e1[pJEE with

M. (e1[p])=M.(e1)=X1
Ta‘nnance-(el[PI):{o IOETI A P(") t}

o Projection: Given XCX,, e1[XJEE with
M. (e1[X])=X
Tinstance:(el[X]):Tinntancc:(el)

o Cross-Producl: (e1xe;)EE with,

Given a predicale ezpression p,

((my X1)U(mz X2) if Iz;€X1,len(z; )=1.
3z;€ X3, len(z;)=1

X]U("lz Xz) isz;GX1,Ien(zi)>1'
3z;€X3,len(z;)=1

M(e1xe2)= 4 .

(m1 X, )UX2 1f aziexl;len(z‘):‘l’
Vz;€Xa,len(z; )>1

X UX if Vz;€Xy,len(zi)> 1.
Vz;€Xa,len(z; )>1

where m; and mqo are lwo messages with Ty and
Ty being the domains of the results of my and m,,
respectively.

{0|301€ T102€ T3 A value(o)=
identity(o ).identity(oz)}

if 3z;€ X, len(x;)=1 A
3z;€Xy,len(z;)=1

{o|301€T1302€ T A value(o)=
value(o,).identity(oz)}
if Vz,€X1,len(z; )>1 A
3z;€Xy,len(z; )=1
Tinstancea(elxe2) =
{0|301€ T1302€ T A value(o)=
identity(o,).value(oz)}
if 3z;€ X, len(z; )=1 A
Vz;€Xg,len(x;)>1

{0|301€ T102€ T, A value(o) =
value(o1 ).value(o2)
ifVz;€Xy,len(z; )>1 A
Vz;€Xy,len(z;)>1

where . is being used to indicate a concatenation
of the two arguments; il is commutative because
the resulting value is actually a set of values con-
siructed out of the values constituting the two ar-
guments.
o Union: (e;Uez )EE with
Me(61U62)=XlﬂX2
Timtances(eluez)=TlUT2
o Difference: (e;—e3 )EE with

_JXx if X1C X2 (by lemma 3.1)
Mc(e1—ez) = {X: — X, otherwise

T -T, if X1CX
Tinstances(€1 "'82):{ T: 2 if X1CXo

otherwise

!Given an object o, we use p(o) to denote the evaluation of

predicate expression p by o substituting an object variable in p.



o Nest: (ey;>>e3 )EE with

M. (e1>>e)=X1U(my X3), where Ty is the

domain of the result of message ms.

Tinstances(e1>>e2)={0|301€Ty A value(o)=

value(oy ).v, where v=_0 my) A v€T,}
o One level project:Given XC X1, e1![XJEE with

M. (e ![X])= {z|3z1€X, z1=(z2 m)Alen(z,)=
len(z2)+1INJz3€X1Az3=(22 = )JAT=(m z4)}

Tinstances(€1[X])={o|301€Ti Avalue(o) = (o, )2§}

The depth of nesting decreases as the length of

the longest message ezpression in X increases. In

other words, the depth of nesting is inversely pro-
portional to the length of message expressions in
e Aggregation: Given and
e1<X,fix;>€E with
M. (e1< X, fiz;>)=(m1 X, )U{m3}, where T\ is
the domain of the resull of message m;, and the
domain of the resull of the function f is the do-
main of the result of message mg.
Tinstance:(el <X,f,:c,->):{a|(o ml)ng /\(0 m3):
fi 1(01 z;)[oleTlAV02€_(o ml), (02 X):(Ol X)})}
e aggregation function is applied on e; by eval-
uating the function f on the result of the message
ezpression z; for all objects that return the same
values for elements of the set of message expres-
stons X.
e Unnest: defined in terms of projeclion as,
(e1<<e2):el[X1—X | X:(Tng Xg) A
Yoi1€Ty, (01 my)eT2]
We project on all message ezpressions of e; except
those leading to es.

o Intersection: defined in terms of the difference
operation as, (e1Nez)=e;—(e;—e3)

o Inverse project: to add a subsel X of Mc(ez) to
M. (e1), first ey and e, are nested then a one level
projection is done to have all M.(e2) and M.(e,)
logether forming one sel; after thal projection of
the resull on M.(e1) | X is done to gel the target
set of message expressions in the resulling pair.
e1/X[=€1>>e2)!Imessages(e; ) J(mo messages(eq )]

