
EFFICIENT VECTOREATION OF FORWARDBACKWARD SUBSTITUTIONS
IN SOLVING SPARSE LINEAR EQUATIONS

Cevdet Aykanat &em &gii
Computer Engineering Department

Bilkent University
-Turkey

Absfracr- Vedor 7. have promised an ewrmous h a w s e in Computing
speed for c o m p u t a t ~ d y "s ive and timoaiticll power system problems
which require the repeated solution of sparse linear equations. Due to short
vectors proassed in these applications, st.nd.rd sparsity-based a lg"s
need to be rrstnrctured for efiiciard vedorization This p.pa PreMltp a novel
data storage scheme and an &cieat vedorhtion algorithm that exploits the
intrinsic a r c h k h d features of vedor computers such as sedioaing and
chahing As the b"& the solution phase of the Fast Deooupled Load
Flow algorithm is used in simulations. The relative perform~ocs of the
proposed and existing vedorization schemes are evaluated, both theoretically
and experimentally, on IBM 3090NF.

1. INTRODUCTION

Most power system problems such as load flow, state estimStion, m i e n t
stabihty, etc. require @ve solution of a set of sparse l iear equations of the
form

Ax=b (1)

The st.nderd prooedun for solving these equat~ons consists of two main
phases: f&d" of the coefficient matric A into LDLT fimn, and
f- substiMions (FBS). Although the heavy canputational
dor t associated with such repetitive solutions has been greatly reduced by
using sparse matrix techniques, it is still very time anWming. Recent
developments in computer technology suggest that fiutber reductions in
computatron time may be achieved through vector processing. However,
standard sparsity-based alg"s used in power system applications need to
be restructured for efficient vectorization due to extremely short vectors
processed

Vector processing achieves unprovement m system through-put by exploiting
p i p e l i g . To achieve p i p e l i g an operation is divided into a sequence of
substasks, each of which is executed by a specialized hardware stage that
operates wncurrently with other stages in the pipeline. Successive tasks are
streamed into the pipe and executed in an overlapped fashion at the subtask
level In FORTRAN, pipelining can be exploited during the execution of DO-
loops. Vectorizing compilers convert each vectorizable DO-loop into a loop
consisting of vector instructions. Each vector instruction is associated with a
start-up time over-head which corresponds to the time required for the initiation
of the vector instruction execution, plus the time needed to fill the pipeline.
Hence, Optimizing an application for a vector computa involves arranghg the
data structum and the algorithm to produce long vectorizable DO-loops.

Vectors proassed during the execution of a vedoriuble DO-loop may be of
any length that will fit in storage. However, each vedor computer is identitied
with a sedion-size K which denotes the length of the vector registas in that
wmputer. For example, K=128 in IBM 3090NF. Vectors of length pais
than K are sedioned, and only K elements are praoessed at a time, except for
the last section which may be shorter than K. Vectorizing compilers g e n a a
moning loop for each vcdorizable DO-loop. Hence, each section is
associated with an ovaall M - u p time overhead which is equal to the sum of
the start-up time overheads of the individual vector instructions in the
sectioning loop.

Vector computm provide the chaining facility to further improve the
performance of p i p e l i g . Chaining allows the execution of two suwessive
vector instructions to be overlapped whae vector elements produced by as the
results of one khuction pipeline are passed on-the fly to a subsequent
iwhuction pipeline which needs them as operand elements. In vmtar
computers, advantages of instruction c h d n g are obtained by providing
several of the most importMt combiaations of operations with single compound
vector instructions, such as Multiply-Add instruction. When both multiplication
and addition pipelines become fill, one result of the compound +on will
be delivered per machine cycle. Tbe following DO-loop illustmtcs the duining
of multiplication with addition:

