EFFICIENT VECTORIZATION OF FORWARD/BACKWARD SUBSTITUTIONS
IN SOLVING SPARSE LINEAR EQUATIONS

Cevdet Aykanat Ozlem Ozgii

Computer Engineering Department
Bilkent University
Ankara, Turkey
Abstract- Vector p have p d

speed for computnnomlly xntmnvemdﬂmwﬂcdpowersystmnpmbluns
which require the repeated soluti ofspusehnwequaums Due to short
vectors p d in these applicat ity-based algorithms
needtoberemuomredforeﬁmetnveamunmmspap«pmentsamvel
daumgesohemeandaneﬁclemvectmmondgmﬂmﬂmewlomﬂxe
intrinsic architectural features of vector such as i and

Nezih Giiven
Electrical Engineering Department
Middle East Technical University
Ankara, Turkey
DO j = jstart, jend
BG)=B(I)+V(D<(I))xW(I) @

Veotorcmmputersload,stoteorpromsvectorsmstomgemmeoftwoways
by sequential add °(i ly or with stride), or bymdn'ect elemem

lects Tnd: lect:, orgather tter, p nt,

chaining. Asthebmchmark,ﬂlesoluuonphaseofthe FastDeoouphdlnad
Flow algorithm is used in simulations. The relative perfc of the

tobeloadded,storedorpmoestedduedlymmarbmwysequenoe.[nmduem
ddressing, the memory location of the vector elements to be accessed is

proposed and existing vectorization schemes are evaluated, both theoretically
and experimentally, on IBM 3090/VF.

1. INTRODUCTION

Most power system problems such as load flow, state estimation, transient
stability, etc. require repetitive solution of a set of sparse linear equations of the
form

Ax=b [¢))

The standard re for solving these equations consists of two main
phases: factorization of the coefficient matric A into LDLT form, and
forward/backward substitutions (FBS). Although the heavy computational
effort associated with such repetitive solutions has been greatly reduced by
usmgspusemaﬁ'lxteclmques,nxssull very time consuming. Recent

in comp tech ogy suggst that further reduutwns in
eompumwn time may be achi through vector p H
standard sparsity-based algorithms used in power syswm appl!cauons need to
be restructured for efficient vectorization due to extremely short vectors
processed.

Vector proommg whxem unprovemcnt in system through-put by exploiting
To achi ion is divided into a sequence of
bsu.sks eachofwhlchlscxewtedbyaspeclalmdhnrdwarestagethn!
operates concurrently with other stages in the pipeline. Successive tasks are
streamed into the pipe and executed in an overlapped fashion at the subtask
level. In FORTRAN, pipelining can be exploited during the execution of DO-
loops. Vectorizing compilers convert each vectorizable DO-loop into a loop
isting of vector instructi Each vector instruction is associated with a
start-up time over-head which corresponds to the time required for the initiation
of the vector instruction execution, plus the time needed to fill the pipeli

indicated by a vector of integer indices, which must be previously stored in a
vector register. In DO—loop (2), vectms W B and [X are accessed sequentially,
whereas vector V is ly with add: specified by the IX
vector. The performance of vector oompmers degrades drastically during
indirect vector accesses. Hence, the number of indirect vector accesses should
be minimized for efficient vectorization.

Unfortunately, vectorizing compilers generate scalar code for the following
type of DO-loops:

DO j=jstart, jend

BIX(@)=BIXG)+WG) 3)
ENDDO

This DO-loop i depend: dueto i g of the B array by

ﬁaeD(amymbothsndesoﬂhesmementm@) There can be a recurrence if
two elements of the IX array have the same value. These recurrences make the
result of one j iteration to be dependent on the results of the previous ones and
hence scalar execution is mandatory to obtain correct results. Since such DO-
loops are wniely encountered during the vectorization of the FBS of sparse

the blem is a crucial bottleneck for efficient
vectorization. The DO-loop (3)canbeexecuted in vector mode by enforcing
the compiler to vectorize this DO-loop through the use of ignore-dependence
type directives. However, a scheme should be developed to p the incorrect
results that can occur due to recurrences. ’

This paper pmsem.s anovel data storage scheme and a vectorization algorithm

that p and exploit: ﬂwmtxmncmhnec!nnl
featy ofveaor s such as chaining and secti The solution
phaseofthe Fast Decmtpled[mdFlow (FDLF) algorithm [1] which is the
most,., ethod freq y utilized by power utilities, is used as the
benchmark for the proposed algonthm In the solution phase of FDLF analysis,

Hence, optimizing an application for a vector computer involves arranging the
data structures and the algorithm to produce long vectorizable DO-loops.

