
A Query Model for Object-Oriented Databases

Reda ALHAJJ

Department of Computer Engineering
and Information Sciences

Bilkent University
Bilkent 06533, Ankara, TURKEY

Abstract
A query language should be a part of any database

system. While the relational model has a well defined
underlying query model, the object-oriented database
systems have been criticized for not having such a
que model. One of the most challenging ste s in the
devyopment of a theory f o r object-oriented fat abases
is the definition of an object a1 ebra. A formal object-
oriented query model is descrited here in terms of an
object algebra, at least as powerful as the relational al-
gebra, by extending the latter in a consistent manner.
Both the structure and the behavior of objects are han-
dled. A n operand and the output f rom a query in Me
object algebra are defined to have a pair of sets, a set of
objects and a set of message expressions where a mes-
sage expression is a valid sequence of messages. Hence
the closure property is maintained in a natural way. In
addition, i t is proved that the output froin a query has
the characteristics of a class; hence the inheritance
(su b/supe rclass) relal ions hip bet w een the ope rand (s)
and the output f r o m a query is derived. This way,
the result of a query can be persistently placed in i ts
proper place in the lattice.
Keywords: database system, object-oriented data-
bases, query model, object algebra, query language.

1 Introduction
Object-oriented systems evolved to satisfy the de-
mand for a more a propriate re resentation and mod-
eling of real worli entities. {uch a demand comes
main1 from data intensive applications including
CADYCAM, 01s and AI. To satisfy such kinds of
applications, it was agreed that an inte ration of
object-oriented concepts [18] with the datatase tech-
nology [14] leads to more appropriate representation
methods and many object-oriented data models have
been developed [lo, 12, 16, 17, 211.

the relational model and an object-
oriented mole1 shows that the latter is more power-
ful at the modeling stage, but yet does not support a
standard formal query model; one of the common com-
plaints against object-oriented databases [23 . While
the non-atomic domain c.oncept is supportea by the
nested relational model [l, 251, we see inheritance,
identity and encapsulation among the features that
the relational model lacks. Identity provides for object
sharing. Inheritance provides for structure and behav-
ior sharin . Encapsulation provides for abstraction.
As a resuft, an object-oriented query model should
benefit from such features and hence should be at least

Comparin

M.Erol ARKUN

Department of Computer Engineering
and Information Sciences

Bilkent University
Bilkent 06533, Ankara, TURKEY

as powerful as the relational query model.
It is true that object-oriented databases support

implicit queries for simple operations, however a query
language is required to be a part of an database SYS-
tem. For instance, the message name() when sent to
an instance in the student class, the name of the par-
ticular student is returned. While a sin le message is
sufficient for such an o eration in the o%ject-oriented
context, a selection a n 8 a projection are necessary to
get the same result in the relational model. An addi-
tional join should precede when name is not a column
of the student relation. Another example can be seen
in sending the message courses() to a student and the
message grade() to the result obtained by the first
message. Although it is handled due to the implicit
join [20] present in object-oriented models, this corre-
sponds to an explicit join in the relational model. The
two messages courses() and grade() form a message
expression. In general, a message expression is defined
to be a valid sequence of messages ml ... mn, with n l l .

While message expressions give superiority to
object-oriented systems over the relational model, an
object-oriented query language is still needed for more
complex situations and to support associative access.
In other words, although the modelin power of an
object-oriented database supports impficit joins [20]
by allowing instances in a class to form the domain
for an instance variable in another class, an explicit
join is necessary in introducing new relationships into
the model; otherwise the manipulation power of the
model will be restricted. Allowing an explicit join
raises the problem of maintaining the closure prop-
erty. Therefore, it is necessary to have an object al-
gebra that facilitates the introduction of new relation-
ships and maintains the closure property; otherwise
the relational model will be more powerful.

In this paper, we describe an object algebra for
object-oriented data models [3, 4, 5, 6, 7, 81. Our ob-
ject algebra is a superset of the relational algebra, but
with different semantics and operands. The main idea
in our work is that an operator should equally handle
objects as well as their behavior. So, an operand in
our object. algebra, as well as the output of any of the
operations, has a pair of sets; a set of objects and a
set of messa e expressions. The set of objects includes
all objects t i a t qualify to be in a class and in all of
its direct and indirect subclasses; hence the set of ob-
jects is in general heterogeneous. The set of message
expressions includes message expressions applicable to
objects in the other set of the pair. By using such pairs

1063-638W93 $03.00 0 1993 IEEE
163

as operands and in the output, the closure property is
maintained in a consistent way.

The operators of our object algebra are the five ba-
sic operators of the relational algebra in addition to
nest, one level project and aggregate function appli-
cation. While the nest operation introduces a missing
relationship into the model in a natural way, the one
level project operation evaluates a subset of the mes-
sage ex ressions of the operand against objects of the
operand:

Using the object algebra operators, object a1 ebra
expressions are built and it is proved that every otject
algebra expression has the characteristics of a class.
Moreover, the inheritance (sub/superclass) relation-
ship between the result of an object al ebra expres-
sion and the operand s) is considered. #herefore, the

tently and properly placed in the lattice in a natural
way.

To sum up, the contributions of our work described
in this paper can be enumerated as follows. Operands
and the result of a query are defined in a way not to
violate object-oriented constructs and to maintain the
closure property. Behavior is equally handled as ob-
jects; creation of methods as well as objects in terms
of other existing ones is facilitated. The addition of
new classes is facilitated where we specify the char-
acteristics of a class derived in terms of existing ones
and handle its proper placement in the lattice. Ag-
gregation functions are supported in a consistent way
so that the result could be used as an operand. All
of these are satisfied without loss of generality and
formality in the description.

The rest of the paper is organized as follows. The
related work is discussed in section 2. In section 3, the
data model is described where the basic terminology
used in the formalization is introduced. In section 4,
the object algebra is defined by constructing object
a1 ebra expressions. Also, characteristics of the re-
suft of an object algebra expression are proved to be
the same as the characteristics of a class and the rela-
tionship between an object a1 ebra expression and the
operand(s) is derived. Some filustrative examples are
given in section 5. Section 6 is the conclusions

2 Related Work
Several uery languages such as those of Gem-
Stone [2;1, o 2 [13, 161, EXODUS [la , 301, IRIS [17],
ORION [l l , 201, OSAM' [2], Postgres [26], PDM [15,
221, ENCORE [27] and the formal calculi and algebra
developed by Straube and T. Ozsu [29] in addition to
others [9, 241 have been proposed.

