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Absfracr- Vedor 7. have promised an ewrmous h a w s e  in Computing 
speed for c o m p u t a t ~ d y  "s ive  and timoaiticll power system problems 
which require the repeated solution of sparse linear equations. Due to short 
vectors proassed in these applications, st.nd.rd sparsity-based a lg"s  
need to be rrstnrctured for efiiciard vedorization This p.pa PreMltp a novel 
data storage scheme and an &cieat vedorhtion algorithm that exploits the 
intrinsic a r c h k h d  features of vedor computers such as sedioaing and 
chahing As the b"& the solution phase of the Fast Deooupled Load 
Flow algorithm is used in simulations. The relative perform~ocs of the 
proposed and existing vedorization schemes are evaluated, both theoretically 
and experimentally, on IBM 3090NF. 

1. INTRODUCTION 

Most power system problems such as load flow, state estimStion, m i e n t  
stabihty, etc. require @ve solution of a set of sparse l iear equations of the 
form 

Ax=b (1) 

The st.nderd prooedun for solving these equat~ons consists of two main 
phases: f&d" of the coefficient matric A into LDLT fimn, and 
f- substiMions (FBS). Although the heavy canputational 
dor t  associated with such repetitive solutions has been greatly reduced by 
using sparse matrix techniques, it is still very time anWming. Recent 
developments in computer technology suggest that fiutber reductions in 
computatron time may be achieved through vector processing. However, 
standard sparsity-based alg"s used in power system applications need to 
be restructured for efficient vectorization due to extremely short vectors 
processed 

Vector processing achieves unprovement m system through-put by exploiting 
p i p e l i g .  To achieve p i p e l i g  an operation is divided into a sequence of 
substasks, each of which is executed by a specialized hardware stage that 
operates wncurrently with other stages in the pipeline. Successive tasks are 
streamed into the pipe and executed in an overlapped fashion at the subtask 
level In FORTRAN, pipelining can be exploited during the execution of DO- 
loops. Vectorizing compilers convert each vectorizable DO-loop into a loop 
consisting of vector instructions. Each vector instruction is associated with a 
start-up time over-head which corresponds to the time required for the initiation 
of the vector instruction execution, plus the time needed to fill the pipeline. 
Hence, Optimizing an application for a vector computa involves arranghg the 
data structum and the algorithm to produce long vectorizable DO-loops. 

Vectors proassed during the execution of a vedoriuble DO-loop may be of 
any length that will fit in storage. However, each vedor computer is identitied 
with a sedion-size K which denotes the length of the vector registas in that 
wmputer. For example, K=128 in IBM 3090NF. Vectors of length pais 
than K are sedioned, and only K elements are praoessed at a time, except for 
the last section which may be shorter than K. Vectorizing compilers g e n a  a 
moning loop for each vcdorizable DO-loop. Hence, each section is 
associated with an ovaall M - u p  time overhead which is equal to the sum of 
the start-up time overheads of the individual vector instructions in the 
sectioning loop. 

Vector computm provide the chaining facility to further improve the 
performance of p i p e l i g .  Chaining allows the execution of two suwessive 
vector instructions to be overlapped whae vector elements produced by as the 
results of one khuction pipeline are passed on-the fly to a subsequent 
iwhuction pipeline which needs them as operand elements. In vmtar 
computers, advantages of instruction c h d n g  are obtained by providing 
several of the most importMt combiaations of operations with single compound 
vector instructions, such as Multiply-Add instruction. When both multiplication 
and addition pipelines become fill, one result of the compound +on will 
be delivered per machine cycle. Tbe following DO-loop illustmtcs the duining 
of multiplication with addition: 
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Vector computers load, store or process vectors in storage in one of two ways: 
by quential clddrcssig (mntiguously or with stride), or by indirect element 
seleotim Indim& element selection, or gather-scat&r, permits vector elements 
to be loaddcd, stored or processed directly in an arbitrary sequence. In indirect 
addressing, the memory location of the vector elements to be d is 
indicated by a vedor of integer indices, which must be previously stored in a 
vedor register. In DO-loop (2), vectors W, B and IX are d sequentially, 
wherurs vector V is d indirectly with addresses specified by the IX 
vedor. The performance of vector computers degrades dnsticauy during 
indind vector ~ccesses. Hence, the number of indind vector accfsses should 
beminimizcd for efficient veotorizati m 