Nezih Giiven

Middle East Technical University
Electrical Engineering Department

-Turkey

Vector computers load, store or process vectors in storage in one of two ways:
by quential clddrcssig (mntiguously or with stride), or by indirect element
seleotim Indim& element selection, or gather-scat&r, permits vector elements
to be loaddcd, stored or processed directly in an arbitrary sequence. In indirect
addressing, the memory location of the vector elements to be d is
indicated by a vedor of integer indices, which must be previously stored in a
vedor register. In DO-loop (2), vectors W, B and IX are d sequentially,
wherurs vector V is d indirectly with addresses specified by the IX
vedor. The performance of vector computers degrades dnsticauy during
indind vector ~ccesses. Hence, the number of indind vector accfsses should
beminimizcd for efficient veotorizati m

Uof-ly, vectorizing compilers generate scalar code for the following
type of DO-loOps:

(3)

This DO-loop cont.ins apparcnl dependence due to indexing of the B array by
the IX array in both sides ofthe statement in (3). There can be a recurrence d
two elements of the IX array have the same value. These recurrences make the
result of one j itnrtion to be dependaa on the results ofthe prewous ones and
heme scalar execution is mandatory to obtain comct results. Since such DO-
loops are widely encounted during the vedorization of the FBS of sparse
linear ,equations, the recumnce problem is a crucial bottleneck for effiaent
vedonutioa The DO-loop (3) can be executed in vector mode by enforcmg
the compiler to vedorize this DO-loop through the use of ignore-dependence
type dh&ives. However, a d a n e should be developed to prevent the incorrect
rtwrltsthatcanoccu~ duetorecumnces

This paper presentr a novel data storage scheme and a vedorizati6n algorithm
that resolves the rrcumace problem and exploits the intrinsic a r c h h h d
fuaueS of vmtar computers such as chauung and Sectioning. The solution
phase of the Fast Dcooupled Load Flow (FDLF) algorithm [l], which is the
most popular "I kquently utilized by power utilities, is used as the
bcnduna~& for the propod algorithm. In the solution phase of FDLF analysis,
real and reddive load flow equations; B'M=AF'N and B"AV=AQN are
repcatcdly solved whae B and B" are randomly sparse Jacobian matrices

2. W-MATRIX APPROACH

The FBS phase in the solution of linear system of equations consists of the
following steps:

(a) ~z=b; p) w-2; (c) ~ T x = y (4)

where L and D are factor matrices of the coefficient matrix. Diagonal Scaling
(DS) step (4.b) is suitable for vectorizStion since it CM be formulated as the
multiplicaticn of two dense vectors (of sizes N) by storing the reciprocals of the
diagonal elements. The loops of Fonvruri SubstiMion (FS) step (4.1) and
Badwad SubstiMion (BS) step (4.c) can be vectoriz+d on a vector computer
with hadware wrpport for */gather +ions. Unfodmakly, in power
syldan .ppliutions, these vedorizcd inner loops yield " b l y poor
paforrrmna sinceaverage vedor length isveryshon

h & a d of paforming the conventional FS and BS elimination processes,
solution o f k b canbe " p u t e d a s

(a) z=w, p) YD% (c) FWTY (9

0-7803-1772-6/94/$3.00 @ 1994 IEEE

309

valious dgoritfrmr haw ken ppcncd for detamining invnre factor matrix
pprtitioning which produce zcro or only a prc-fixed " u m number of fill-ins
[2, 31. The simplcsl dgoritlm that producg no fill-ins exploits the
FactoriUtionP.Lhonph (FPG)amcept.lnthisschane,nodcldthes~e
level of FPG are gathad into the same putition so that the number of
partitions is equal to the depth of the FPG. VUiour ordering algorithm such as
MDMNP, MD-ML, MLMD. etc., have also bem propored to reduce the
t o ~ l number of levels in the resulting FPG.

3. VMTORIZATION OF FBS

In this section, the implementation of the waoriution approlchea proposed
by Gomez et al 141 and Granelli et al IS] will be briefly d i d . These
schemes store fhe non-zero elements of W-partition matrices column-wise, in
partition order, in WV together with their row and column indices in RIX and
C l y respectively. Figure 2 illustrates the data storage schemes utilized for the
second level of the L factor of the B matrix for the IEEE-14 network in Fig. 1.
Columns of L given in Fig. I are permuted in level ordcr. Since each partition
is taken as one level of the FPG, Fig. I illustrates the sparsity structure of the
W-partition matrices as well.