These langua es are classified as either preserv-
ing objects in t8e database 12, 1 1 , 12, 21, 291 or

roviding operators for the creation of new objects
13, 15, 20, 22, 24, 2 7 . Such a distinction is due to

the disagreement on w 3, ether it is possible to have all
required relationships defined at the modeling phase.
We and others, e.g., [24, 271, argue that the definition
of new relationships and the creation of new objects,
should be supported by a query model. However, it
is necessary to resolve problems that arise due to the
creation of objects; otherwise there will be inconsisten-

result of any object a \ gebra expression can be persis-

P

A major drawback of langua es such as those de-
scribed in [l l , 21, 291 is that taey do not maintain
the closure property. Others introduce non-object-
oriented constructs in maintaining the closure prop-
erty. Although operands in such languages have
object-oriented properties, the outputs are relations
which do not have the same structural and behavioral
properties as the original objects. Consequently, the
result of a query cannot be further processed by the
same set of language o erators without violating en-
capsulation, for exampE. For instance in 02 [13, 161
the value concept was introduced. 0 2 has an object al-
gebra which handles values as well as objects and this
leads to a kind of mismatch in having some operands
violating encapsulation while others not. The query
languages of 9, 12, 261 use nested relations as their

The Postgres data model is an extended relational
data model which includes abstract data types, data
of type procedures and attribute and procedure inheri-
tance. Its query language POSTQUEL is an extension
of QUEL to satisfy the new constructs.

The algebra described in 30 has an expressive

the EXTRA data model described in f12]. The al-
gebra of PDM [15, 221 is based on an extension of
the Daplex functional data model [28]. While Daplex
supports only functions whose values are stored in the
database, PDM has been extended to include func-
tions whose values are derived from other values or
computed by arbitrary procedures. PDM modifies the
relational algebra to handle functions, i.e., the opera-
tors and the result are functions. A major restriction
is that object identity is not supported and only union
compatible items are allowed as o erands to set-based
operators. In the algebra of ENEORE [27], the out-
put of a query is of the Tuple type which is essentially
the nested relational representation, since it allows the
nesting of tuples.

Straube and Ozsii developed a set-based object-
oriented querg a l r b r a and a corresponding calculus,
but their alge ra oes not satisfy the closure property.
Also, t,hey studied the problem of type unions in some
detail. However, although it has a formal basis, their
algebra is less expressive compared to others described
in the literature. Osborn's object algebra [24] was de-
veloped for a general object-oriented data model de-
fined on three eneric classes of atomic, a gregate and
set objects. S%e extends relational algetra. A ma-
jor drawback of Osborn's algebra is that it does not
sup ort encapsulation and the closure property is not
welf maint<ained; set operations do not accept atom
and aggregate objects produced by other operations.

Although, in the query model of ORION [20] the
result of a query operation is a class, but the improper
placement of resulting classes in the lattice leads to du-
plication of chss contents; hence ORION violates the
reusability feature of object-oriented systems. How-
ever, we argue that it is an overhead to have a class
as the output of a temporary query, as ORION does.
In this paper we describe the output of a query by
the minimum requirements of an o erand and from
such characteristics we can derive t i e characteristics
of a class when it is required to have the result per-
sistent [3, 41. In OSAM' operands in a query are the
database itself and all subdatabases derived from the

logical view o I object-oriented databases.

power equivalent to the EXC B A S quer language of

164

original database by query operations; the result of a
query is a subdatabase.

3 The Data Model
The object algebra described in this)aper is based on
a data model that includes classes, objects and meth-
ods. A class definition includes a set of instance vari-
ables that reflects roperties of objects in the class,
a set of methods hperations) applicable to objects
in the class, to support encapsulation and inforniation
hiding, and a set of superclasses to provide reusability.
Related to a class c we use the following notations:-

* instances(c) is the set of objects in class c but not

q, s tances (c) =inst ances(c) IJ :sd("T, ,~, t a n c e s

in any of its subclasses.

where S = { S l , S 2 , ..., Scard(S)} is t,he set of di-
rect subclasses of class c .
Zvariables(C) is the set of all instance variabks de-
fined in or inherited by class c. For any instance
variable i v , domain(iv) and valne(iv) denote the
domain and the value of instance variable iv. A
domain is either atomic such as the set of inte-
r r s , the set of characters, etc, or X n s t a n c e s (C i)
or any class c i . A value is drawn from the un;

derlying domain; either an element or a subset
of the underlying domain.

0 messages(c) is the set of messages used to invoke
any of the methods defined in or inherited by class

Elements of messages(s are used only to invoke meth-

sages in the class of object oi are used to invoke meth-
ods applicable to it. So combining from class c a
message which returns an object oi as a result with
any of the messages in the class of object 0, will form
pairs applicable to objects in class c to access possible
values in related objects from the class of object o i .
Also when any of such pairs returns an object as a
result, messages in the class of the latter object could
be combined with that pair forming triples applicable
to objects in class c . By the same way, quadruples,
quintuples and so on, could be formed. For instance,
let 01 be an object in the student class; a method
in the student class could be courses() to invoke the
method implemented to return the set of courses reg-
istered by a given student and so 0 1 courses() returns
objects from the course class. Any of the messages
in the course class, e.g. code() , could be applied to a
returned object. At this point one could say that the
combination courses() code) could be ap lied to an
object in the student class. I t is recognizefthat both
courses() and courses() code() are elements of the
superset of messages(student) which does not include
the element courses() c o d e () . We call such a superset
the set of messa e expressions of class student and ev-
ery element of tfis set is called a message expression.
M e (c) is the set of message expressions of class c . Ev-
ery element of M e (c) returns either a stored value or
a derived value. As formal1 stated in the followin

in terms of messages, starting with messages(c)

C.

ods in class c . When t h e result is an object oi, rnes-

definition, elements of Me(cT are recursively define a
'since 6 is subset of any set, nil is a value representing the

empty set

Definit ion 3.1 (Message expressions)
Given a class c , the set M , (c) i s defined by:

- niessages(c)C_M,(c)
- z f z E M e (c) and I returns a value from

Ttnstances(c1) then (I messages(ci))t G M e (c)
Therefore, starting from messages(c) we can deter-

0 mzne elements of M e (c) .