Uof-ly, vectorizing compilers generate scalar code for the following 
type of DO-loOps: 

(3) 

This DO-loop cont.ins apparcnl dependence due to indexing of the B array by 
the IX array in both sides ofthe statement in (3). There can be a recurrence d 
two elements of the IX array have the same value. These recurrences make the 
result of one j itnrtion to be dependaa on the results ofthe prewous ones and 
heme scalar execution is mandatory to obtain comct results. Since such DO- 
loops are widely encounted during the vedorization of the FBS of sparse 
linear ,equations, the recumnce problem is a crucial bottleneck for effiaent 
vedonutioa The DO-loop (3) can be executed in vector mode by enforcmg 
the compiler to vedorize this DO-loop through the use of ignore-dependence 
type dh&ives. However, a d a n e  should be developed to prevent the incorrect 
rtwrltsthatcanoccu~ duetorecumnces 

This paper presentr a novel data storage scheme and a vedorizati6n algorithm 
that resolves the rrcumace problem and exploits the intrinsic a r c h h h d  
fuaueS of vmtar computers such as chauung and Sectioning. The solution 
phase of the Fast Dcooupled Load Flow (FDLF) algorithm [l], which is the 
most popular "I kquently utilized by power utilities, is used as the 
bcnduna~& for the propod algorithm. In the solution phase of FDLF analysis, 
real and reddive load flow equations; B'M=AF'N and B"AV=AQN are 
repcatcdly solved whae B and B" are randomly sparse Jacobian matrices 

2. W-MATRIX APPROACH 

The FBS phase in the solution of linear system of equations consists of the 
following steps: 

(a) ~z=b; p) w-2; (c) ~ T x = y  (4) 

where L and D are factor matrices of the coefficient matrix. Diagonal Scaling 
(DS) step (4.b) is suitable for vectorizStion since it CM be formulated as the 
multiplicaticn of two dense vectors (of sizes N) by storing the reciprocals of the 
diagonal elements. The loops of Fonvruri SubstiMion (FS) step (4.1) and 
Badwad SubstiMion (BS) step (4.c) can be vectoriz+d on a vector computer 
with hadware wrpport for */gather +ions. Unfodmakly, in power 
syldan .ppliutions, these vedorizcd inner loops yield " b l y  poor 
paforrrmna sinceaverage vedor length isveryshon 

h & a d  of paforming the conventional FS and BS elimination processes, 
solution o f k b  canbe " p u t e d a s  

(a) z=w, p) YD% (c) FWTY (9 
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valious dgoritfrmr haw ken ppcncd for detamining invnre factor matrix 
pprtitioning which produce zcro or only a prc-fixed " u m  number of fill-ins 
[2, 31. The simplcsl dgoritlm that producg no fill-ins exploits the 
FactoriUtionP.Lhonph (FPG)amcept.lnthisschane,nodcldthes~e 
level of FPG are gathad into the same putition so that the number of 
partitions is equal to the depth of the FPG. VUiour ordering algorithm such as 
MDMNP, MD-ML, MLMD. etc., have also bem propored to reduce the 
t o ~ l  number of levels in the resulting FPG. 