The FS phase ofthe approach proposed by Come2 141 involves the following
two DO- loops for each partition i:

RRIX
RRIXIX

DO j=PP (i). PP(i+l)-I

ENDDO
DO j=PP(i). PP(i+I)-1

ENDDO

WVR(i)=WV(i)xBV(ClX())

BV(RIXO)=BV(RIX(i))+WVR(i)

9 13 I I1 13 I2 13 I .-
8 9 1 12 15 16 17 I .*

Here. WVR of size M, demotes a real working army which is used to keep
the multiplication results and M demotes the total number of offdiagonal non-
zero elements in the W partition matrices. The real array DV. of s k i N, is the
right hand side vector (b in 6.a) on which Le solution (z in 6.4 is mvritten.
DO-loops (7.a) and (7.b) perfom the multiplication and addition operations
involved in each sparse matrix-vector product in (6.21). respectively. The DO-
loop structure of the BS phsse can easily be obtained by interchanging CIX
with R I S in (7). In the FS (BS) phase, the addition DO-loop (7.b) is not
vectorized by the compiler because of the possible recurrent indices in the RIX
(CIS) may. Hence. only multiplications involved in the FBS phase are
vectorized in this scheme, which will be referred to as GB here&.

The DO-loop (7.a) is vedorized on IBM 3090NF by the following sequmce
of vector instructions: VL (Vector Load). VLID (Vector Load Indirrct), VM
(VeczOr Multiply) and VST (Vector Store). The overall computational
complexity of the veaorized 'multiplication operations involved in FS and BS
phases is 10M + 8 4 where S is the total number of padition-basis sections in
W array and \ is the start-up time overhead. The addiiion DO-loop (7.b) is
executed in scalar mode and 2M operations are involved. This scheme requires
two real (WV, WVR) and WO integer (COC RIX) vectors, of lengtbr M. and
one integer vector of PP of length nl-l. Hence. the storage complexity of this
scheme is 4M+4nl =4M

The scheme proposed by Granelli et al. [SI is an improvement to scheme GB
to vecbrize the addition operations. In this scheme, recurrence-he row and
column index vectors RIXRF and CIXRF are g d by replacing all
parlition-basis recurrences in R E and CIX vectors, respectively, by N+1. The
partition-basis recurrent row indices replaced by N+l's in RIX are siored in
RRIX together with their location indices in RRD(Ix. Pointers to the beginning

indica O f p P r t i t i o n - b u i r r W in RRIX and RRDW are +Id in
RRPP. The reEusTcocQ in tbe crx array are maint.ioed by similar integer
mays RCE, , RCIW(and RCPP. This data atorage scheme is illustmted in
Fig. 2(b). Uaing this storage rcbane. the implrment.ticm of Grmelli's mahod
forthe FS phreanbe obrrined by npl.cingthe addition DO-loop (7.b) by the
f O U ~ t w 0 Do-loop.

Do j=PP(i), PP(i+l)l

E N D W
DO r=RRPP(i), RRPP(i+l>l

E N D W

B v ~ c i i) F ~ v ~ m + w w) (8.4

~ v ~ (o) = ~ v ~ (~)) + w W ~ o) (8 4

The Doloop rtructurr of the BS phase is similar. This scheme will be
referred to Y GRherdbr . Note that, N+l is the onlypt i th"wiserecu" t
index in RDcRFand CIXRFarrays. This emurea that all incomct addition
results with row indices will only 00ataminatC BV@+l). Thus, the
compiler CUI rufely be c n f d to vcdorizc Doloop (8 4 . However, & a

g prr(icul.r excCu(i0n of this DO-loop, the addition phase of the cOmspOndifl
tothc

recurrent row indices have not yet been collsidcred for addition. These results
are processed for addition in the scalar DO-loop (8.b).