Vectors pr d during the ution of a vectorizable DO-loop may be of
any length that will fit in storage. However, each vector computer is identified
with a section-size K which denotes thie length of the vector registers in that
computer. For example, K=128 in IBM 3090/VF. Vectors of length greater
than K are sectioned, and only K elements are processed at a time, except for
the last section which may be shorter than K. Vectorizing compilers generate a
sectioning loop for each vectorizable DO-loop. Hence, each section is
associated with an overall start-up time overhead which is equal to the sum of
the start-up time overheads of the individual vector instructions in the
sectioning loop.

Vector computers provide the facility to further improve the

real and reactive load flow equations, B'AO=AP/V and B AV=AQ/V are
repeatedly solved where B' and B are randomly sparse Jacobian matrices.

2. W-MATRIX APPROACH

The FBS phase in the solution of linear system of equations consists of the
following steps:
@Llz=t; (@ Dy=; © LTxy @
where L and D are factor matrices of the coefficient matrix. Diagonal Scaling
(DS) step (4.b) is suitable for vectorization since it can be formulated as the
multiplication of two dense vectors (of sizes N) by storing the reciprocals of the
diagonal elements. The loops of Forward Substitution (FS) step (4.a) and
BwlmudSubsttwtlm(BS)ﬂep@c)cmbevaunaveomrcompuw

perf Chaining allows the ution of two ive
vemotmmmwbeoveﬂappedwhﬂevmelunm produced by as the
results of one instruction pipeline are passed onthe fly to 2 subsequent
instruction pipeline which needs them as operand elements. In vector
computers, advantages of instruction chaining are obtained by providing
several of the most important combinations of operations with single compound
vector instructions, such as Multiply-Add instruction. When both multiplication
and addition pipelines become full, one result of the compound operation will
be delivered per machine cycle. The foll g DO-loop ilk the chaining
of multiplication with addition:

0-7803-1772-6/94/$3.00 © 1994 IEEE

with b it for muu/gad!er operations. Unfortunately, in power
system apphauom, these vectorized inner loops yield considerably poor
performance since average vector length is very short.

Instead of performing the conventional FS and BS climination processes,’
solution of Ax=b can be computed as

@®z=wb, OyDlz (©@xWwly ®

309

Here, W=L"1 is called the inverse-factor. The Advunuge of(.'o) over (4) is that
inherently sequential FS and BS comp are d by sparse matrix-
vector products. Howevu.e:q)mmdmluslwlhnﬂnmvmfadorw
may have many more non-zero entries compared with the factor L. Partitioning
is proposed to reduce the W matrix fill-ins [2]

In partitioning schemes, the factor L is expressed as L=L,....Ly;, where the
elunmhlfadornnmxHumndenmymmxewformepdloolunmwlueh
the h of L. Thus, W=W W where the
elemental mveue-fadot mnnx W= l..l |s nmply L; ng the mgued off-
diagonal entries. Comulergllhmng ices into 11,1,
Lpz. ka so that W—ka ‘sz HenceEq (S)Istnmfonmdlmo

(.)z=wpk...wp,"~. (b)y-D‘lz

Various algorithms have been proposed for determining inverse factor matrix
partitioning which produce zero or only a pre-fixed maximum number of fill-ins
2, 3] The simplest algoritm that produces no fill-ins exploits the
Factorization Path Graph (FPG) concept. In this scheme, nodes at the same
level of FPG are gathered into the same partition so that the number of
partitions is equal to the depth of the FPG. Various ordering algorithms such as
MD-MNP, MD-ML, ML-MD, etc., have also been proposed to reduce the
total number of levels in the resulting FPG.

