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Abst+act-fiactional Fourier transforms, which 
are related to chirp and wavelet transforms, lead 
to the notion of fractional Fourier domains. The 
concept of filtering of signals in fractional do- 
m a i n s  is developed, revealing that under cer- 
tain conditions one can improve upon the spe- 
cial cases of these operations in the conventional 
space and frequency domains. Because of the 
ease of performing the fractional Fourier trans- 
form optically, these operations are relevant for 
optical information processing. 

1. INTRODUCTION 

Whenever we are confronted with an operator, it is 
quire into the effect of repeated applica- 

tiom of that operator, which might be considered as 
its integer powers. A further extension is to inquire 
what meaning may be attached to fractional powers of 
that operator. The fractional Fourier transform was 
defined mathematically by McBride and Kerr [I]. In 

n how the twc+dimensional fractional 
can be realized optically and various 

mathematical and physical properties are discussed. 
The definition of the ath order fractional Fourier 

transform F“[fl can be cast in the form of a general 
linear transformation with kernel Ba(x, 2‘): 

exp[ir(x2 cot Q - 2x2’ csc Q + xn cot Q)], 

for 0 < 141 < r (i.e. 0 < 1.1 < 2), where 

6 = a r / 2  

4 = sgn(sin 4). 
and 
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The kernel is defined separately for a = 0 and a = 

respectively. 
The kernel B,(t, 2’) is a chirp function, allowing the 

above transformation to be interpreted as a coordinate 
transformation in which the chirp functions play the 
role of basis functions. Based on this concept, a for- 
mulation of fractional Fourier transforms can be char- 
acterized by the following properties: 

2 as Bo(2,t’) = a(x - 2‘) and B2(2,2’) = a(2 + x‘) 

1. Basis functions in the ath domain, be they delta 
functions or harmonics, are in general chirp func- 
tions in any other (a’)th domain. 

2. The representation of a signal in the ath domain 
can be obtained from the representation in the 
(u’)th domain by taking the inner product (pro- 
jection) of the representation in the (a’)th domain 
with basis functions in the target ath domain. 

3. This operation, having the form of a chirp trans- 
form, is equivalent to taking the (a - u’)th frac- 
tional Fourier transform of the representation in 
the (a‘)th domain. 

The relationship of fractional Fourier transforms to 
chirp transforms provides the basis of the concept of 
fractional domains, which are generalizations of the 
conventional space and frequency domains. The rela- 
tionship to wavelet transforms is discussed in [6]. 

2. FILTERING IN FRACTIONAL DOMAINS 

Now we move on to discussing filtering in fractional 
domains. We will see that under certain circumstances, 
noise separation can be realized effectively in fractional 
Fourier domains: Fractional Fourier transforms can be 
used to separate signals which cannot be separated in 
ordinary coordinate and frequency domains. For in- 
stance, consider the signal and noise components shown 
in Fig. 1. Their projections on both coordinate and 
frequency axes overlap, however, their projections on 
the axis corresponding to the ath fractional Fourier do- 
main do not.. Thus, the signal can be separated from 
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b. a 

Fig. 1: 

the noise easily. 

sider the signal 
Now let us give some more concrete examples. Con1 

exp[-r(z - 4)2] 

distorted additively by 

exp(-irz2)rect (z/16). 

The magnitude of their sum is displayed in part a of 
Fig. 2. These signals overlap in the frequency domain 
as well. In part b, we show their a = 0.5th fractional 
Fourier transform. We observe that the signals are sep- 
arated in this domain. The chirp distortion is trans- 
formed into a peaked function which does not exhibit 
significant overlap with the signal transform, so that 
it can be blocked out by a simple mask (part c). In- 
verse transforming to the original domain, we obtain 
the desired signal nearly perfectly cleansed of the chirp 
distortion (part d). 

Now we consider a slightly more involved example in 
which the distorting signal is also real. The signal 

exp( -rx2) 

is distorted additively by 

cos[2r(x2]2 - 4z)]rect(z/8), 

as shown in part a of Fig. 3. The a = 0.5th transform is 
shown in part b. One of the complex exponential chirp 
components of the cosine chirp has been separated in 
this domain and can be masked away, but the other still 
distorts the transform of the Gaussian. After masking 
out the separated chirp component (not shown), we 
take the a = -1st transform (which is just an inverse 
Fourier transform) to arrive at the a = -0.5th domain 
(part c). Here the other chirp component is separated 

C. d 

Fig. 2 0  

a b. 

C. d. 

Fig. 3: 

and can be blocked out by another simple mask. Fi- 
nally, we take the 0.5th transform to come back to our 
home domain (part d), where we have recovered our 
Gaussian signal, with a small error. 

The examples above have been limited to chirp dis- 
tortions which are particularly easy to separate in a 
fractional Fourier domain (just as pure harmonic dis- 
tortion is particularly easy to separate 'in the ordinary 
Fourier domain). However, it is possible to filter out 
more general types of distortion as well. In some cases 
this may require several consecutive filtering operations 
in several fractional domains of different order [6]. There 
is nothing special about our choice of Gaussian signals 
other than the fact that they allow easy analytical ma- 
nipulation. Also, there is nothing special about the 
0.5th domain. It just turns out that this is the domain 
of choice for the examples considered above.. 

In the above examples we have demonstrated that 
the method works, but did not discuss what led us to 
transform to a particular domain and what gave us the 
confidence that doing so will get rid of the distortion. 
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This becomes very transparent once one understands 
the relationship between the fractional Fourier trans- 
form and the Wigner distribution. This relationship, 
as well as the general1 philosophy behind such filtering 
operations is discussed in [SI. 

3. CONCLUSIONS 

The concept of fractional Fourier transforms is re- 
lated to chirp and wavelet transforms, as well as being 
intimately connected to the concept of space-6equency 
distributions. This leads to the notion of fractional 
Fourier domains, which are discussed at length in [SI. In 
this paper, we have shown numerical examples in which 
filtering in a fractional domain can enable effective-noise 
elimination. Because of the ease of performing the frac- 
tional Fourier transform optically, these operations are 
relevant for optical information processing. 

The concept of multiplexing in fractional domains is 
also investigated in [6], showing that for certain sig- 
nal Wigner distributions, efficient multiplexing can be 
realized in fractional domains. 

In most of this paper, we work with continuous sig- 
nals which are represented as functions of space or spa- 
tial frequency. Temporal interpretations of our discus- 
sions can be provided easily by those interested in them. 
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