[Me(e1) U X]
where X C M. (eq) is the sel of message expres-
sions to be added to Mc(e1), and ma is a message
tn the result of e >> ey wilth ils domain being
Tinstances(GZ)-

e Join: defined in terms of cross-product or nest

combined with seleclion,

ey <p>ey=¢e X 82[}7]:61 >>62[p]. o]
Using operations of the query language, objects may
be constructed out of existing ones and new relation-
ships may be introduced into the model. A new rela-
tionship is an extension to either the state of objects or
their behavior. In other words, a new relations{ﬁp has
either a stored or a derived value. A stored value is due
to the Nest operation which takes two operands and
extends each object in the first to include a value refer-
encing object(s) in the second operand, while a derived
value is due to the inverse of the Project operation
which extends the behavior of objects in the operand

XCX, ;€X),

§(0y X) returns the set of the results of the application of
message expressions in X to object o;.
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without their states being affected. On the other hand,
the One-Level-Project operation constructs new ob-
jects out of existing objects by collecting values found
at different levels of nestings. Also the fourth case in
the definition of the Cross-Product operation results
in new objects, while other cases introduce new rela-
tionships.

After the formal definition of object algebra expres-
sions, we claim that every object algebra expression
has the characteristics of a class and this follows from
the lemmas given next in this section. However, before
going into the details of the lemmas, it is important
to remind the reader that, as stated in section 3, by
definition a class has a set of superclasses, a set of
instance variables, a set of methods and a set of ob-
jects. According to definition 4.2, an object algebra
expression has a set of objects and a set of message
expressions. In addition, given a class ¢, methods(c)
and I,,a,;aue,(c{ are defined to include methods and
instance variables of superclasses of class ¢. There-
fore, finding methods and instance variables of a class
implicitly leads to the set of its superclasses. Further-
more, for every method there exists a corresponding
message; so, finding a set of messages for an object
algebra expression 1s equivalent to finding of a set of
methods. As a result, for any object algebra expres-
sion to have the characteristics of a class, it is enough
to find for that object algebra expression a set of in-
stance variables and a set of messages; a set of objects
is already defined.

Let e; and e; be two object algebra expressions
such that M.(e;) = X; and M.(e3) = Xa. Accord-
ing to definition 4.2, a class is an object algebra ex-
pression. In other words, some object algebra expres-
sions are classes. Thus, assume that %,,.,,g.,bz,,(el),
Iyariables(€2), messages(e;) and messages(ez) are all
defined. Based on tﬁis assumption, we have the fol-
lowing lemmas, 4.1 to 4.8, leading to the sets of mes-
sages and instance variables of other object algebra
expressions and this leads to the fact that every ob-
ject algebra expression corresponds to a class.

Lemma 4.1 Messages and Instance variables

of ei[p]: where p is a predicate ezpression

M.(ei[p])=X1 => . messages(e;[p])=messages(e1)
Ivariablea(el[p])=Ivariab1es(el) (m)

Before going into the lemma 4.2 on the Project op-
eration, the following algorithm returns the instance
variables of e;[X] where XCX;.

Algorithm 4.1 Instance variables of e1[X]:
0. for every m; € messages(e;)

1. Let X; C Mg" such that (m; X;) C X
2. if X; £ ¢ then
3. if J1v;ELyariabies(€1) such that
Xi = M(OAE(domain(iv;)))! then
4. w; € Iuariables(el[x])

TSet of all message expressions, i.e., for any class c,

Me(c)CME

Il Evaluating an object algebra expression e leads to the pair
<Tinstances(€), Me(€)>. OAE(Tinstances(e)) denotes the ob-
ject algebra expression e.



5. elseif 3iv; € Lyariabies{€1) such that
XiCM (OAE(domain(ivy))) then

6- ivieluariable:(el [X]) and
domain(iv;) in e [X] 1s:

7. domain(iv;) :=< domain(iv;),
M (OAE(domain(iv;))) >[X;]

8. endif

9. elseif 3iv;€Lyariabies(€1) such that

value(iv;) = (o m;) then

10. 1; € Lyariabies(e1[X])
11. endif
12. endfor o

Lemma 4.2 Messages and Instance variables

of e1[X]: Given X C X,

. messages(e; [X])={m | mEmessages(e;) A Jz€X
with z=m z;}

. Tyariastes(€1[X]) is derived in algorithm 4.1. m]