putition is no(conplded sinw multiplication rrsuws comspondrng '

The vcctorizcd addition DO-loop (8.a) in FS and BS phases is implemented
by the following sequence of vector instructions; VL (Vector Load), VLID
(Vector Load InDinct), VADD (Vector ADD), VSTID (Vector Store
Mirect). Considering the sectioning of vector operations, this DO-loop
requires 4s1 vector idructions and 6ml+ 451 madune cycles in the I-th
iteration. H m SI=lml/kl and ml is the number ck nollzero elements in the 1-th
pUtition. Thus, the o v d l complexity of the vectorized solution is 22M +
16% machine cycles.

1 2 3 4 5 6 7 8 9 0 1 2 3

11 I

Figure 1 : The sparsity shucture of the factor and W-partition matrices of the B'
matlin

Figure 2: The data slorrge schemes fw the FS phase: (a) GB, (b) GR, (c) PR

310

Rowsed Aleoritinn

Although scheme GR is a s u W l attempt to vtctorize the addition
opentiom, it dws not exploitxhuning since the multiplication and addition

application can only be exploited by combining the multiplication and addition
Doloops into a single vedorizable DO-loop. However, this requires a new
solution to the reaumce problem Here, we propose an &cient scheme to
resolve the recurrence problem which also enables chaining. In scheme GR, all
multiplication results are saved in a tmrporary array WVR 80 that
multiplication results corresponding to recumnt elements can be sel- fiwn
this array for scalar additions in a later step. However, the use of WVR should
be avoided to achieve chaining. In the absence of WVR, multiplication rcsults
corresponding to the recurrent elements should be stored in the extended BV
locations, BV(N+l), BV(N+2), ..., BV(N+R), for scalar additions in a later
step. Here, R denoh the total number of recumnces in the RIX and CIX
arrays.

operations are v.dorized in two difFkmt DO-loops. chaining in this

In the proposed scheme PR, pantition-wise recurrence-ffee row and
column (CIXRF) index vectors are constructed in a differmt manner. Each
recurrence in the RIX (CIX) array is replaced with N+r in the RIXRF (CIXRF)
array where r b o b the index of the next available recurrence location in the
extended BV array. The partition-wise r e c u m - k index array RIXRF,
CKRF and recumce arrays RRDL RRPP, RCIX and RCPP can easily be
constructed, in linear time. Figure 2(c) illustrates the proposed data storage
scheme for the FS phase of the W padtion matrices given in Fig. 1. The
proposed scheme avoids the use of WVR, RRDW and RCDW arrays
required in the GR scheme. In this scheme, chaining in the FS phase is achieved
by the following DO-loops for each @on i:

DO j=PP(i), PP(i+l>l

Scheme

BV(RIXRF(j))=BV(RIXRF(j))+WV(j)xBV(CIX(j)) (9.4

BV(RRIX(r))=Bv)RRIX(r))+BV(N+r) (9.b)

ENDDO
DO r -WP(i) , RRPP(i+l>l

ENDDO

Stotage Computational
(words)

Vector I scalar

The DO-loop structure of the BS phase is similar. The DO-loop (9.a)
achieves the chaining of addition and multiplication operations. Due to
chaining, correct multiplication results corresponding to the recurrent elements
are added, on the fly, to the appropriate extended BV locations. Hence,
extended BV locations should contain zeroes at the beginning of computations.
This init iali ion loop is a vectorizable DO-loop with relatively long vector
length equal to R.

The compound DO-loop (9.a) contains two types of apparent dependencies.
The first is through indexing of the BV array by the RIXRF vector in both sides
of (9.a). This dependence does not comtitute any problem since RIXRF is a
partition-wise recurrence-ffee array. The second type is through the use of the
indices of the RIXRF and CIX arrays as pointers to the elements of the BV
array in opposite sides of (9.a). Fo~tunately, all row indices associated with
non-zero elements in each level are strictly greater than all column indices
associated with those elements. That is, there is no level-basis recurrence
between RIXRF and ClX arrays. Hence, the latter type of recurrences can be
avoided by adopting level-wise partitioning. Consequently, the compiler can
safely be vectorize DO-loop (9.a) to achieve chaining.