We use len(r to denote the length of message expres-

After introducing message expressions, it is neces-
sary to decide on the relationship between the sets of
message expressions and the sets of messages of two
classes.

sion I, i.e., t h e number of messages constituting 2.

Leriinia 3.1 Given two classes c1 and c2
Adc(cl)C_M,(c2) e messages (c~)~messages (c~) , i . e.,
V z E M , (c l) such thaf Ien(z)=l we have ~ E M e (c 2) . 0

Lemma 3.1 will be utilized while constructin object
algebra expressions in definition 4.2 and while ieciding
on the inheritance relationship between classes that
correspond to object a1 ebra expressions in section 4.
A message expression wghen received by an object, re-
turns a value from a particular domain. This articu-
lar domain is the range of the last message in &e mes-
sa e expression. A returned value is either a stored or
a 8erived value, a property that ives a full computa-
tional power to the user without aaving an embedded
query language leading to impedance mismatch.

Related with the subclass/superclass relationship
between classes, we define a partial ordering (le)
among classes.

Definit ion 3.2 partial ordering (Ic) among classed
Given two classes c1 and c2, we say that c1 9 2 ifl:

l var iab le s (C Z) c l var iab le s (c l)
2 . e . , viv2EIvariables (C 2) 3iVl EIvariables (CI) such
t h a t , iv2 =iv1 A (domain(ivl)<, domain(iv2)

V domain(ivz)=domain(ivl))
methods(c2) C methods(c1) 0

An object has an identity, a value and belongs to a cer-
tain class. Related to an object o we use value(o) to
denote the value (The value of an object is a set of val-
ues of the instance variables defined in its class; sim-
ple values or identities of nested objects). Similarly,
ident i ty (0) denotes the identity of object 0. Based c
the notion of value and identity we define equality 1

1
f

objects:

Definit ion 3.3 (Equality of objects)
Two ob 'ects 0 1 and 0 2 are:

- iJentica1 (01 = 0 2) iff identity(ol)=identity(o2
- shallow-equal (01 2 0 2) i f f v a l u e (o ~) = v a l u e (o ~)
- deep-equal (01Y02) ifl b y recursively replacing

every object 0, in value(o1) o r value(o2)
b y value(oi), equal values are obtained. 0

tr is concatenated with every element of the set of mes-
sages of class c1. For example, (T {ml , m2})=(111, T Z I } where
zll=(z m l) and ~ 2 1 4 1 m2)

165

A method implements a certain function and has a
number of arguments, n>O. Every method is invoked
via a corresponding message. We address properties
of an object by using m e s a es. Therefore, meth-
ods are used either to deal wit% properties of objects,
stored values, or to derive some values in terms of
properties of objects. For instance, the method in-
voked by the message n a m e () implements the function

Function f 1 does not expect any argument because
corresponding domains are not specified. The mes-
sage increase-salary(i) invokes the method implement-
ing the function

where given OETinstances(Sta f f) ,

The domain of the receiver of fz is Tinstances(stnff)
and fz expects a single argument from the domain
that is the set of integers. Also, the result of f 2 is
from the set of integers, i.e., range of f z is the set of
integers.

f 1 : Tinstanees(person) - string.

fz:T,nstonces(sta f f) xinteger--+integer,

f i (0 , i) = (osa lary()) + i

op E <

4 The Object Algebra

'{=, #, 5 , i f both y l and y2 are single
>, >, <}

{E, @}

{E, e,

values from an atomic domain

i f y1 is a single value and
y2 is a set of values

if both yl and y2 are sets of
=, #} values, Y Z may be Tinstonces(e)

{ = , A -, %} - t f ' both y1 and y2 are sets of

Tinstances(c) for some class c.

where e is a query expression

from a non-atomic domain, i.e.,
\

In this section, the object a1 ebra is described. An
operand e in the object alge%ra should have a pair
of sets, a set of objects and a set of message expres-
sions, denoted by <Znstances(e), Me(e)>; elements of
Tinstances(e) can be accessed usin elements of M,(e).
Since a class has a defined set of ofjects and a derived
set of message expressions, a class can be an operand.
The output of an operation as well should have a pair
of sets derived in terms of the pair(s) of operand(s).
Thus, an operand in a query could be replaced by an-
other query whose output is the actual operand. Any
operand, whether an actual pair or an unevaluated
query is called an object algebra expression.

Concerning the operators, the object algebra in-
cludes the five basic operators of the relational alge-
bra in addition to nest, one level project and aggre-
gate function applications. The selection operation
presents a restriction on objects of the operand. In
the object algebra, the selection has a single operand
and produces an output consisting of a pair, where the
included objects are those satisfying a stated predicate
expression, defined next. The set of message expres-
sions of the resulting pair is the same as that of the
operand.

Definit ion 4.1 (P r e d i c a t e expressions)
The following are predicate expressions:

P1: T and F are predicate expressions representing
true and false.