3. VMTORIZATION OF FBS 

In this section, the implementation of the waoriution approlchea proposed 
by Gomez et al 141 and Granelli et al IS] will be briefly d i d .  These 
schemes store fhe non-zero elements of W-partition matrices column-wise, in 
partition order, in WV together with their row and column indices in RIX and 
C l y  respectively. Figure 2 illustrates the data storage schemes utilized for the 
second level of the L factor of the B matrix for the IEEE-14 network in Fig. 1. 
Columns of L given in Fig. I are permuted in level ordcr. Since each partition 
is taken as one level of the FPG, Fig. I illustrates the sparsity structure of the 
W-partition matrices as well. 

The FS phase ofthe approach proposed by Come2 141 involves the following 
two DO- loops for each partition i: 

RRIX 
RRIXIX 

DO j=PP (i). PP(i+l)-I 

ENDDO 
DO j=PP(i). PP(i+I)-1 

ENDDO 

WVR(i)=WV(i)xBV(ClX()) 

BV(RIXO)=BV(RIX(i))+WVR(i) 

9 13 I I1  13 I2 13 I .- 
8 9 1 12 15 16 17 I .* 

Here. WVR of size M, demotes a real working army which is used to keep 
the multiplication results and M demotes the total number of offdiagonal non- 
zero elements in the W partition matrices. The real array DV. of s k i  N, is the 
right hand side vector (b in 6.a) on which Le  solution (z in 6.4 is mvritten. 
DO-loops (7.a) and (7.b) perfom the multiplication and addition operations 
involved in each sparse matrix-vector product in (6.21). respectively. The DO- 
loop structure of the BS phsse can easily be obtained by interchanging CIX 
with R I S  in (7). In the FS (BS) phase, the addition DO-loop (7.b) is not 
vectorized by the compiler because of the possible recurrent indices in the RIX 
(CIS) may. Hence. only multiplications involved in the FBS phase are 
vectorized in this scheme, which will be referred to as GB here&. 

The DO-loop (7.a) is vedorized on IBM 3090NF by the following sequmce 
of vector instructions: VL (Vector Load). VLID (Vector Load Indirrct), VM 
(VeczOr Multiply) and VST (Vector Store). The overall computational 
complexity of the veaorized 'multiplication operations involved in FS and BS 
phases is 10M + 8 4  where S is the total number of padition-basis sections in 
W array and \ is the start-up time overhead. The addiiion DO-loop (7.b) is 
executed in scalar mode and 2M operations are involved. This scheme requires 
two real (WV, WVR) and WO integer (COC RIX) vectors, of lengtbr M. and 
one integer vector of PP of length nl-l. Hence. the storage complexity of this 
scheme is 4M+4nl =4M 

The scheme proposed by Granelli et al. [SI is an improvement to scheme GB 
to vecbrize the addition operations. In this scheme, recurrence-he row and 
column index vectors RIXRF and CIXRF are g d  by replacing all 
parlition-basis recurrences in R E  and CIX vectors, respectively, by N+1. The 
partition-basis recurrent row indices replaced by N+l's in RIX are siored in 
RRIX together with their location indices in RRD(Ix. Pointers to the beginning 

indica O f p P r t i t i o n - b u i r r W  in RRIX and RRDW are +Id in 
RRPP. The reEusTcocQ in tbe crx array are maint.ioed by similar integer 
mays RCE, , RCIW( and RCPP. This data atorage scheme is illustmted in 
Fig. 2(b). Uaing this storage rcbane. the implrment.ticm of Grmelli's mahod 
forthe FS phreanbe obrrined by npl.cingthe addition DO-loop (7.b) by the 
f O U ~ t w 0  Do-loop. 