(c)xnwplT...wkay ®

3. VECTORIZATION OF FBS

In this section, the implementation of the vectorization approaches proposed
by Gomez et al [4] and Granelli et al [5] will be briefly discussed. These
schemes store the non-zero ¢lements of W-partition matrices column-wise, in
partition order, in WV together with their row and column indices in RIX and
CIX, respectively. Figure 2 illustrates the data storage schemes utilized for the
second level of the L factor of the B' matrix for the IEEE-14 network in Fig. 1.
Columns of L given in Fig. 1 are permuted in level order. Since each partition
is taken as one level of the FPG, Fig. 1 illustrates the sparsity structure of the
W-partition matrices as well.

The FS phase of the approach proposed by Gomez [4] involves the following
two DO- loops for each partition i:

DO j=PP (i), PP(i+1)-1

WVR()=WV({)xBV(CIX()) (7.2)
ENDDO
DO j=PP(i), PP(i+1)1

BV(RIX(j)=BV(RIX(j))+ WVR() (7.5)

ENDDO

Here, WVR, of size M, denotes a real working array which is used to keep
the multiplication results and M d the total ber of off-diagonal non-
zero elements in the W partition matrices. The real array BV, of size N, is the
right hand side vector (b in 6.a) on which the solution (z in 6.a) is rewritten.
DO-loops (7.a) and (7.b) perform the multiplication and addition operations
involved in each sparse matrix-vector product in (6.a). respectively. The DO-
loop structure of the BS phase can easily be obtained by imerchanging CIX
with RIX in (7). In the FS (BS) phase, the addition DO-loop (7.b) is not
vectorized by the pill of the possible recurrent indices in the RIX
(CIX) array. Hence, only mulllphca!lons involved in the FBS phase are
vectorized in this scheme, which will be referred to as GB hereafter.

The DO-loop (7.a) is vectorized on IBM 3090/VF by the following sequence
of vector instructions: VL (Vector Load), VLID (Vector Load Indirect), VM
(Vector Multiply) and VST (Vector Store). The overall compumional
complexity of the vectorized multiplication operations involved in FS and BS
phases1s10M+BSlswhereS|sthelolzl ber of partition-basis sections in
W armray and tg is the start-up time overhead. The addition DO-loop (7.b) is
executed in scalar mode and 2M operations are involved. This scheme requires
two real (WV, WVR) and two integer (CLX, RIX) vectors, of lengths M, and
one integer vector of PP of length n)-1. Hence, the storage complexity of this
scheme is 4M+4ny =~4M

The scheme proposed by Granelli et al. [5] is an improvement to scheme GB
to vectorize the addition operations. In this scheme, recurrence-free row and
column index vectors RIXRF and CIXRF are generated by replacing all
partition-basis recurrences in RIX and CIX vectors, respectively, by N+1. The
partition-basis recurrent row indices replaced by N+1's in RIX are stored in
RRIX together with their location indices in RRIXIX. Pointers to the beginning

indices of partition-basis recurrence sets in RRIX and RRIXIX are stored in
RRPP. The recurrences in the CIX array are maintained by similar integer
arrays RCIX, RCIXIX and RCPP. This data storage scheme is illustrated in
Fig 2(b). Using this storage scheme, the implementation of Granelli's method
for the FS phase can be obtained by replacing the addition DO-loop (7.b) by the
following two DO-loops.

DO j=PP(i), PR(i+1)-1

BV(RIXRF(j))=BV(RIXRF(j))+ WVR() (8.2)
ENDDO .
DO r=RRPP(i), RRPP(i+1)-1
(8b)

BV(RRIX(r))=BV(RRIX(r))+ W VR(RRIXIX(r))
ENDDO

The DO-loop structure of the BS phase is similar. This scheme will be
referred to as GR hereafter. Note that, N+1 is the only partition-wise recurrent
index in RIXRF and CIXRF arrays. This ensures that all incorrect addition
results with recurrent row indices will only contaminate BV(N+1). Thus, the
compiler can safely be enforced to vectorize DO-loop (8.2). However, after a -
particular execution of this DO-loop, the addition phase of the corresponding
partition is not completed sin~e multiplication results cor ding to the
recurrent row indices have not yet been considered for addition. These results
are processed for addition in the scalar DO-loop (8.b).