Lemma 4.3 Messages and Instance variables
of e xes:
1: if Jz1€ Xy len(z) )= INFz9€ Xy, len(zy)=1 then
Me(el X 62):(m1 X})U(T’Ilg Xg) e
. messages(e; x ez )={mi, ma}
. Iuariables(el X 62):{i01,ivg},
where domain(ivy )=2Tinstances(e1) gpd
domain(ivg )=2Tinstences (e2)
2: ifVe1€Xy,len(z1)> IN3z2€ Xo,len(xs)=1 then
Me(61 X 62)=X1 U(TIlz Xz) -
. messages(ey x ez )=messages(e; ) J{m2}
. Ivariablea(el X 52)=1variab1ea(el)U{iEZ}:
where domain(ivy J=2Tinsrences(e2),
3: if Jx1€X,,len(x1 )=INVz2€ X2, len(xq)> 1 then
Me(EI X eg):(ml XI)UXQ -
. messages(ey X €3 )={my }| Jmessages(e;)
. Iuariable:(el X 32):{“’1} U Iuarmbles("?)y
where domain(ivy )=2Tinstancesler),
4: ifVe€Xy,len(xy )> INVz2€ Xy, len(xg)> 1 then
Me(el X 62):X1 UXZ —
. messages(e, X ez )=messages(e; | Jmessages(es)
. Ivariables(el XeZ):IuariabIes(f’l)Uluariables(C'Z)D

Lemma 4.4 Messages and Instance variables

of e1lJes:

Me(elL_Jez):XlﬂXg —

. messages(ey | ez )=messages(e; ) \messages(e,)

- Iuariablcs(el U 62) = variable:(el ) n Iuariable:(eZ) a

Lemma 4.5 Messages and Instance variables
of ej—ey:
I: - if Xy C X3 then
Me(el—ez)z)(] =
. messages(e;—ey )=messages(e; )
. Ivariablea(el—eZ) = ]uariablea(el)
2: - if Xi € X2 then
Me(el—ez)'—‘Xl—Xz =4
. messages(e;—ez )=messages(e; )—messages(es )
. Iuariablca(el_62)=Iuarinblea(el)_Iuariable(EZ)D
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Lemma 4.6 Messages and Instance variables
Of e1>>eq!
1”;(9]>>€2):X}U(7H2 Xg) =
. messages(ey >>ez )=messages(er | J{m2}
. Iuariablea(el>>52)=Ivan'ables(el) {ivl};
where domain (ivy J=2Tinetences(e2), a

Lemma 4.7 Messages and Instance variables

of e![X]: given X C X,

M.(e;'[X]) given in definition 4.2 —>

.messages(e1 /[X])={m|3zeM.(e;![X]) with z=m z;}

NJyariasies(€11[X]) ={iv|domaz'n(iv):24" AVoET nstances(€
JIm;Emessages(ey![X]) with (o m;)ed;} O

Lemma 4.8 Messages and Instance variables
of e1<X,f,zi>: gwen XCX; and z;€X1,
M.(e1< X, f,z; >) given in definition 4.2 =
. messages(e; < X, f,z; >) = {mq1, ms}
. Ivariab!es(el < X) fa Z; >):{ivl,iv2}
where domain(ivy )=Tinstances(€1) and
domain(ivy )= the domain of the result of f O

The proofs of lemmas 4.1 to 4.8 are omitted. Infor-
mally, since every object algebra expression has a set
of message expressions, then by considering message
expressions of length one, the set of messages is de-
rived. Furthermore, by definition every instance vari-
able has a corresponding message and this leads to the
derivation of the set of instance variables of an object
algebra expression depending on its set of messages,
i.e., collect from the set of instance variables of the
operand those instance variables having a correspond-
ing message in the determined set of messages.

Combining definition 4.2 and lemmas 4.1 to 4.8, ev-
ery object algebra expression has a set of objects, a set
of messages and a set of instances variables; the set of
superclasses of the corresponding class is determined
by lemmas 4.9 to 4.16 given next this section. The set
of messages leads to the set of methods because every
message has a corresponding method. Therefore, an
object algebra expression has the charactersitics of a
class leading to the following corollary.

Corollary 4.1 Ve€E, e corresponds to a classc. O

After having every object algebra expression to be a
class, it is necessary to decide on the inheritance re-
lationship between an object algebra expression and
other existing classes.

Given two object algebra expressions e; and eg;
let M.(e;)=X; and M.(e2)=X>. Lemmas 4.9 to 4.16
give the inheritance relationship between object alge-
bra expressions.

Lemma 4.9 Inheritance relationship of ey [p] with ey,
where p is a predicale ezpression,
eilp] <e €1 0

Lemma 4.10 Inheritance relationship of e;[X]
with e, where X C X,
€1 SE 61[X]. @]

Lemma 4.11 Inheritance relationship of e; X ez
with ey and e;:



1: if 3z1€X,,len(x, )=1 A z2€X>,len(z;)=1 then
(e1 x e2) £e €1 and (e; x e3) £e €2

2: ifVz€Xy,len(z)>1 A Jz2€ Xy, len(z2)=1 then
(e1 x e2) <e e

3: if 3x1€Xy,len(zy)=1 A Vz2€ X3, len(zy)> 1 then
(31 X 52) <ee2

4: if Vo €Xy,len(z)>1 A Veo€Xa,len(zo)> 1 then
(e1 x eg) <ce1 and (e1 X e2) <. ep O

Lemma 4.12 Inheritance relationship of e; (Je2
with e; and ey:
e1 <e (eilJez) and ez <, (e1Jez).