P2: Given two values 1 and y2 with the same un-
derlying domain SUCK that at leasty1 ory2 is of the
form @z), where o is an object variable bound to
objects of an operand in a query and x is a mes-
sage expression applicable lo objects substituting
Q

P2.3: 3 z S y l A z op y2 is a predicate expression
where, y1 is a set of values and

{E, e, =, #} if y2 is a set of values,

where e is a query expression

i f y2 is a single value

Y Z ntay be Znstances(e)

{3, $1
P3: i f p and q are predicate expressions then (p) ,

- + p , pAq and pVq are predicate expressions.0
Let SI and s2 be object variables ran in over
instances of the student class: "C,!f59%" E
S I courses()code() is an example on P2.1 to check
students attending "CS590"; 3cEsl courses() A
C E S ~ courses()A sl#s2 is an example on P2.2 to check
whether two given students have at least one course in
common; VcEsl courses() A c sa courses() is an ex-

do not have any course in common; 3cCsl courses() A
cEs2 courses(is an example on P2.3 to check whether

Although the set of objects of an operand is in gen-
eral heterogeneous, the on1 values accessible in each
object are those specified gy the set of message ex-
pressions of the pair. So, dropping some message ex-
pressions by the project operation hides some values
from the accessible objects. The inverse of the project
operation is to extend the set of message expressions
in a pair to include more message expressions appli-
cable to objects of the pair, i.e., give more facilities to
the user; this operation is defined in terms of others
as shown later in this section. On the other hand the
one level project operation evaluates a provided set
of message expressions and forms objects out of the
obtained values; a corresponding set of message ex-
pressions is also determined to facilitate accessing the
values encapsulated within the derived objects.

ample on P2.2 to check whet i? er two given students

two given stu d ents have some courses in common.

166

Despite the fact that many relationships between
objects are represented by the objects themselves, an
explicit operation is required to handle cases when a
relationship is not defined in the model. Both the
cross-product and the nest operations are defined to
introduce such relationships. While the cross-product
operation is defined to be associative, the nest opera-
tion is not. However, the two operations are equivalent
under certain conditions [5]; in [5] we also present the
equivalence of some object algebra expressions. As-
sociativity of the cross-product operation is useful in

uery optimization [3, 51, although not discussed in
&is paper. The cross-product operation creates new
objects, out of objects in the o erands, and a set of
message expressions to handle t i e new objects is de-
rived. Also, the nest operation introduces missing
relationships. While the nest operation extends the
value of each object in the first operand to include a
reference to object(s) in the second operand, the result
of the cross-product operation depends on domains of
the messages of the operands as explicitly stated in
definition 4.2 given next in this section.

As mentioned before, the object algebra described
in this paper handles and produces pairs of sets, a set
of objects and a set of message expressions to handle
objects in the first set. So as we deal with sets, two
basic set operations, union and difference, are sup-
ported by the object algebra; intersection is defined
in terms of the difference operations. The union op-
eration returns a pair where the set of objects is in
general heterogeneous and the set of messa e expres-
sions is calculated as the intersection of t f e sets of
message expressions of the operands. The heteroge-
neous set of objects is the union of the sets of objects
of the operands. The difference operation is handled
in one of two ways depending on the relationship be-
tween the sets of message expressions of the operands.
If the set of message expressions of the first operand is
subset from that of the second operand, the difference
operation returns objects from the first operand which
are not in the second operand. Otherwise, it is han-
dled as a projection of objects in the first operand on
values that have no corresponding message expression
in the second operand.

After this informal description of the object alge-
bra, we move into the formal definition. Since a class
is defined to have a set of objects and a set of mes-
sage expressions can be derived for a class by defini-
tion 3.1, a class is an object algebra expression. Next
we formal1 define ob'ect algebra expressions. When
speaking a tou t len(xj in any of the constraints (if-
statements) given next in this section, we will con-
sider only message expressions x such that x rct.urns a
stored value with the underlying domain being atomic.

Definition 4.2 (Object A1 ebra Expressions)
Let E be the set of object a l g 8 r a expressions.
Being an object algebra expression, every element of
the set E must have a pair of sets -a set of objecis and
a set of m e s a e ex ressions. Thus, formally speaking,

VeE E, M e (e j is Befined and T i n s t a n c e s (e) is defined.
Given e l E E and e2EE; let Me(el)=X1, Me(e2)=X2,

Elements of E are enumerated as follows:
Tinstanees(el)=Tlr and T t n s t a n c e s (e2)=T2

Given a class ci, b y definition Me(c,) and
Tinstances(ci) are both defined, then C,EE

respectively.

Z t e (e 1 x e z) =

where . is being used to indicate a concatenation
of the two arguments; it is commutative because
the resulting value is actually a set of values con-
structed out of the values constituting the two ar-
g U 7 n e n t s.

e Union: (elUez)EE with
Me(elUez)=X1nXa

e Difference: (el -ez)E E with
T i n s t a n c e s (eluez)=Tl UT2

*Given an object o, we use p (o) to denote the evaluation of
predicate expression p by o substituting an object variable in p.

167

e Nest: (el>>ez)EE with
Me(e1.>>e2R=X1U[m2 X z) ,
domain o f t e resu t of message m2.
Tinstances(el>>ez)=(0 I301ET1 A value(o)=

e One level project:Given X c X l , el ![XI€ E with
Me (e 1 ![XI)= { I 131 1 E X , I 1 =(1 2 m)Alen(I 1) =

len(zz)S1A3~:3EXlA13=(;Fz t)Ae=(m 2 4))

'Kn s t an . e s t 1 p]) ={0 1301 ET1 Ava h e (0) =(oi X

the longest messa e expression i n X increases. In
other words, the {epth of nesting is inversely pro-
porlional t o the length of message expressions in
X .

e Aggregation: Given X E X l and xiEX1,
el<X,f ,xi>EE with
Me(el<X,f,x;>)=(ml X l) U (m 3 } , where TI is
the domain of the resuli of message ml , and the
domain of the result of the function f is the do-
main of the result of message m 3 .
Tinstanees(el<X,f,Xi>)=(ol(0 m1)ETl A(0 m3)=
f (01 xi)lo1€T1AVo2€(o m1), (02 x)=(ol X) }))
$Le aggregation function is applied on el b y eiia -
uating the function f on the result of the message
expression t i for all objects that return the same
values for elements of the set of message expres-
sions X .

e Unnest: defined in terms of projection as,
(el<<ez)=el[X1-X I X=(mz X Z) A

where T2 is the

value(ol).v, where v=(o m2) A VET^}

The dept o nesting decreases as the lengt l!§} of

VOlETl, (01 m2)ETzI
We project on al l message expressions of el except
those leading to e 2 .