The vectorized addition DO-loop (8.a) in FS and BS phases is implemented
by the following seq of vector instructi VL (Vector Load), VLID
(Vector Load InDirect) VADD (Vector ADD), VSTID (Vector Store
InDirect). Considering the sectioning of vector operations, this DO-loop
requires 4S; vector instructions and 6my+ 4811} machine cycles in the I-th
iteration. Here S)=Im/k] and m, is the ‘ in the I-th
partition. Thus, the overall complexny of the vectorized solution is 22M +
16St; machine cycles.

1 23 45678 90123

1

2

3

4

s

6 x

7 X

8 x

9 X X

10 x

n X X X
12 x x
13 3 x X X X |x

Figure 1: The sparsity structure of the factor and W-partition matrices of the B'
matrix.

10 1112 13 14 1S 16 17 -
CIX - 16 _6 7 7 8 8 9 9]~ (a)
RIX - [0 I 11 13 12 13 12 13-

10 11 12 13 14 15 16 17

RIXRF -~ 10 1M 14 13 12 14 14 14]~
(b)
1 2 3 4 5 6
RRIX [9 1311 13 12 13-
RRIXIX 8 9{12 15 16 17 [~
10 11 12 13 14 15 16 17
RIXRF -~ [10_ 11 16 13 12 17 _18 19 [~
C,
1 2 3 4 5 6 ©
RRIX [1371 13 12 13 [~

Figure 2: The data storage schemes for the FS phase: (a) GB, (b) GR, (c) PR

310

Proposed Algorithm

Althou@sd:canRisasuoeeasﬁalmmnpttovectodzethclddmon
operations, it does not exploit chaining since the multiplication and addition
opu'zuommveaonzedmtwodlﬂ'q'emDO-Ioops.Chmnmgmﬁus
application can only be exploited g the multiplication and addition
DO-loops into a single vectorizable DO-loop. Huwever, this requires a new
solution to the recurrence problem. Here, we propose an efficient scheme to
resolve the recurrence problem which also enables chaining. In scheme GR, all
multiplication results are saved in 'a temporary array WVR so that
multiplication results corr ing to recurrent elements can be selected from
this array for scalar additions in a later step. However, the use of WVR should
be avoided to achi ining. In the ab of WVR, multiplication results

to the recurrent elements should be stored in the extended BV
locations, BV(N+1), BV(N+2),..., BV(N+R), for scalar additions in a later
step. Here, R denotes the total number of recurrences in the RIX and CIX
arrays.

In the proposed scheme PR, partition-wise recurrence-free row (RIXRF) and
column (CIXRF) index vectors are constructed in a different manner. Each
recurrence in the RIX (CIX) array is replaced with N-+r in the RIXRF (CIXRF)
array where r denotes the index of the next available recurrence location in the
extended BV array. The partition-wise recurrence-free index array RIXRF,
CIXRF and recurrence arrays RRIX, RRPP, RCIX and RCPP can easily be
constructed, in linear time. Figure 2(c) ill the proposed data st
scheme for the FS phase of the W partition matrices given in Fig, 1. The
proposed scheme avoids the use of WVR, RRIXIX and RCIXIX arrays
required in the GR sck In this sch haining in the FS phase is achieved
by the following DO-loops for each partition i:

DO j=PP(i), PP(i+1)-1

BV(RIXRF(j))=BV(RIXRF(j))+WV(j)xBV(CIX()) 9.)
ENDDO
DO r=RRPP(i), RRPP(i+1)-1

BV(RRIX(r))=BV)RRIX(r))+BV(N+r) ©.b)

ENDDO

The DO-loop structure of the BS phase is similar. The DO-loop (9.2)
achieves the chaining of addition and muluphcatnon operations. Due to
haining , correct ion results corresp g to the
are added, on the fly, to the appropriate ex‘!ended BV locations. Hence,
extended BV locations should contain zeroes at the beginning of computations.
This initialization loop is a vectorizable DO-loop with relatively long vector
length equal to R.