The compund DO-loop (9.a) is implemented on IBM 3090NF by the
following sequence of vector inshuctions: VLID (Vector Load InDirect), VL
(Vector had), VLID (Vector Load Indirect), VMAD (Vector Multiply and
ADd), VSTID (Vector STore I n D i i) . In the I-th iteration, this vectorized
loop requires 9ml+ 6S& machine cycles. The overall computation complexity
ofthe FS and BS phases is 18M + 12Sts machine cycles. The proposed scheme
eliminates the need for using the tempotary real array WVR through chaining
However, the length of the BV array is increased by R.

Table 1 illustrates the storage and computational complexity of the proposed
scheme PR compared with GB and OR schemes. Storage complexities are
given in terms of words and they denote the asymptotic complexities.
Computational vector complexities b o t e the total number of machine cycles
requred to execute the vectorized operations. Computational scalar complexities
are given in terms of the total number of scalar additions required by each
scheme.

GB
GR
PR

Table 1. Stonge and Computational Complexity of Different Vectodion
Schemes on IBM 3090NF

(d c cycles) (no. of adds)
4M 10M + 8St. 2M

6M+2R 22M + 16s. R
5M+2R 18M + 12St. R

Note that, the computational vector complexities of both Granelli's and the
propod scheme are approximately twice that of Gomez's scheme. Hence both
Granelli's and the proposed schemes are expected to yield better performances
than Gomez's scheme ifR<2M.

The proposed scheme PR achieves substantial performance improvement in
vectoriZation over scheme GR through chaining. For example, on IBM
3090NF, PR reduces the number of delivery cycles by I8 % and start-up time
overhead by 25 s/a Chaining achieves this performance increase by avoiding the
store and load operations for multiplication results. In the scalar DO-loap (9.b)
of the proposed scheme, extended locations of the BV array are accessed in an
orderly fashion for processing recurrent elements. However, in the scalar W-
loop (8.b) of GR scheme, WVR array is accessed indirectly with addresses
specified by the elements of the RRIXIX array. Thus, the scalar performance of
the proposed scheme is also expected to be slightly b e t k than that of GR
scheme in processing the recurrent elements.

The Last Partition

In partitioned scheme W, it is not mandatory for elements in a partition to be
picked from the same level in the FPG. Nevertheless, adopting level-wise
pattitioning prevents cross recurrences between RIXRF and ClX (CKRF and
RE) during the FS (BS) phase in DO-loop (9.a), and hence, substantially
reduces the total number of redundant scalar additions. In general, initial levels
of the FPG already consist of long vectors enabling efficient vectorization. On
the contrary, levels towards the bottom of the tree contain short vectors with
large recurrence ratios. Hence, the relative advantages of GR and PR over GB
decline in those levels. In this work, we gaiher those last levels into a single
multi-level last partition. This last partition concept is also discussed for
efficient psrallelization in 161. Adopting multi-level last partition enables a
considerably long vector but results in a substantially large number of
mmences. Therefore, in the last partition, we have chosen to utilize scheme
GB which vectorizes only the multiplication operations and avoids redundant
addition operations. The last partition approach is adopted in all FBS
vectotiZation schemes discussed in this paper.

Intra-/Inter-Section Recurrences

Consider a multi-section level with m non-zero elements, so that the number
of sections, s=lm/kl>l. The vector facility creates a sectioning loop which
iterates s times to vectorize DO-loop (8.a). In different iterations of the
sectioning loop, elements belonging to different sections of R E R F (CIXRF)
will be used as address pointas to access the elements of the BV array. So,
recurrences in RIX and ClX can be classified as in -section which are the
recurrencs between merent sections whereas intra-$ion recurrences are the
recurrences within the same section. Inter-section recurrences do not have any
potential to yield in& results since they are procped in different iterations
of the sectioning loop. Hence, only intra-sectioh recurrences should be
considered while generating the RIXRF and CIXRF arrays.