e Intersection: defined in terms of the diflerence
operation as, (elne2)=el-(el -ez)

e Inverse project: t o add a subset X of Me(e2) t o
M e (e l) , first el and e2 are nested then a one level
projection is done to have all Me(ez) an! Me(e1)
together forming one set; after that projectton of
the result on M e (e l) U X is done to g e t lhe target
set of message expressions in the resulting pair.
e 1]X[=(e l>>e 2) ! b e s s a g es (e 1)U (mz messng e s(e 2)

where X C Me(e2) is the set of message expres-
sions to be a d d e d to M e (e l) , and m 2 is a message
in the result of e l >> e2 with its domain being
Tinstances(e2).

e Join: defined in terms of cross-product or nest

0
Using operations of the query language, objects may
be constructed out of existing ones and new relat,ion-
ships may be introduced into the model. A new rela-
tionship is an extension to either the state of objects or
their behavior. In other words, a new relationship has
either a stored or a derived value. A stored value is due
to the Nest operation which takes two operands and
extends each object in the first to include a value refer-
encing object(s) in the second operand, while a derived
value is due to the inverse of the Project operation
which extends the behavior of objects in the operand

I M e (e l) U X l

combined with selection,
el <p> e2 = el x e:! [PI = e1 >> e 2 [PI.

5(0l X) returns the set of the results of the application of
message expressions in X to object 01.

without their states being affected. On the other hand,
the One-Level-Project operation constructs new ob-
jects out of existing objects by collecting values found
at different levels of nestings. Also the fourth case in
the definition of the Cross-Product operation results
in new objects, while other cases introduce new rela-
tionships.

After the formal definition of object algebra expres
sions, we claim that every object algebra expression
has the characteristics of a class and this follows from
the lemmas iven next in this section. However, before
going into t i e details of the lemmas, it is important
to remind the reader that, as stated in section 3, by
definition a class has a set of superclasses, a set of
instance variables, a set of methods and a set of ob-
jects. According to definition 4.2, an object algebra
expression has a set of objects and a set of message
expressions. In addition, given a class c, methods(c)
and Ivariables c are defined to include methods and
instance variibies of superclasses of class c. There-
fore, finding methods and instance variables of a class
implicitly leads to the set of its superclasses. F'urther-
more, for every method there exists a corresponding
message; so, finding a set of messages for an object
algebra expression is equivalent to finding of a set of
methods. As a result, for any object algebra expres-
sion to have the characteristics of a class, it is enough
to find for that object algebra expression a set of in-
stance variables and a set of messages; a set of objects
is already defined.

Let el and e2 be two object a1 ebra expressions
such that M e (e l) = X1 and Me(e2f = X z . Accord-
ing to definition 4.2, a class is an object algebra ex-
pression. In other words, some object a1 ebra expres-
sions are classes. Thus, assume that fvariables(el) ,
Iuariables e2), m e s a es(e1) and messages(e2) are all
defined. Lased on t f is assum tion, we have the fol-
lowing lemmas, 4.1 to 4.8, l e a i n g to the sets of mes-
sages and instance variables of other object algebra
expressions and this leads to the fact that every ob-
ject algebra expression corresponds to a class.

Leinina 4.1 Messages and Instance variables
of el[P]: where p is a predicate expression
M,(el [P])=X1 . messages(e1 [P])=messages(el)

Before going into the lemma 4.2 on the Project op-
eration, the following algorithm returns the instance
variables of el [XI where X G X 1 .

Algor i thm 4.1 Instance variables of el [XI:
0. f o r every mi E messages(e1)

2. if X i $ 4 then
3. if 3 i v i ~ I , , ~ ~ i ~ b l ~ ~ (e l) such that

. Iuariables(e l [P])=~uariables(e l)

I . Let X i c ME" such that (mi X i) 2 x

X i = M,(OAE(domain(ivi)))II then
4 . ivi E Iuariables(el[X])

VSet of all message expressions, i.e., for any class c,
Me (c) M E

IIEvaluating an object algebra expression e leads to the pair
<Ttnctancer(e). Me(:)>. OAE(Tinstances(e)) denotes the ob-
ject algebra expression e.

168

5. elseif 3 iv iEZUariabl~~(e l) such t h a t

6. i V i E l u a r i a b l e s (e 1 [X I) and

7. domain(ivi) :=< domciin(iwi),

8. endif
9. elseif 3iviEZuar,ab{es(el) such that

10. ivi E Ivariables(e1 [X I)
11. endif
12. endfor 0

Lemma 4.2 Messages and Instance imrznbles
of e l [X] : Given X c XI,
. niessages(el[X])={nt I riiEniessagrs(e1) A 3 x E X

X i C M e (0 A E (domain (ivi))) t hen

domain(iv,) in e l [XI 1s:

M,(OAE(domnin(iv i))) > [X i]

value(ivi) = (0 m i) then

with x=m x i }
. Iuariables(el[X]) 2s derzved in a/gorzlhiii 4 .1 . 0

Lemma 4.3 Messages and Instance variables
of e l x e2 :

Lemma 4.4 Messages and Instance variables
of e1Uez:
Me(el Uez)=X1r)Xz --r.
. messages (e 1 U e2) = m ess ag es (e 1)n nt ess a g es (e 2)

. Iuariables(e1 U e z) = Iuariables(e1) n Iuariables(e2) 0

Lemma 4.5 Messages and Instance varzahles
of el-ez:

1: - if X I C X2 then
Me(el-ez)=X1
. messages(e1 -ez)=messages(e1)
. Iuariables(el-ez) = l u a r i a b l e a (e 1)

X Z then
Me (el -ez)=X1 -Xz a
. messages(e1 -eZ)=messages(e 1)- messages(e2)
. Iuariablea (el -eZ)=Iuariables (e l)-Iuariablr(eZ) O

2: - i f X I

Lemma 4.6 Messa~es and Instance variables

where 0

Lemma 4.7 Messages and Instance variables
o f e l ! [X] : gzven X XI,
M , (e l ! [X]) gzven zn definztzon 4.2 +
inessnge.s(e1 ! [X]) = { m l 3 z ~ M ~ (e l ![XI) with x=m x j }
I v o r z a b l c (e 1 ![,U]) ={ ivl doiiiazn(iv)=2d* AvoEznst,mces(e