The compound DO-loop (9.a) contains two types of apparent dependencies.
The first is through indexing of the BV array by the RIXRF vector in both sides
of (9.a). This dependence does not constitute any problem since RIXRF is a
partition-wise recurrence-free array. The second type is through the use of the
indices of the RIXRF and CIX arrays as pointers to the elements of the BV
array in opposite sides of (9.a). Fortunately, all row indices associated with
non-zero elements in each level are strictly greater than all column indices
associated with those elements. That is, there is no level-basis recurrence
between RIXRF and CIX arrays. Hence, the latter type of recurrences can be

ided by adopting level-wise partitioning. Consequently, the compiler can
safely be vectorize DO-loop (9.a) to achieve chaining.

145010

The compund DO-loop (9.a) is implemented on IBM 3090/VF by the
following sequence of vector instructions: VLID (Vector Load InDirect), VL
(Vector Load), VLID (Vector Load Indirect), VMAD (Vector Multiply and
ADd), VSTID (Vector STore InDirect). In the I-th iteration, this vectorized
loop requires 9my+ GSlts machine cycles. The overall computation complexity
of the FS and BS phases is 18M + 125t machine cycles. The proposed scheme
eliminates the need for using the temporary real array WVR through chaining.
However, the length of the BV array is increased by R.

Table 1 ill the st and ional complexity ofther posed
scheme PR compared with GB and GR h Storag lexities are
gwen in terms of words and they denote the asymptotic oomplex:hs

ional vector complexities denote the total number of machine cycles

Table 1. Storage and Computational Complexity of Different Vectorization
Schemes on IBM 3090/VF

Scheme Storage Computational
(words)
.~ Vector Scalar
(m/c cycles) (no. of adds)
GB 4M 10M + 8St_ 2M
GR 6M + 2R 22M + 16St, R
PR 5M + 2R 18M + 128t R

Note that, the comp | vector complexities of both Granelli's and the
proposed scheme are approximately twice that of Gomez's scheme. Hence both
Granelli's and the proposed schemes are expected to yield better performances
than Gomez's scheme if R<2M.

The proposed scheme PR ac!neva substantial performance improvement in
vectorization over sch GR gh chai For le, on IBM
3090/VF, PR reduces the number of delivery cycles by I8 % and start-up time
overhead by 25 %. Chaining achieves this performance increase by avoiding the
store and load operations for multiplication results. In the scalar DO-loop (9.b)
of the proposed scheme, extended locations of the BV array are accessed in an
orderly fashion for processing recurrent elements. However, in the scalar DO-
loop (8.b) of GR scheme, WVR array is accessed indirectly with addresses
specified by the elements of the RRIXIX array. Thus, the scalar performance of

the proposed sck is also expected to be slightly better than that of GR
heme in p ing the ent el
The Last Partition

In partitioned scheme W, it is not mandatory for elements in a partition to be
picked from the same level in the FPG. Nevertheless, adopting level-wise
partitioning prevents cross recurrences between RIXRF and CIX (CIXRF and
RIX) during the FS (BS) phase in DO-loop (9.a2), and hence, substantially
reduces the total number of redundant scalar additions. In general, initial levels
of the FPG already consist of long vectors enabling efficient vectorization. On
the contrary, levels towards the bottom of the tree contain short vectors with
large recurrence ratios. Hence, the relative advantages of GR and PR over GB
decline in those levels. In this work, we gather those last levels into a single
multi-level last partition. This last partition concept is also discussed for
efficient parallelization in [6]. Adopting multi-level last partition enables a
considerably long vector but results in a substantially large number of
recurrences. Therefore, in the last partition, we have chosen to utilize scheme
GB which vectorizes only the multiplication operations and avoids redundant
addition operations. The last partition approach is adopted in all FBS
vectorization schemes discussed in this paper.