Here, we propose an efficient round-robin re-ordering algorithm which
exploits this intra-section recurrence concept to minimize the number of
redundant scalar operations. The proposed algorithm collects (in linear time)
the n o n - m elements with the same row (column) indices in a level and
scatters them to the successive sections of that level in a modular sequence for
the FS (BS) phase. During this re-ordering pr-, i-th appearances of a
recumnt row (column) index in different sections of the RIXRF (CIXRF) array
are replaced by the same extended BV location index N+r+i-1 for i>l. Note
that, first'apperances of a recurrent index in different sections remain
unchanged. The number of extended BV location, assignments for a " r e n t
index detamines tbe number of redundant scalar addition operations associated
with that index Hence, this scheme reduces the number of scalar additions
required for a tecumnt index ix with recumnce degree dix fiwn dix -1 of PR
scheme to fdi#l-l in a level with s sections. The proposed algorithm
c o n c u m n t l y m & t h e mysrequiredto maintain unavoidable recurrences

. ' 311

duringtherw"gpr0crss. Note- bath W and Wtputitionmatricesare
StoredinlhiSSchane.

Figure 3 shows the round-robin clllocation of a colurm c with d =5 non-m
elements in a puMion with 111-249 non-m ele-mmts aad S=f249/100]=3
d o n s . The d o n size is assumed to be K=100, and pactitiobbasis local
indices are used In Figure 3(a), the last n o & m elemant of tbe previous
column c-1 is assumed to be assigned to the first section with local indcx 40.
Shaded portions in Fig. 3(a) denote the IOCrtioas already l o u t e d by the
round-robin algoahm for the non-zero elements ofthe previous columns in that
partition. As seen in Fig3(4, the popoeed scheme assigns recumnt elancnts to
different d o n s , in a round-robin fashion, to minimize the number of intra-
section rewrrences in the IUX (CDI) array. All first " a c e s associated with
the same index in diEerent d o n s can be assigned the SMIC extended B

d m can be asignedwiththe sune extended B locatiorrp. The poposed re-
ordering a l g " easily detcds multi-intradon recumnces aswell. Figure
3@) illusrrates this concept for the allocation instMce gim in Fig 3(a). The
number of scalar additions required for the fecumnt column index c is reduced
&om 2 in Fig. 3(a) to 1 in Fig. 3@).

location B(N+r). Snnilarly, all sccuad third,, etc. oaxmwes in di&rent

NBUS
118
354
590

1180
1770

Figure 3. The proposed round-robin allocation scheme

4. EXPERIMENTAL RESULTS

In this section, relative performances of the proposed and existing
v e d o d i o n algorithms are tested for the solution phase of IEEE-118 standard
power network and four synthetically generated larger networks with 354, 590,
1180 and 1770 buses.

Table 2 shows the structural properties of the inverse-factor partition matrices
for B' of the sample networks. We have adopted level-wise partitioning (except
the last partition) to benefit fiom chaining in the FS and BS phases of the
proposed vectorization algorithms. MLMD ordering scheme is used to obtain
longer vectors by decreasing the number of levels. In Table 2, Mf denotes the
percent increase in level-wise partitioned W fillins introduced by MLMD
ordering with multi-level last partition instead of MD ordering. Table 2 shows
that the adopted partitioning scheme introduces roughly 10 % fill-in increase
for the sake of efficient vectorization. In the same table, nl and n,, denote the
number of levels and partitions, respectively.

The total amount of start-up time overhead is proportional to the number of
sections processed. Note that, the same number of Sections is pcessed in both
FS and BS phasese. EXperi"ta1 results show that vectorizable Do-loops of
length shorter than some critical number yield bater performance if executed in
scalar mode rather than vector mode. C u m t implementation detects last
sections shorter than 20 and enforce them to scalar execution. In this work,
level-wise vector lengths are checked against this critical number (20), starting
h m the fust level towards the last one until a v&r of smaller length is
encountered. Then, the current level and the rest are included in the last
partition

Table 2: The number of offdiagonal non-zero elements, levels, partitions, and
sections for B matrices of sample networks.