3rii,~messages(el ! [X I) wzth (0 mj)Edj} 0

Leinina 4.8 Messages and Instance variables
of e l < X , f , x , > : given X c X 1 and x i € X l r
M , (e l < S, f , xi >) given in definition 4.2 *

. niessages(e1 < XI f , t i >) = { m l , m s }

. Ivariables(e1 < X ~ f l X i >)={ivl,iVZ}
wh ere d on1 a m (zv1) =T;,, tan ces (e 1) and

doinain(iv2)= the domain of the result off 0

The proofs of lemmas 4.1 to 4.8 are omitted. Infor-
mally, since every object, algebra expression has a set
of message expressions, then by considering message
expressions of length one, the set of messages is de-
rived. Furthermore, by definition every instance vari-
able has a corresponding message and this leads to the
derivation of the set of instance variables of an object
algebra expression depending on its set of messages,
i.e., collect from the set of instance variables of the
operand those instance variables having a correspond-
ing message in the determined set of messages.

Combining definition 4.2 and lemmas 4.1 to 4.8, ev-
ery object algebra expression has a set of objects, a set
of messages and a set of instances variables; the set of
superclasses of the corresponding class is determined
hy lemmas 4.9 to 4.16 given next this section. The set
of messages leads to the set of methods because every
message has a corresponding method. Therefore, an
object algebra expression has the charactersitics of a
class leading to the following corollary.

Corollary 4.1 VeEE, e corresponds to a class c. 0

Aft,er having every object a1 ebra expression to be a
class, it is necessary to decicfe on the inheritance re-
lationship between an object algebra expression and
other existing classes.

Given two object a1 ebra expressions el and ea;
let. Me(el)=X1 and Mefe2)=Xz. Lemmas 4.9 to 4.16
give the inheritance relationship between object alge-
bra expressions.

Lexnxna 4.9 Inheritance relationship of elk] with e l ,
whew p as a predicate expression, elk] Se el 0

Leinrna 4.10 Inheritance relationship of el [XI
with e l , where X C X I ,

ei Se e l [X l . 0

Lemma 4.11 Inheritance relationship of e1 x e2
wzth e l and e2:

169

1: if 3x1EXl,len(xl)=l A 3~2EX2,len(x~)=l then,

2: if VxlEXl,len(x1)>1 A 3x~€X2,len(x2)=1 then

9: if 3xclEX1,len(xl)=l A Vx2EX2,len(x2)>1 then

4: if Vx1EX1,len(x1)>1 A VxzEX2,len(x2)>1 then
0

(el x e2) $e el and (el x e2) $e e2

(el x e2) <e el

(el x e2) l e e2

(el x ez) <e el and (el x e2) l e e2

Lemma 4.12 Inheritance relationship of el U e2
with el and e2:

ei <e (elUe2) and e2 Se (eluez). 0

Lemma 4.13 Inheritance relationship of el -e2
with el and eg:

1: - if X1 C X2 then

2: - ifX1 X2 then
(e1-2) i e el

el l e (e1-2) 0

Lemma 4.14 Inheritance relationship of
(el>>ez) with e l ,

(e l > > e ~) l e el 0

Lemma 4.15 Inheritance relationship of e,![X]
with e l , where X C X

el!/X] 2e el and el $e el![X]. cl

Lemma 4.16 Inheritance relationship of
e l<X, f , x i> with e l , where X E X1 and XjEXl

el<X,f ,xi>$, el and el $e e l < X , f , z j > 0

When no superclass is determined, the root OBJECT
class is assumed. Although omitted, the proofs of lem-
mas 4.9 to 4.16 follow from definitions 4.2 and lem-
mas 4.1 to 4.8.

5 Illustrative Examples
In this section, several examples are included to il-
lustrate the distinguishin aspects of the query model
presented in section 4. t h e examples given next in
this section will assume the following classes:
person<@, name : string, age : inte er,

sex : character, children : (person} >
student<(person}, year: integer, courses: {course},

sta f f<(person},salary :integer, works-in:department>
research-assistant <{student, s ta f f}>
course<0, code : string, name : string,

department<0, name : string, head : staff >
Example 5.1 Find students attending the course
"CS565"

SI =student%s PCS565" E s courses() code()]
where % indicates that the variable s is bound to and
ranges over the objects of the operand, here the stu-
dent class. In the predicate expression, "CS565" E
s courses() code(), the right hand side is of the form
(0 2); hence satisfies definition 4.1. The use of =,
calls for an evaluation of this query on a temporary
basis.

student-in:department >

credit : integer, prerequisites : {course}>

We differentiate between temporary and ersistent
evaluations of a query, where an assi nment gee query
is always evaluated on a temporary %asis while we use
= and := to differentiate between temporary and per-
sistent based evaluations, respectively. While a tem-
porary based evaluation of a query ends by finding the
pair of sets in the result, a persistent based evaluation
continues with the finding of class characteristics of
the determined pair by using lemmas 4.1 t o 4.16.

Exam le 5.2 Find the s Ouse of"Smith".
per~On%Ip[3plE xn3tances&rson) A pi name() =
'Smith" Ap sex() = " F " A ~ ~ chidlren() = p children()]

Example 5.3 Assume that thestudent class werenot
present in the lattice and the research-assistant class
is defined as:
research-assistan~{st~ f f),year:in teger,courses:course
To derive the student class as a persistent class
and assrimiiig that a student attends the depart-
ment he works for the research-assistant class is pro-
jected 011 { named, age(), sex(), children(), year(),
courses(), works-in()-.student-in()}, where works-
in()-, st uden &in() indicates message renaming. In
the projection set, the subset {name(), age(), sex(),
children(}, could be replaced by messages(person)
because t I ie latter is the implicit representation of the
former. Thus, the query is:
student :=research-assistant[messages(person)U

{year(), courses(), works-in ()-+stud en2 - in()}]
According t o lemma 4.10, the derived student class will
be a direct superclass of the research-assistant class.
However, we have derived algorithms which aim at
maximizing reusability (91 and accordingly, the derived
student class is recognized as a subclass of the person
class and naturally placed in the lattice.