8]

Lemma 4.13 Inheritance relationship of e;—ey
with e; and ey:
1: - if X1 C Xy then
(e1—e2) <e &
2: < if Xy € Xo then
e1 <. (e1—e3)

Lemma 4.14 Inheritance relationship of
(e1>>82) with ey,
(e1>>e2) <e e

Lemma 4.15 Inheritance relationship of e[ X]

with ey, where XCX,
e [X] {, e; and e; L. e1![X]).

Lemma 4.16 Inheritance relationship of
e1<X, f,z;> with ey, where X C X, and z;€ X,
<X, f,ei>%. €1 and ey e e1<X, f,z;> O

When no superclass is determined, the root OBJECT
class is assumed. Although omitted, the proofs of lem-
mas 4.9 to 4.16 follow from definitions 4.2 and lem-
mas 4.1 to 4.8.

5 Illustrative Examples
In this section, several examples are included to il-
lustrate the distinguishing aspects of the query model
presented in section 4. The examples given next in
this section will assume the following classes:
person<@, name : string, age : integer,
sex : character, children : {person} >
student<{person}, year :integer, courses: {course},
studeni-in:depariment >
sta f f<{person},salary:integer,works-in:department>
research-assistant <{student,staff}>
course<{, code : string, name : string,
credit : integer, prerequisites : {course}>
department<0, name : string, head : staf f>

Example 5.1 Find students attending the course
"CS565"

Si=student%s ['CS565" € s courses() code()]
where % indicates that the variable s is bound to and
ranges over the objects of the operand, here the stu-
dent class. In the predicaie ezxpression, "CS565" €
s courses() code(), the right hand side s of the form
(o z); hence satisfies definition 4.1. The use of =,
gal{s for an evaluation of this query on a temporary

asis.
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We differentiate between temporary and persistent
evaluations of a query, where an assignment free query
is always evaluated on a temporary basis while we use
= and := to differentiate between temporary and per-
sistent based evaluations, respectively. While a tem-
porary based evaluation of a query ends by finding the
pair of sets in the result, a persistent based evaluation
continues with the finding of class characteristics of
the determined pair by using lemmas 4.1 to 4.186.

Example 5.2 Find the spouse of ' Smith”.
person op[3p1€ Tinstunct:(;’erson) A P "ame() =
"Smith" Ap sex()="F" Ap1 chidlren()=p children()]

Example 5.3 Assume that the student class were not
present in the lattice and the research-assistant class
1s defined as:
research-assistant{sta f f},year:integer,courses:course>
To derive the student class as a persistent class
and assuming that a student attends the depart-
ment he works for, the research-assistant class is pro-
Jected on {name(', age(), sex(), children(), year(),
courses(), works-in()—student-in()}, where works-
in()—student-in() indicates message renaming. In
the projection set, the subset {name(), age(), sez(),
children()}, could be replaced by messages(person)
because the latter is the implicit representation of the
former. Thus, the query is:
student:=research-assistani[messages(person)| J
year(),courses(),works-in()—student-in
According{ to IeQLma 4.10{)the derive(d) student class()tgtj
be a direct superclass of the research-assistant class.
However, we have derived algorithms which aim at
mazimizing reusability (3] and accordingly, the derived
student class is recognized as a subclass of the person
class and naturally placed in the lattice.

Example 5.4 Find the names and courses of stu-
dents attending at least one course

student%fl/s courses( )t ¢]![{name(),courses() code()}
First students atlending some courses are selected,
then the one level project is performed to get the result.
Notice the use of the message exzpression, courses()
code(), which is a concatenation of two messages, one
from each of student and course classes, respectively.