Do j=PP(i), PP(i+l)l 

E N D W  
DO r=RRPP(i), RRPP(i+l>l 

E N D W  

B v ~ c i i ) F ~ v ~ m + w w )  (8.4 

~ v ~ ( o ) = ~ v ~ ( ~ ) ) + w W ~ o )  ( 8 4  

The Doloop rtructurr of the BS phase is similar. This scheme will be 
referred to Y GRherdbr .  Note that, N+l is the onlypt i th"wiserecu" t  
index in RDcRFand CIXRFarrays. This emurea that all incomct addition 
results with row indices will only 00ataminatC BV@+l). Thus, the 
compiler CUI rufely be c n f d  to vcdorizc Doloop ( 8 4 .  However, & a 

g prr(icul.r excCu(i0n of this DO-loop, the addition phase of the cOmspOndifl 
tothc 

recurrent row indices have not yet been collsidcred for addition. These results 
are processed for addition in the scalar DO-loop (8.b). 

putition is no( conplded sinw multiplication rrsuws comspondrng ' 

The vcctorizcd addition DO-loop (8.a) in FS and BS phases is implemented 
by the following sequence of vector instructions; VL (Vector Load), VLID 
(Vector Load InDinct), VADD (Vector ADD), VSTID (Vector Store 
Mirect). Considering the sectioning of vector operations, this DO-loop 
requires 4s1 vector idructions and 6ml+ 451 madune cycles in the I-th 
iteration. H m  SI=lml/kl and ml is the number ck  nollzero elements in the 1-th 
pUtition. Thus, the o v d l  complexity of the vectorized solution is 22M + 
16% machine cycles. 

1 2 3 4 5 6 7 8 9 0 1 2 3  

11 I 

Figure 1 : The sparsity shucture of the factor and W-partition matrices of the B' 
matlin 

Figure 2: The data slorrge schemes fw the FS phase: (a) GB, (b) GR, (c) PR 
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Rowsed Aleoritinn 

Although scheme GR is a s u W l  attempt to vtctorize the addition 
opentiom, it dws not exploitxhuning since the multiplication and addition 

application can only be exploited by combining the multiplication and addition 
Doloops into a single vedorizable DO-loop. However, this requires a new 
solution to the reaumce problem Here, we propose an &cient scheme to 
resolve the recurrence problem which also enables chaining. In scheme GR, all 
multiplication results are saved in a tmrporary array WVR 80 that 
multiplication results corresponding to recumnt elements can be sel- fiwn 
this array for scalar additions in a later step. However, the use of WVR should 
be avoided to achieve chaining. In the absence of WVR, multiplication rcsults 
corresponding to the recurrent elements should be stored in the extended BV 
locations, BV(N+l), BV(N+2), ..., BV(N+R), for scalar additions in a later 
step. Here, R denoh the total number of recumnces in the RIX and CIX 
arrays. 

operations are v.dorized in two difFkmt DO-loops. chaining in this 

In the proposed scheme PR, pantition-wise recurrence-ffee row and 
column (CIXRF) index vectors are constructed in a differmt manner. Each 
recurrence in the RIX (CIX) array is replaced with N+r in the RIXRF (CIXRF) 
array where r b o b  the index of the next available recurrence location in the 
extended BV array. The partition-wise r e c u m - k  index array RIXRF, 
CKRF and recumce arrays RRDL RRPP, RCIX and RCPP can easily be 
constructed, in linear time. Figure 2(c) illustrates the proposed data storage 
scheme for the FS phase of the W padtion matrices given in Fig. 1. The 
proposed scheme avoids the use of WVR, RRDW and RCDW arrays 
required in the GR scheme. In this scheme, chaining in the FS phase is achieved 
by the following DO-loops for each @on i: 

DO j=PP(i), PP(i+l>l 

Scheme 

BV(RIXRF(j))=BV(RIXRF(j))+WV(j)xBV(CIX(j)) (9.4 

BV(RRIX(r))=Bv)RRIX(r))+BV(N+r) (9.b) 

ENDDO 
DO r -WP(i ) ,  RRPP(i+l>l 

ENDDO 

Stotage Computational 
(words) 

Vector I scalar 

The DO-loop structure of the BS phase is similar. The DO-loop (9.a) 
achieves the chaining of addition and multiplication operations. Due to 
chaining, correct multiplication results corresponding to the recurrent elements 
are added, on the fly, to the appropriate extended BV locations. Hence, 
extended BV locations should contain zeroes at the beginning of computations. 
This init iali ion loop is a vectorizable DO-loop with relatively long vector 
length equal to R. 