Intra-/Inter-Section Recurrences

Consider a multi-section level with m non-zero elements, so that the number
of sections, s=[m/k]>1. The vector facility creates a sectioning loop which
iterates s hmm to vectorize DO-Ioop (8.a). In different iterations of the
ts belonging to different sections of RIXRF (CIXRF)
will be uwd as address pointers to access the elements of the BV array. So,
recurrences in RIX and CIX can be classified as intey-section which are the
recurrences between different sections whereas intra-seftion recurrences are the
recurrences within the same section. Inter-section recurrences do not have any
potential to yield incorrect results since they are procqssed in different iterations
of the sectioning loop. Hence, only intra-sectioh recurrences should be
considered while generating the RIXRF and CIXRF arrays.

Here, we propose an efficient round-robin re-ordcnng algorithm which
exploits this intra-section recurrence t to i the ber of
redundant scalar op The proposed algomhm collects (in linear time)
the non-zero elements with the same row (column) indices in a level and

them to the ive sections of that level in 2 modular sequence for

the FS (BS) phase. During this re-ordering process, i-th appearances of a
recurrent row (column) index in different sections of the RIXRF (CIXRF) array
are replaced by the same extended BV location index N+r+i-1 for i>1. Note
tha!, first apperances of a recurrent index in dlﬂ‘erem sections remain
d. The ber of extended BV locati for a recurtent

requredto execute the vectorized operations. Comp 1 scalar complexities
are given in terms of the total number of scalar additions required by each
scheme.

index determines the ber of redundant scalar addition operations associated
with that index. Hence, this scheme reduces the number of scalar additions
requiredforuvecunmindexixwithmwnmeedegreed‘ from d;, -1 of PR
scheme to [d; /sl-1 in a level with s sections. The proposed algorithm
concurrently constructs the arrays required to maint idable recurrences

311

duringthcre—m‘daingpmemNotetlanoﬂannthpuﬁﬁoumuicesm
stored in this scheme.

Flgurci!shows'he d-robin allocation of a col ¢ with d_=5 non-zero
elements in a partition with m=249 non-zero elements and S—T249/ 100)=3
sections. The section size is assumed to be K=100, and partition-basis local

Table 3 illustrates the number of redundant scalar additions introduced in
order to vectorize the addition operations. Comparison of GR and PR columns
reveals that the proposed round-robin re-ordering algorithm exploiting multi-
intra-section recurrence concept reduces the number of scalar additions
dnstwdly mmdrmdumgdgmﬂhnuexpeaedmmeldmwhbdw

indices are used. In Figure 3(a), the last non-zero element of the previous
column c-1 is assumed to be assigned to the first section with local index 40.
Shaded portions in Fig. 3(a) denote the locations aiready allocated by the
round-robin algorithm for the non-zero elements of the previous columns in that
partition. As seen in Fig.3(a), the proposed sch igns recurrent el its to
different secti ina d-robin fashion, to minimize the ber of intra-
section recurrences in the RIX (CIX) array. All first recurrences associated with

ction sizes, ¢.g., K=64, as is shown in paranthesis in
ﬂusuble mmmhofmhrmummﬂwFSphueumudxmnwthm
that of the BS phase due to greater number of recurrent column indices than
recurrent row indices in partition matrices.

Table 4 illustrates the performances of GR and PR schemes for the FBS
phase. The fourth column of Table 4 shows the execution time of DS phase for
all schemes. As seen in Table 4, PR outperforms GR due to the substantial

the same index in different secti can be gned the same ded B
location B(N+r). Similarly, all second, third,, etc. occurances in different

duction in the number of redundant scalar additions achieved by the proposed
re-ordamgdgonﬂmmeelpeedﬂpohamedmthPRagamstsahrexecuum

sections can be assigned with the same ded B locati The p d re-
ordering algorithm easily detects multi lmn-secnon recurrences a.swell Figure
3(b) illustrates this t for the allocati st given in Fig. 3(a). The
number of scalar uld:tions required for the recurrent column index c is reduced
from 2 in Fig 3(a) to 1 in Fig. 3(b).

is bety 1.25 and 2.0 and it increases with increasing problem size.