Example 5.5 Find couples having at least one child.
person%py >> person%opz [p1 sex()="M" Ap, sex()=
"F'"Ap; children()# ¢Apy children()=p, children()]

Example 5.6 Find students attending the depart-

ment in which " Adams’ is working.

student%s; >> staf f%os2 {5y student-in()=s, works-in()
Asz name() =" Adams”)

Example 5.7 Find students who are not research as-
sistants
student — research-assistant

Since M. (student)— M. (research-assistant)=¢, because
M. (student)C M. (research-assistant), in the oulput
pair M.(student) is returned according to defini-
lion 4.2. Also, remembering that T;nstances(research-
assistant) C Tinstances(student), the same query can
be coded using the select operation as follows:

student%s [s & Tinstances(research-assistant)]



Example 5.8 Let net-salary(t) be a method defined
in the staff class to return the net salary of a staff
member after deducting taxes at the rate oft. Assume
t=0.1 for research-assistants and t=0.15 for other staff
members. It is required to find the names and net
salaries of staff members:
(staff—researchassistant)!fname(),net-salary(0.15)}]

research-assistant![{name(),net-salary(0.1)}]
First the difference operation is used to find staff mem-
bers who are not research assistants; then the one level
project operalion is applied on the result with 1=0.15
and on research-assistants with t=0.1; the union of
both results is considered to be the output from this
query.

Example 5.9 Find students attending the same
courses
(student%s xstudent%sz) [s) courses() = sy courses()

Asy name() < sz name())

Remember from definition 4.2 that, when combined
with a selection operation, both of the cross-product
and the nest operations result in a join operation.
While the join due to a nest is an outer-join, the join
due to a cross-product is an inner-join. Notice that
the result of the query of ezample 5.9 will be a direct
subclass of the root because the student class has some
instance variables with atomic domains. However, us-
ing nest instead of cross-product forces the result to be
a subclass of the student class. The difference is due to
the fact that while the nest operation will append to
every student a set of identities of related students, the
cross-product operation on the other hand forms, ac-
cording to the definition of cross-product operation in
definition 4.2, new values each consisting of the iden-
tity of a student together with the set of identities of
related students.

Example 5.10 Find staff members earning more
than the average salary in their department
staff%sy > staf f <{works-in(}},average, salary() >
%s2[s1 salary() > s2 avsalary()] [{name()}]

where avsalary() is a message to return the calculated
average salary in the result of the aggregate function
application; tt is @ concatenation of the first two letters
of the applied function, average, with the last message
tn the used message expression, here salary(). We nest
staff with the result of the application of the aggregate
function average on staff members grouped by works-
wn(). Then those staff members satisfying the given
predicale expression are selecied and finally projection
on name() 1s performed.

6 Conclusions

In this paper, we formally described a query model for
object-oriented database systems. Qur query model is
not restricted to handle existing objects only, how-
ever, the introduction of new relationships as well as
new objects is also facilitated. A new relationship
could have a stored value by extending objects in the
operand to include new values for the new instance
variables. It is also possible for a new relationship to
have a derived value in terms of existing values by ex-
tending the behavior of the operand to facilitate the
derivation of the required relationship. Operands and
the output of a query are defined to have a pair of sets,

a set of objects and a set of message expressions. Thus
having the characteristics of an operand, the output
from a query could itself be an operand and hence the
closure property is naturally maintained.

A message expression results in the evaluation of
the underlying methods and in the same sequence as
if they all together form a single method invoked by
that message expression. Furthermore, message ex-
pressions are used in the invocation of behavior as well
as behavior constructors. Also, message expressions
facilitate accessing of stored and derived values leading
to computational completeness without having an em-
bedded query language leading to in impedance mis-
match. Consequently, methods could be coded solely
by utilizing the object algebra and hence simplify the
optimization process. On the other hand, proposals
that do not overcome the impedance mismatch prob-
lern are still suffering from not supporting full opti-
mization for being unable to resolve methods.

The operators of our object algebra subsumes those
of the relational and nested algebras and hence it is
more powerful than either one. The equal handling
of objects as well as the behavior defined on them is
an important requirement of an object al(febra; thus
we satisfied it in the presented query model. This is
due to the presence of data and behavior in an object-
oriented data model in contrast to having only data
in the relational data model. Behavior is handled via
message expressions. We support aggregate functions
whose outputs are also pairs of sets like any operand.

We started by defining a set of objects and a set of
message expressions for a class. Having such a pair,
a class is shown to be an operand. By this, some
operands were defined to be existing classes. Other
operands are defined to be the outputs of queries. As
the only known characteristics of the output from a
query are a pair of sets -a set of objects and a set of
message expressions, we have proven that from such a
pair other class characteristics could be derived. Hav-
ing the characteristics of a class, the output from a
query is in fact a class. Thus, we decided on the proper
placement of such a class in the lattice.

Concerning the current status of our research, we
are working on the completeness of the described ob-
ject algebra by studying its different aspects. Also,
the handling of recursive queries is under considera-
tion to determine whether any further extensions to
the algebra improves its power.
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