The compound DO-loop (9.a) contains two types of apparent dependencies. 
The first is through indexing of the BV array by the RIXRF vector in both sides 
of (9.a). This dependence does not comtitute any problem since RIXRF is a 
partition-wise recurrence-ffee array. The second type is through the use of the 
indices of the RIXRF and CIX arrays as pointers to the elements of the BV 
array in opposite sides of (9.a). Fo~tunately, all row indices associated with 
non-zero elements in each level are strictly greater than all column indices 
associated with those elements. That is, there is no level-basis recurrence 
between RIXRF and ClX arrays. Hence, the latter type of recurrences can be 
avoided by adopting level-wise partitioning. Consequently, the compiler can 
safely be vectorize DO-loop (9.a) to achieve chaining. 

The compund DO-loop (9.a) is implemented on IBM 3090NF by the 
following sequence of vector inshuctions: VLID (Vector Load InDirect), VL 
(Vector had),  VLID (Vector Load Indirect), VMAD (Vector Multiply and 
ADd), VSTID (Vector STore I n D i i ) .  In the I-th iteration, this vectorized 
loop requires 9ml+ 6S& machine cycles. The overall computation complexity 
ofthe FS and BS phases is 18M + 12Sts machine cycles. The proposed scheme 
eliminates the need for using the tempotary real array WVR through chaining 
However, the length of the BV array is increased by R. 

Table 1 illustrates the storage and computational complexity of the proposed 
scheme PR compared with GB and OR schemes. Storage complexities are 
given in terms of words and they denote the asymptotic complexities. 
Computational vector complexities b o t e  the total number of machine cycles 
requred to execute the vectorized operations. Computational scalar complexities 
are given in terms of the total number of scalar additions required by each 
scheme. 

GB 
GR 
PR 

Table 1. Stonge and Computational Complexity of Different Vectodion  
Schemes on IBM 3090NF 

( d c  cycles) (no. of adds) 
4M 10M + 8St. 2M 

6M+2R 22M + 16s. R 
5M+2R 18M + 12St. R 

Note that, the computational vector complexities of both Granelli's and the 
propod scheme are approximately twice that of Gomez's scheme. Hence both 
Granelli's and the proposed schemes are expected to yield better performances 
than Gomez's scheme ifR<2M. 

The proposed scheme PR achieves substantial performance improvement in 
vectoriZation over scheme GR through chaining. For example, on IBM 
3090NF, PR reduces the number of delivery cycles by I8 % and start-up time 
overhead by 25 s/a Chaining achieves this performance increase by avoiding the 
store and load operations for multiplication results. In the scalar DO-loap (9.b) 
of the proposed scheme, extended locations of the BV array are accessed in an 
orderly fashion for processing recurrent elements. However, in the scalar W- 
loop (8.b) of GR scheme, WVR array is accessed indirectly with addresses 
specified by the elements of the RRIXIX array. Thus, the scalar performance of 
the proposed scheme is also expected to be slightly b e t k  than that of GR 
scheme in processing the recurrent elements. 

The Last Partition 

In partitioned scheme W, it is not mandatory for elements in a partition to be 
picked from the same level in the FPG. Nevertheless, adopting level-wise 
pattitioning prevents cross recurrences between RIXRF and ClX (CKRF and 
RE) during the FS (BS) phase in DO-loop (9.a), and hence, substantially 
reduces the total number of redundant scalar additions. In general, initial levels 
of the FPG already consist of long vectors enabling efficient vectorization. On 
the contrary, levels towards the bottom of the tree contain short vectors with 
large recurrence ratios. Hence, the relative advantages of GR and PR over GB 
decline in those levels. In this work, we gaiher those last levels into a single 
multi-level last partition. This last partition concept is also discussed for 
efficient psrallelization in 161. Adopting multi-level last partition enables a 
considerably long vector but results in a substantially large number of 
mmences. Therefore, in the last partition, we have chosen to utilize scheme 
GB which vectorizes only the multiplication operations and avoids redundant 
addition operations. The last partition approach is adopted in all FBS 
vectotiZation schemes discussed in this paper. 

