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ABSTRACT When a superposition of on/off sources is of- 
fered to a deterministic server, a particular queueing system 
arises whose analysis has a significant role in ATM based 
networks. Periodic cell generation during active times is a 
major feature of these sources. In this paper a new an- 
alytical method is provided to solve for this queueing sys- 
tem via an approximation to the transient behavior of the 
n D / D / l  queue. The solution to  the queue length distribu- 
tion is given in terms of a solution to a linear differential 
equation with variable coefficients. The technique proposed 
here has close similarities with the fluid flow approximations 
and is amenable to extension for more complicated queueing 
systems with such correlated arrival processes. A numerical 
example for a packetized voice multiplexer is finally given to 
demonstrate our results. 

Introduction 
The Asynchronous Transfer Mode (ATM) is the preferred 
transfer mode for the Broadband ISDN (B-ISDN). The core of 
an ATM network is “asynchronous multiplexing” on the basis 
of which transmission links and switching devices are shared 
by different virtual connections. Information is transmitted 
in the form of constant length packets, called “cells”. Since 
ATM has the potential to improve bandwidth efficiency via 
the use of statistical multiplexing of variable bit-rate sources, 
characterization of a traffic stream belonging to a particular 
connection turns out to have an important role. In fixed bit 
rate coding schemes, sources emit cells periodically with a fre- 
quency determined by their bit rate. On/off sources emit cells 
periodically during activity (on) times alternating with silence 
(off) times during which there is no cell generation. These 
two periods are in general of variable length. In this paper, 
we focus on a queueing system in which several on/off sources 
with an identical period share a buffer of infinite size. Given 
the number of sources and the associated traffic parameters, 
we are interested in the probability distribution function of 
the buffer content. A 2-state continuous-time Markov chain 
model (see Figure 1) will be used to describe the aforemen- 
tioned traffic stream. In this model, the silence times and 
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Figure 1: 2-state Markov model for an on/off source 

the activity times are exponentially distributed with means 
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1/X and l/p, respectively. This 2-state model can be ex- 
tended to construct an N-state Markov chain to describe the 
superposition process of N on/off sources (see Figure 2). The 

Figure 2: Birth-death model for the superposition of N on/off 
sources 

state of the Markov chain is defined to be the number of ac- 
tive sources. In an arbitrary state, say n ,  of the Markov chain 
whose state holding time is exponentially distributed with pa- 
rameter U,, = (N-n)X+np,  n sources independently transmit 
cells with an identical period. In general, we call the arrival 
process as a Markov modulated periodic arrival process. 

The arrival process associated with the superposition pos- 
sesses two kinds of correlations: 

0 negative correlations of arrivals in successive time slots 
due to the periodic nature of cell transmissions, 

0 positive correlations among the average arrival rates in 
successive periods of length greater than the intercell 
times of the multiplexed sources. 

There are various approaches proposed in the literature which 
take account of these correlation effects in the performance 
analysis of the queueing system [l]. One basic approach is 
using fluid flow models. These models approximate the cell 
arrival and service process by continuous arrival and depar- 
ture of a fluid. The superposition of a finite number of on/off 
fluid sources is considered in [2] for which the authors give 
a computationally efficient algorithm to evaluate the buffer 
occupancy distribution. However, the model does not give 
accurate results for low to moderate traffic when cell layer 
contention dominates over burst layer contention. This is be- 
cause the first type of correlations cannot be captured by fluid 
flow models. The model and technique proposed in [2] is fur- 
ther applied to the finite buffer case in [3] to solve for the 
cell loss rate which is a critical performance measure in ATM 
networks. 

For an accurate analysis of an ATM multiplexer, the nega- 
tive correlation between cell interarrival times should also be 
taken into consideration. Actually, when the instantaneous 
arrival rate is less than the link rate, the queueing system 
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behaves like the so-called n D / D / 1  queue: a superposition 
of independent periodic sources (n sources) with an identical 
period but with random phase feeds a constant service time 
buffer. This queue is investigated in [4], [5] to find the steady- 
state distribution of the queue length. Different periods are 
also allowed in [SI where accurate approximate formulas for 
the queue length distribution are derived. 

In our queueing model that considers a Markov modulated 
periodic arrival process as input to the multiplexer, tlhe tran- 
sient behavior of the n D / D / l  queue has a significant role. 
The focus of this paper is on the derivation of a relationship 
between fluid sources and periodic sources, arrival rates of 
which are Markov modulated in the same manner, through 
an approximation of the transient behavior of the n D / D / l  
queue. This approximation is mainly based on an interpola- 
tion of the queue length whose distribution is known at  certain 
epochs. The solution for the overall problem is then reduced 
to the solution of a linear differential equation with variable 
coeficients whereas in fluid flow approximations the corre- 
sponding equation is simply linear with constant coefficients. 
A numerical example is finally given in the context of a pack- 
etized voice multiplexer. 