Table 3. The Number of Redundant Operations in the FS and BS phases of
different schemes

scalar additions
BS Phase FS Phase

NBUS M GR PR GR PR
N Q . b 118 299 115 115 95 95(48)
. k) N [l N\ Sl 354 922 501 250 360 134(63)
e 3 % 2 E: 2 590 1557 889 342 603 149(51)
N O I o o o 1180 3270 2020 560 1372 198(89)
~< N 1770 4877 | 3039 688 2030 199(83)

. \ [r Q) 2 \ UE .o .
N Table 4. Execution times for the BS, DS and FS phases of B'A0 = AP/V
? g 02 g 8 %
() b Network Execution timesin microseconds
Size
Figure 3. The proposed round-robin allocation scheme BS Phase FS Phase
NBUS DS

4. EXPERIMENTAL RESULTS T R PR

In this section, relative performances of the proposed and existi :;g iz: igg 39 361 3282

vectorization algorithms are tested for the solution phase of IEEE-118 standard 62 01 424

power network and four synthetically generated larger networks with 354, 590, 1180 1038 837 121 887 781

1180 and 1770 buses. 1770 1578 1245 163 1340 1161

Table 2 shows the structural properties of the inverse-factor partition matrices
for B' of the sample networks. We have adopted level-wise partitioning (except
the last partition) to benefit from chaining in the FS and BS phases of the
proposed vectorization algorithms. ML-MD ordering scheme is used to obtain
longer vectors by decreasing the number of levels. In Table 2, Mg denotes the
percent increase in level-wise partitioned W fillins introduced by ML-MD
ordering with multi-level last partition instead of MD ordering. Table 2 shows
that the adopted partitioning scheme introduces roughly 10 % fill-in increase
for the sake of efficient vectorization. In the same table, n; and n, denote the
number of levels and partitions, respectively.

The total amount of start-up time overhead is proportional to the number of
sections processed. Note that, the same ber of sections is pi d in both
FS and BS phasese. Experimental results show that vectorizable DO-loops of
length shorter than some critical number yicld better performance if executed in
scalar mode rather than vector mode. Current implementation detects last
sections shorter than 20 and enforce them to scalar execution. In this work,
level-wise vector lengths are checked against this critical number (20), starting
from the first level towards the last one until a vector of smaller length is
encountered. Then, the current level and the rest are included in the last

partition

Table 2: The number of off-diagonal non-zero
sections for B' matrices of sample networks.

lements, levels, partitions, and

5. CONCLUSION

This paper presents a novel data storage scheme and algorithm for the
efficient vectorization of the forward/backward substitutions in the solution of
linear system of equations arising in Fast Decoupled Load Flow The ptoposed
algorithm resolves the recurrence problem and exploi and
The relative performlnees of the proposed and ex:stmg vectorization schemes
are eval ically and experimentally on IBM 3090/VF. Results
thatthe,, d sch perform much better than existing
vectorization schemes.

4, 4,

References

[1} Stott, B., and Alsac, O., "Fast Decoupled Load Flow," IEEE Trans. on
Power App. Syst.,, Vol. 73, pp. 859-867, May‘June 1974.

[2] Enns, MK, Tinney, W.F., and Alvarado, F. L., "Sparse Matrix Inverse
Factors," [EEE Trans: on Power Systems, Vol. 5, No. 2, pp. 466-472,
May 1990

{3} Alvarado, F.L., Yu, D.C, and Betancourt, R,
A" Methods", Vol. 5, No.2, pp. 452-459, May 1990.

{4]. Gomez, A, and Bet: m, R., "Impl tation of the Fast Decoupled
Load Flow on a Vector Computer," IEEE Trans. on Power Systems, pp.
977-983, Feb. 1990.

{51 Granelli, G.P., Montagna, M., Pasini, G.L., Marannino, P., "Vector
Comp Implementation of Power Flow Outage Studies,” IEEE Trans.

"Partioned Sparse

NBUS M Mg oy n No of sections
354 922 11.1 17 8 10

590 1557 9.5 17 10 16

1180 3270 11.4 25 15 34

1770 4877 10.0 27 17 45

on Power Systems, Vol. 7, No. 2, pp. 798-804, May 1992.

[6) Padilha, A, Morelato, A., "A W-Matrix Methodology for Solving Sparse
Network Equations on Multiprocessor Computers,” IEEE Trans. on
Power Systems, Vol. 7, No. 3, pp. 1023-103D, August 1992.

312