Intra-/Inter-Section Recurrences 

Consider a multi-section level with m non-zero elements, so that the number 
of sections, s=lm/kl>l. The vector facility creates a sectioning loop which 
iterates s times to vectorize DO-loop (8.a). In different iterations of the 
sectioning loop, elements belonging to different sections of R E R F  (CIXRF) 
will be used as address pointas to access the elements of the BV array. So, 
recurrences in RIX and ClX can be classified as in -section which are the 
recurrencs between merent sections whereas intra-$ion recurrences are the 
recurrences within the same section. Inter-section recurrences do not have any 
potential to yield in& results since they are procped in different iterations 
of the sectioning loop. Hence, only intra-sectioh recurrences should be 
considered while generating the RIXRF and CIXRF arrays. 

Here, we propose an efficient round-robin re-ordering algorithm which 
exploits this intra-section recurrence concept to minimize the number of 
redundant scalar operations. The proposed algorithm collects (in linear time) 
the n o n - m  elements with the same row (column) indices in a level and 
scatters them to the successive sections of that level in a modular sequence for 
the FS (BS) phase. During this re-ordering pr-, i-th appearances of a 
recumnt row (column) index in different sections of the RIXRF (CIXRF) array 
are replaced by the same extended BV location index N+r+i-1 for i>l. Note 
that, first'apperances of a recurrent index in different sections remain 
unchanged. The number of extended BV location, assignments for a " r e n t  
index detamines tbe number of redundant scalar addition operations associated 
with that index Hence, this scheme reduces the number of scalar additions 
required for a tecumnt index ix with recumnce degree dix fiwn dix -1 of PR 
scheme to fdi#l-l in a level with s sections. The proposed algorithm 
c o n c u m n t l y m & t h e  mysrequiredto maintain unavoidable recurrences 

. ' 311 



duringtherw"gpr0crss. Note- bath W and Wtputitionmatricesare 
StoredinlhiSSchane. 

Figure 3 shows the round-robin clllocation of a colurm c with d =5 non-m 
elements in a puMion with 111-249 non-m ele-mmts aad S=f249/100]=3 
d o n s .  The d o n  size is assumed to be K=100, and pactitiobbasis local 
indices are used In Figure 3(a), the last n o & m  elemant of tbe previous 
column c-1 is assumed to be assigned to the first section with local indcx 40. 
Shaded portions in Fig. 3(a) denote the IOCrtioas already l o u t e d  by the 
round-robin algoahm for the non-zero elements ofthe previous columns in that 
partition. As seen in Fig3(4, the popoeed scheme assigns recumnt elancnts to 
different d o n s ,  in a round-robin fashion, to minimize the number of intra- 
section rewrrences in the IUX (CDI) array. All first " a c e s  associated with 
the same index in diEerent d o n s  can be assigned the SMIC extended B 

d m  can be asignedwiththe sune extended B locatiorrp. The poposed re- 
ordering a l g "  easily detcds multi-intradon recumnces aswell. Figure 
3@) illusrrates this concept for the allocation instMce gim in Fig 3(a). The 
number of scalar additions required for the fecumnt column index c is reduced 
&om 2 in Fig. 3(a) to 1 in Fig. 3@). 

location B(N+r). Snnilarly, all sccuad third, ...., etc. oaxmwes in di&rent 

NBUS 
118 
354 
590 

1180 
1770 

Figure 3. The proposed round-robin allocation scheme 

4. EXPERIMENTAL RESULTS 

In this section, relative performances of the proposed and existing 
v e d o d i o n  algorithms are tested for the solution phase of IEEE-118 standard 
power network and four synthetically generated larger networks with 354, 590, 
1180 and 1770 buses. 