Problem Formulation and Analysis 
The method used in solving for the steady-state distribution 
of the queue length for the Markov modulated periodic arrival 
case is composed of two main stages. Tlie first stage consists 
of an approximation to the transient behavior of the 7iD/D/1 
queue in a continuous-time framework. In the second stage, 
we extend our results for the nD/D/1 queue to solve for the 
cont,inuous-time Markov model which characterizes the input 
traffic. 

Let us first consider the case when the number of active 
sources ( T I )  is fixed. In our queueing model, we assume that 
the t,ime axis is slotted where each time slot is as long as the 
transmission time of a cell. The cells arriving to the queue 
are served on a first-conie-first-serve basis and the queue has 
infinite size. The n active sources each transinit fixed length 
cells with a period of R slots. independently of each other. I n  
an arbitrary frame of R slots, each input source’s cell can be in 
any of these R slots with equal probability. Tlie peak source 
ra1.e in cells/sec is denoted by P and the service rate of the 
buRer is denoted by C ,  which actually equals to P R  cells/sec. 
Wit,liout loss of generality, we assume that the departures 
take place at  the beginning of slots, and arrivals during slots. 
Let us assume a stable queue ( 7 1  < R )  for the time being and 
define the following random variables 

Qk = queue length at  t,he end of k t h  dot,  
a k  = number of arrivals in the k*“ slot,. 

The queueing strategy is the following: 

Qk = { ‘O i f k = O  
max(Qk-1 - 1,o)  + ak if k > 0 

By iteration on k, one can check using algebraic manipulations 
that 

Q R  = max(Q,, QO + 71 - R )  (1) 

where the random variable Qn is defined via 
R 

The cumulative distribution function for the random variable 
Qn is expressed by the following summation [5] 

where q is the largest integer smaller than q and q 5 n - 1. 
In order to obtain the queue length evolution equations for 
ti < R, we iterate on equation (1) on an R-slot basis so that 
by periodicity of arrivals we have 

&kR = max(Q,, Q o  + k ( n  - R)) ,  k = 1,2,. . . (4) 

There is, in fact, a strong interconnection between periodic 
models and fluid flow models. In the latter models, informa- 
tion is assumed to arrive uniformly to the multiplexer and 
the server similarly removes information from the queue, in 
a continuous manner. The computational tractability and 
buffer size independent solvability of fluid flow approximation 
techniques suggest a further study of this interconnection. 

If we define Q ( t )  as the queue length at  time t ,  the fluid 
flow approximations suggest that [a ] :  

Q ( t )  = max(0, QO + ( P P I  - 6)t). (5) 

Note the noninteger values that Q ( t )  may take due to the 
absence of the concept of packetization in fluid models. 

There are two major differences between the expressions 
(4) and (5). The first term associated with the short term 
fluctuations of the quene length is the random variable Qn in 
the periodic model whereas it equals zero in the fluid model. 
This is why the fluid flow models do not give accurate results 
in light to moderate traffic when several on/off sources are 
multiplexed on a common link. This deficiency belonging to 
fluid models has been mentioned by several authors [7], [8]. 
The second term associated with the dynamical behavior of 
the queue length in (5) is just a linear interpolation of the 
corresponding term in (4). 

For the overload states, since the probability that the 
queue length is zero at  some time epoch is negligible, fluid 
flow approximation gives accurate results in the analysis of 
the transient response of the queue. Taking (4) as our key 
equality, our approach is mainly based on interpolating the 
second term as in (5) while preserving the first term, Qn, 
which captures the short term fluctuations in the cell layer. 
In regard of these observations, we approximate Q ( t )  by 

(6) 
max(Q,,Qo + ( P n  - C ) t ) ,  71 < R 

0 + ( P n  - C)l, 71 2 R Q ( t )  = { Q 

The accuracy of this approximation for the average queue 
length in an n D / D / l  queue is examined in Figure 3 and com- 
pared with simulation results and fluid flow approximations. 
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Figure 3: Comparison of approximations for the expected 
value of the queue length for the case R = 10 and n = 8 .  

For the case R = 10 and n = 8 ,  we allow the queue start with 
two different initial levels. 