Example 5.4 Find the names and courses of stu-
deiits attending a t least one course
studeni%s s courses(4]![{ name(), courses() code()}

then the one level project is performed to get the result.
Notice the use of the message expression, courses()
code(), which is a concatenation of two messages, one
from each of student and course classes, respectively.

Exam le 5.5 Find couples having a t least one child.
person%Ipl>> person%p2 [PI sex() ="M"Apz sex() =
'F' Apl children() # 4Apl children() = p 2 children()]

Example 5.6 Find students attending the depart-
ment in which "Adams" is working.
student%sl>> sta f f%s2 b1 student-in()=s~ works-in()

Example 5.7 Find students who are not research as-
sist an ts

Since M,(student)-Me(research-assistant)=4, because
Me(student)CM,(research-assistant), in the output
pair M,(student) is returned according to defini-
tion 4.2 . Also, remembering that Tin3tanCe3(research-
assistant) TlnstanCe3(student), the same query can
be coded using the select operation as follows:

student%s [s 6 Tinstances(research-assistant)]

First s t u d ents atten if ing some courses are selected!

As2 name()="Adams"]

student - research-assistant

170

Example 5.8 Let net-salary 2) be a method defined
in the staff class to returii t 6 e net salary of a staff
member after deducting taxes at the rate o f t . Assume
k 0 . 1 for research-assistants aiid t=0.15 for other staff
members. I t is required to find the names and iiet
salaries of staff members:
(st a f f - researchassist an t)!An a m e (), ne t - s ala ry(O.15)}/ K res ea rch- assist ant ![{ n a m e () , ne t- sa 1 a ry (0. I) }]
First t e difference operation is used to find staff niem-
bers who are not research assistants; then the one level
project operation is appl ied on the result with t=O.15
and on research-assistants with kO.1; the union of
both results is considered to be the output from thzs
query.

Example 5.9 Fiiid students attendhg the same
courses
(student%slxstzldent%sz) [SI courses() = s? courses()

As1 ? ian~e() < s:! ~ a n i e ()]

Remember from definition 4.2 that , when combined
with a selection operation, both of the cross-product,
and the nest o erations result in a join operation.
While the join fue to a nest is an outer-join, the join
due to a cross-product is an inner-join. Notice that
the result of the query of example 5.9 will be a direct
subclass of the root because the student class has some
instance variables with atomic domains. However, us-
ing nest instead of cross-product forces the result to be
a subclass of the student class. The difference is due to
the fact that while the nest operation will append to
every student a set of identities of related students, the
cross-product o eration on the other hand forms, ac-
cording to the &finition of cross-product operation in
definition 4.2, new values each consistin of the iden-
tity of a student together with the set of identities of
related students.

Example 5.10 Find staff members earning more
than the average salary in their department
s ta f f%s l >> s t a f f <{worts-in(~,average, sa lary() >

where avsalary() is a message to return the calculated
average salary in the result of the aggregate function
application; it is a concatenation of the first two letters
o f the applied function, average, with the last message
in the used message expression, here salary(). We nest
staff with the result of the application of the aggregate
function average on staff members grouped b y works-
in(). Then those sta8 members satisfying the given
predicate expression are selected and finally projection
on name() is performed.

6 Conclusions
In this paper, we formally described a query model for
object-oriented database systems. Our query model is
not restricted to handle existing objects only, how-
ever, the introduction of new relationships as well as
new objects is also facilitated. A new relationship
could have a stored value by extending objects in the
operand to include new values for the new instance
variables. I t is also possible for a new relationship to
have a derived value in terms of existing values by ex-
tending the behavior of the operand to facilitate the
derivation of the required relationship. Operands and
the output of a query are defined to have a pair of sets,

%sz[sl salary() > s2 avsalary()] [{name() }]

a set of objects and a set of message expressions. Thus
having the characteristics of an operand, the output
from a query could itself be an operand and hence the
closure property is naturally maintained.

A message expression results in the evaluation of
the underlying methods and in the same sequence as
if they all together form a single method invoked by
that message expression. Furthermore, message ex-
pressions are used in the invocation of behavior as well
as behavior constructors. Also, message expressions
facilitate accessing of stored and derived values leading
to computational completeness without having an em-
bedded uery language leading to in impedance mis-
match. Zonsequently, methods could be coded solely
by utilizing the object algebra and hence simplify the
optimization process. On the other hand, proposals
that do not overcome the impedance mismatch prob-
lem are still suffering from not supporting full opti-
mization for being unable to resolve methods.

The operators of our object algebra subsumes those
of the relational and nested algebras and hence it is
more powerful than either one. The equal handling
of objects as well as the behavior defined on them is
an important requirement of an object a1 ebra; thus
we satisfied it in the presented query mofel. This is
due to the presence of data and behavior in an object-
oriented data model in contrast to havin only data
in the relational data model. Behavior is fandled via
message expressions. We support aggregate functions
whose outputs are also pairs of sets like any operand.

We started by defining a set of objects and a set of
message expressions for a class. Having such a pair,
a class is shown to be an operand. By this, some
operands were defined to be existing classes. Other
operands are defined to be the outputs of queries. As
the only known characteristics of the output from a
query are a pair of sets -a set of objects and a set of
message expressions, we have proven that from such a
pair other class characteristics could be derived. Hav-
ing the characteristics of a class, the output from a
query is in fact a class. Thus, we decided on the proper
placement of such a class in the lattice.

Concerning the current status of our research, we
are working on the completeness of the described ob-
ject algebra by studying its different aspects. Also,
the handling of recursive queries is under considera-
tion to determine whether any further extensions to
the algebra improves its power.

References
[l] S. Abiteboul and C. Beeri, “On the Power of

Languages for the Manipulation of Complex Ob-
jects,” INRIA, Tech.Rep.No. 846, May 1988.

[2] A . Alashqur, S. Su and H. Lam, “OQL:
A Query Language for Manipulating Object-
Oriented Databases,” Proceedings of fhe 15‘h In-
ternational Conference on Very Lar e Databases,
Amsterdam, pp. 433-442, August 1 6 9 .