Table 2 shows the structural properties of the inverse-factor partition matrices 
for B' of the sample networks. We have adopted level-wise partitioning (except 
the last partition) to benefit fiom chaining in the FS and BS phases of the 
proposed vectorization algorithms. MLMD ordering scheme is used to obtain 
longer vectors by decreasing the number of levels. In Table 2, Mf denotes the 
percent increase in level-wise partitioned W fillins introduced by MLMD 
ordering with multi-level last partition instead of MD ordering. Table 2 shows 
that the adopted partitioning scheme introduces roughly 10 % fill-in increase 
for the sake of efficient vectorization. In the same table, nl and n,, denote the 
number of levels and partitions, respectively. 

The total amount of start-up time overhead is proportional to the number of 
sections processed. Note that, the same number of Sections is pcessed in both 
FS and BS phasese. EXperi"ta1 results show that vectorizable Do-loops of 
length shorter than some critical number yield bater performance if executed in 
scalar mode rather than vector mode. C u m t  implementation detects last 
sections shorter than 20 and enforce them to scalar execution. In this work, 
level-wise vector lengths are checked against this critical number (20), starting 
h m  the fust level towards the last one until a v&r of smaller length is 
encountered. Then, the current level and the rest are included in the last 
partition 

Table 2: The number of offdiagonal non-zero elements, levels, partitions, and 
sections for B matrices of sample networks. 

B S p h r s e  FS Phase 
M OR PR GR PR 

299 115 115 95 95(48) 
922 501 250 360 134(63) 

1557 889 342 603 149(51) 
3270 2020 560 1372 198(89) 
4877 3039 688 2030 199" 

Table 3 Illusbaled the number of redwhnt salar additions introduced UI 
adato Vedorizethe addition opartiom. comprnwn . of GR and PR col- 
rcve;rlrtbrtthepopooedrwnd-robinrw"l ' g dgoritlrm exploiting multi- 
i d r a d o n  TCOU~~O~~CC e feduoa the number of scalar addkiom 
dnrtiolilly. 'Ilre p " J r e o n M n g  dgatitbm ia expectcdto yield muoh better 
Pafammoe fordasedion Sizg, e.g., K=64, as is shown in prnnlhesis io 
thirtabk. 'Ilremrmba ofraluaddkiorrp in the E5 phMc is mudl garllefthan 
thtoftheBSpbueduetogratanumbaofrearmntdunmindicesthrn 
~mwindices inpu( i t ionmatr iccs .  

Table 4 illwtrated the pdnmances of GR and PR scbanea for tbe FBS 
pbue. Ibe fourth cduam of Table 4 shows the execution time of DS phase for 
.U scbana. As som in Table 4. PR wrpafinmro GR due to the SUbstMtral 

rsadahrgdgaittm ?bc q e d u p  0bt.inCd with PR agaiml scalar ex&m 
isbdwcen 1 25 and 2.0 and it in-with inaeaSmgproblem s m  

Table 3. The Nu* of Redundant Openlions in the FS and BS phases of 
diffaadscbams 

rchtdionin~numba ofrcdundrnt d a r  additim achievedbytbe propostd 

~ 

I I I 1 scalar additions 

Table 4. Execution times forthe BS, DS and FS phases of B'M = APN 

5 .  CONCLUSION 

paper 1""" a novel data storage scheme and algorithm for the 
efficient vedomat~ on of the fmard/bac&ward substitutions in the solution of 
linear system of equations arising in Fast Decoupled Load Flow. The proposed 
algorithm resolves the recumnce problem and exploits chaining and sectioning 
The relative performances of the proposed and existing vectoridon schemes 
are evaluated, both thtoretically and expexhentally 011 IBM 3090NF. Results 
d c m o " t e  that the proposed schemes perform much beller than existing 
vcctorization schemes. 
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