The major observation is that ,  the approximation (6) is 
accurate when the initial buffer content is not in the vicinity 
of zero. Even in this case, the approximation is able to track 
the simulation curve after the queue length reaches its stead,y- 
state distribution. Better results compared with fluid flow 
approximations are obtained irrespective of the initial buffer 
content. The fundamental approximation in (6) will now be 
used to derive formulas for the queue length distribution when 
the number of active sources is changed according to the state 
of the birth-death model. 

Let us now consider the traffic model in Figure 2 and con- 
centrate on a particular state ( n ,  0 < n 5 N )  of the Markov 
chain. Let X ( t )  be the buffer content and S(t) be the state 
of the Markov chain a t  time t .  Also let 7rn be the station- 
ary probability of n sources being active. We then define the 
following stationary probabilities (as t + 03, At -+ O+):  

rb (n ,  z) = P r { X ( t )  5 zlS(t + At)  = n ,  S( t )  # S(t + A t ) )  

and 

Fe(n,  z) = P r ( X ( 1 )  5 zlS(t + At)  # S(t), S ( t )  = n } .  

Note that S ( t )  is the state of a continuous-time Markov chain; 
given S( t ) ,  the buffer content X ( t )  will be independent of 

S(t + At) .  This fact yields 

Fe(n, z) = P r { X ( t )  < xIs(t) = n } .  

To interpret, Fb(n, z) is the equilibrium probability that the 
queue length is less than 2 given th2t a state transition to 
state n is about to occur. Similarly, Fe(n,  z) is the stationary 
probability that the queue length is less than z given that 
a state transition from state n is about t o  occur. In other 
words, we observe the queue length a t  the time epochs when 
state transitions occur and henceforth define the correspond- 
ing random variables. We then define Fb(n, z) = 7rnFb(n, z) 
and Fe(n,  Z) = TnFe(n,  z). 

Each time the Markov system changes a state we assume a 
complete phase randomization of all the sources whereas for 
the original system an active source’s phase is independent 
of the other sources’ state transitions. With this assumption, 
the station_ary queue length at the moment of state transition 
to n and Qn become independent. By exploiting the approx- 
imation ( 6 )  and with the above assumption one obtains 

A 

A 

where 

the subscript f denotes the fluid flow term and U(.) is the 
unit step function. We can then write down the differential 
equation that governs F j ( n ,  z) for z > 0: 

(8) 
Now letting p(m, n )  be the state transition rate from state m 
to state n ,  we relate Fa(n, 2)’s to Fe(., 2)’s .  It is not difficult 
to show by using the balance equations of the Markov chain 
that 

bnFb(n, 3) = p(m, n)Fe(m, z). (9) 
m#n 

Combining(7), (8), and (9), we finally obtain the following 
differential equations for F j ( n ,  z)’s: 

and 

A In the-above equations, Qm(z)  = 1, Vz > 0 , m  2 R .  If the 
term Qn(z)  is taken as unity Vn, n = O , l , .  ... N ,  then the 
above equations are equivalent to the fluid flow equations [2]. 
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Fj (x )  = 

where the N x  N matrix A ( E )  is determined through asuitable 
arrangement of the differential equations in (10). Actually, 

A ( t )  = A i ,  x E [ i , i +  l ) ,  i E 2+, 0 5 i 5 R - 2 ,  

and 
A ( z )  = A ,  z E [R - 1,m) 

for some appropriate constant matrices Ai's and A ,  _due to 
the piecewise constant structure of the distributions Qn(.)'s. 
Given the initial condition Fj(O) ,  the differential equation 
(1  1) has a unique continuous solution described by 

FJ(c) = exp(Ai(z - i ) ) F j ( i ) ,  1: E [ i , i +  I], 0 5 i 5 R -  2, 
(12) 

and 

F j ( z )  = exp(A(z - ( R -  l ) ) ) F j ( R -  l ) ,  E 2 R -  1 .  (13) 

In  order to find the initial condition, we make use of the fol- 
lowing observations: 

- F f ( W  - 
Ff (11 x) 

Fj(R - 1 ,  z) I 

F f ( R +  1,z) 

- Fj(N,X) 

- 
For n > R,  the queue is always increasing, so the queue 
length cannot be zero. Therefore, F j ( i i ,  0) = 0 for n > R. 

The matrix A is, in  fact, equivalent to the stale matrix 
in fluid flow models, therefore it is known to have R - 1 
positive real eigenvalues, N - R negative real eigenvalues 
and an eigenvalue at  the origin. In order for the solution 
not to blow up as x 4 za, no positive (unstable) modes 
of A should be excited by the choice of F j ( 0 ) .  