[3] R. Alhajj (Al-Hajj), “A Query Model and a
Query LCn uage for Object-Oriented Database
Systems, fechnical Report, Bilkent University,
1991.

[4] R. Alhajj Al-Hajj and M.E. Arkun, “A Data
Model for 6 d bject- riented Databases,” Proceed-

171

ings of the 6th Internatzonal Syniposium o n Coin-
pulers and Information Sciences, Antalya, Octo-
ber 1991.

[5] R. Alhajj Al-Hajj) and M.E. Arkun, “A For-

Oriented Databases,” Applied Mathematics and
Computer Science, Vol. 2, No. 1 , pp. 49-63, 1992.

[6] R. Alhajj AI-Hajj) and M.E. Arkun, “A Query

ceedings of the T t h International Symposium on
Comput ers and Info rin a ti o n Sciences, Kemer ,
November 1992.

[7] R. Alhajj (Al-Hajj) and M.E. Arkun, “Queries in
Object-Oriented Datahase Systems,” Proceedings
of the ISMM International Conference on Iiifor-
mation and Knowledge Management, Maryland,
November 1992.

[8] R. Alhajj (Al-Hajj) and M.E. Arkun, “Object-
Oriented Query Langua e,” Accepted l o the Jour-
nal of Informationn an8 Soflware Technology.

[9] F. Bancilhon, et.al., “FAD: A Powerful and
Simple Database Language,” Proceedings of the
13th International Conference on Very Large
Databases, Brighton, pp. 97-105, 1987.

[lo] J . Banerjee, et al., “Data Model Issues for Object-
Oriented Applications,” ACM Transactions on
Ofice Informalion Systems, Vol. 5 , No. 1 , pp.

[l l] J . Banerjee, W. Kim and K.C. Kim, “Queries in
Object-Oriented Databases,” Proceedings of the
4th International Conference on Data Engineer-
ing, Los Algeles, CA, pp. 31-38, February 1988.

[12] M.J. Carey, D.J. DeWitt and S.L. Vandenber
“A Data Model and a Query Lan uage for EX%:
DUS,” Proceedings of ACM-SIGJOD Conference
on Management of Data, Chicago, pp. 413-423,
May 1988.

Query Language for an Object-Oriented
Database System,” Proceedings of the 1” Inter-
national Conference on Object-Oriented and De-
ductive Databases, December 1989.

[14] C.J. Date, An Introduction to Database Systems,
4th Edition, Vol. 1 and Vol. 2, Addison-Wesley,
1986.

[15] U. Dayal, “Queries and Views in an Object-
Oriented Data Model,” Proceedings of the 2nd In-
ternational Workshop on Database Programming
Languages, pp. 80-102, June 1989.

[16] 0. Deux, et al., “The 0 2 System,” Continunica-
lion of ACM, Vol. 34, No. 10, 1991.

[17] D.H. Fishman, et al., “IRIS: An Object-Oriented
Database Management System,” ACM Transac-
tions on Ofice Information Systems, Vol. 5 , No.

mal Data i& ode1 and Object Algebra for Object-

Language I or Object-Oriented Databases,” Pro-

3-26, 1987.

[13] S. Cluet, et. al., “Reloop, an Algebra Based

1 , pp. 48-69, 1987.

(181 A . Goldberg and D. Robson, Smalltalk-8U: The
Language and I ts Iinplementation, Addison Wes-
ley, 1983.

[19] S.N. Khoshafian and G.P. Copeland, “Object
Identity,” Proceedings o f the International Con-
ference on Object- Oriented Programming Sys-
tems, Languages and Applications, Portland, OR,
pp. 406-416, September 1986.

[LO] W. Kim, “A Model of Queries for Object-
Oriented Databases,” Proceedings of the 15th In-
ternational Conference on Very Large Databases,
Amsterdam, pp. 423-432, 1989.

[21] D. Maier and J . Stein, “Development and Im-
plementation of an Object-Oriented DBMS,” Re-
search Directions i n Object- Oriented Pro ram-
ming, Shriver B. and P. Wegner Eds, M I T kress,
Cambridge, M A , 1987.

[22] F. Manola and U. Dayal, “PDM: an object-
oriented data model,” Proceedings of the Interna-
tional Workshop on Object-Oriented Databases,
Pacific Grove, CA, pp. 18-25, 1986.

[23] E. Neiihold and M. Ston$xaker, “Future Direc-
tions in DBMS Research, Technical Report 88-
001, Intl. Computer Science Inst. Berkeley Cali-
fornia, May 1988.

[24] S.L. Osborn, “Identity Equality and Query Op-
timization,” Proceedings of the Znd International
Workshop on Object-Oriented Database Systems,
Ebernburg, pp. 346-351, September 1988.

[25] M.A. Roth, H.F. Korth and A. Silberschatz,
“Extending Algebra and Calculus for Nested
Relational Databases”, ACM Transactions on
Database Systems, Vo1.13, No.4, pp.389-417, De-
cember 1988.

[26] L.A. Rowe and M.R. Stonebraker, “The Post-
gres Data Model,” Proceedings of the 131h In-
ternational Conference on Very Large Databases,
Brighton, pp. 83-96, 1987.

[27] G . Shaw and S. Zdonik, “A Query Algebra for
Object-Oriented Databases,” Proceedings of the
G I* In t ern at ion a1 Conference on Dat a Engineer-
ing, Los Angeles, CA, pp. 154-162, 1990.

[28] D. Shipman, “The Functional Data Model and
the Data Lan uage Daplex,” ACM Transactions
011 Database ,fystems, Vol. 6, No. 1, March 1981.

“Queries and
Query Processin in Object-Oriented Database
systems,” A C ~ T ransactions on Information
Systems, Vol. 8, No. 4, pp. 387-430, 1990.

[30] S.L. Vandenberg and D.J. DeWitt, “Algebraic
Support for Complex Objects with Arrays, Iden-
tity and Inheritance,’’ Proceedings of ACM-
SIGMOD Conference on Management of Data,
June 1991.

[29] D.D. Straube and M.T. Ozsu,

172