B S p h r s e FS Phase
M OR PR GR PR

299 115 115 95 95(48)
922 501 250 360 134(63)

1557 889 342 603 149(51)
3270 2020 560 1372 198(89)
4877 3039 688 2030 199"

Table 3 Illusbaled the number of redwhnt salar additions introduced UI
adato Vedorizethe addition opartiom. comprnwn . of GR and PR col-
rcve;rlrtbrtthepopooedrwnd-robinrw"l ' g dgoritlrm exploiting multi-
i d r a d o n TCOU~~O~~CC e feduoa the number of scalar addkiom
dnrtiolilly. 'Ilre p " J r e o n M n g dgatitbm ia expectcdto yield muoh better
Pafammoe fordasedion Sizg, e.g., K=64, as is shown in prnnlhesis io
thirtabk. 'Ilremrmba ofraluaddkiorrp in the E5 phMc is mudl garllefthan
thtoftheBSpbueduetogratanumbaofrearmntdunmindicesthrn
~mwindices inpu(i t ionmatr iccs .

Table 4 illwtrated the pdnmances of GR and PR scbanea for tbe FBS
pbue. Ibe fourth cduam of Table 4 shows the execution time of DS phase for
.U scbana. As som in Table 4. PR wrpafinmro GR due to the SUbstMtral

rsadahrgdgaittm ?bc q e d u p 0bt.inCd with PR agaiml scalar ex&m
isbdwcen 1 25 and 2.0 and it in-with inaeaSmgproblem s m

Table 3. The Nu* of Redundant Openlions in the FS and BS phases of
diffaadscbams

rchtdionin~numba ofrcdundrnt d a r additim achievedbytbe propostd

~

I I I 1 scalar additions

Table 4. Execution times forthe BS, DS and FS phases of B'M = APN

5 . CONCLUSION

paper 1""" a novel data storage scheme and algorithm for the
efficient vedomat~ on of the fmard/bac&ward substitutions in the solution of
linear system of equations arising in Fast Decoupled Load Flow. The proposed
algorithm resolves the recumnce problem and exploits chaining and sectioning
The relative performances of the proposed and existing vectoridon schemes
are evaluated, both thtoretically and expexhentally 011 IBM 3090NF. Results
d c m o " t e that the proposed schemes perform much beller than existing
vcctorization schemes.

RCfmCeS

[l]. StotI, E., and h, O., "Fast Decoupled Laad Flow," IEEE Trans on
Power App. Syst, Vol. 73, pp. 859-867, May'June 1974.

[2]. E m , M.K., Tinney, W.F., and Alvarado, F L, "Sparse Matrix I n v m
F a d ~ s , " IEEE Trans. on Power SyJtnns, Vol. 5, No. 2, pp. 466-472,
May 1990

(31. Alvarado, EL, Yu, D.C., and Betancourt, R., "Partioned Sparse
A-1 Methods", Vol. 5, N0.2, pp. 452-459, May 1990.

(41. Oomu, A, and Betancourt, R., "hplanentalion of the Fast Decoupled
Load Flow on a Vedor Computer,'' IEEE Trans. on Power Systems, pp

(51. Granelli, G.P., Montagna, M., Pasini, G.L., Maraanino, P., "Vedor
977-983, Feb. 1990.

Computer Implementation of Power Flow Outage Studies," IEEE Trans.
on Power S y a t " , Vol. 7, No 2, pp. 798-804, May 1992

[a]. Padilha, A, Morelato, A, "A W-Mahix Methodology for Solving Sparse
Network Equations on Multiprocessor Computm" IEEE Trans on
POW S@,UUS, Vol. 7, NO. 3, p ~ . 1023-1030, August 1992.

312