The behavior of F j ( i i ,  E )  as z 4 CO is easy to write: 

Fj(?i,00) = K,, V71, 0 5 7 1  5 N .  

Now, let zi be a stable eigenvalue of A and 4, be its corre- 
sponding right eigenvector. Then, by observation 2 and (13), 
the solution to F j (x)  can be written in the form 

N - R  

F ~ ( x )  = ~ j ( m )  + exp(=i(c - R + l ) ) / i i @ i ,  z 2 R - I 
i = l  

which yields 

N - R '  

F ~ ( R  - 1) = I ~ ~ ( c o )  + ILi4j l  (14) 
i= 1 

where p i ' s  are coefficients to be determined. The relationship 
between F j ( 0 )  and F j ( R  - 1) now needs to be established. 
Using (12), one can write 

R-2 

F j ( R -  1 )  = Z F j ( 0 )  

Besides, by observation 1, F j ( 0 )  is in the form 

L J  

where f is of size R x 1 .  Cornbining (14) and (15), one 
can solve for pi's and f ,  and thus the initial condition F j ( 0 )  
through a linear matrix equation of size N .  Having found the 
initial condition, the solutions given in (12) and (13) com- 
plete our description of the queue length distribution through 
(7). The essential difference between the method presented 
here and computations encountered in solving the fluid flow 
models is the calculation of the linear operator 2 in (15). 

The overall cdf of queue length is the sum of the individual 
elements F,(n, E ) :  

Pr(queue length 5 z) = Fe(71, x). 
n = O  

Numerical Example 

We consider a packetized voice system with voice peak rate 
32 Kbits/sec., R = 10, mean active period 353 ms. and 
meail silent period 650 ms. The packets are 64 bytes and 
the packet transmission time is 1.6 nis. Within an active pe- 
riod, cells from an individual voice source are transmitted in a 
periodic manner, each source's phase being uniform between 
0 and 9. In Table 1 ,  the mean waiting time in the queue 
with respect to the nuniber of voice sources by our analy- 
sis method and the fluid flow approximations is given and 
these values are compared with the simulation resulls. The 
analysis rnetliod proposed in this paper gives highly accurate 
results independent of the degree of utilization in the system 
whereas fluid flow approximation is only satisfactory in the 
heavy load regime. Figure 4 is devoted to the queue length 
survivor function which is obtained for the cases N = 15 and 
20, respectively. In both cases, the method we propose is 
able to capture the simulation curve for the buffer survivor 
function accurately. 

Conclusions 

In the present paper, a new theory for the approximation 
of the queue length distribution for the Markov modulated 
periodic arrival process is presented. This method is a natural 
extension and generalization of fluid flow models which are 
commonly used in the communications literature. From a 
multi-layer concept, the technique is capable of capturing the 
short term fluctuations of the queue length at  the cell layer. 
Therefore, accurate results are obtained in the analysis of a 
packetizcd voice multiplexer for different possible loads. 
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No. simulation % 95 conf. approximations [ms] ‘ 
sources res. (ms.) interval analysis I fluid flow ~~ 

4 0.0929 f0.0021 0.0948 I 0.00 

I 258.1 f8.7 I 224.6 1 222.9 ] 
Table 1: Comparison of approximations of the mean waiting 
time with the simulation results for the case R = 10. 

Except for the determination of the linear operator 2 de- 
fined in (15), numerical procedures are the same as the ones 
used in solving the fluid models. One may propose many all- 
proximative schemes for determining 2 (e.g., trapezoidal ap- 
proximation) so that a computationally tractable algorithm 
is provided. Use of the same underlying mathematical frame- 
work provides an easy generalization of this idea for more 
complicated queueing problems for which fluid flow techniques 
are successfully applied. We believe that the method demon- 
strated here can be used to develop techniques for the perfor- 
mance evaluation of typical traffic control schemes proposed 
for ATM networks. 

The methodology developed here is valid for discrete- 
time queueing schemes where the modulating process is 
a continuous-time Markov chain. This choice is due to 
the discrete-time operation of ATM multiplexers and the 
continuous-time nature of the fluid flow approximations on 
the basis of which we make the performance comparisons. 
The framework presented here can readily be reformulated to 
cover other models (e.g., both the multiplexer and the chain 
work in continuous-time (or in discrete-time)). These exten- 
sions and the computational aspects of the method need to be 
investigated. One other future work is to develop performance 
analysis schemes in the case of multi-class traffic which, in this 
framework, needs an accurate approximation to the transient 
response of the Di/D/1  queue where multiple periods are 
allowed. 
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