
Deploy-DDS: Tool Framework for Supporting Deployment
Architecture of Data Distribution Service based Systems

Turgay Celik
MilSOFT Software Technologies

Ankara, Turkey
+903122973153

turgaycelik@gmail.com

Omer Koksal
ASELSAN

Ankara, Turkey
+905325404045

omerkoksal@cs.bilkent.edu.tr

Bedir Tekinerdogan
Bilkent University, Dept. of Computer

Engineering
Ankara, Turkey
+903122901187

bedir@cs.bilkent.edu.tr

ABSTRACT

Data Distribution Service (DDS) is the Object Management

Group’s (OMG) new standard middleware after Common Object

Request Broker Architecture (CORBA), which is becoming

increasingly popular. One of the important problems in DDS

Based Software Systems is the deployment configuration of DDS

modules to the physical resources. In general, this can be done in

many different ways whereby each deployment alternative will

perform differently. Currently, the deployment configuration is

decided after the coding phase and usually performed manually.

For large configurations, finding the feasible deployment might

require serious rework with costly and time consuming iterations.

In this paper, we present the tool Deploy-DDS to support the

selection and generation of deployment architectures of DDS

based systems. The tool can be used to perform an evaluation

during the design phase and generate the selected feasible

configuration.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems — Distributed applications.

D.2.2 [Software Engineering]: Design Tools and Techniques —

Computer aided software engineering (CASE).

D.2.8 [Software Engineering]: Metrics — Performance

measures.

D.2.10 [Software Engineering]: Design—Methodologies.

D.2.10 [Software Engineering]: Design—Representation.

D.2.11 [Software Engineering]: Software Architectures—

Domain-specific architectures

G.1.6 [Numerical Analysis]: Optimization — Constrained

optimization

General Terms

Measurement, Performance, Design, Reliability, Standardization.

Keywords

Data Distribution Service, Middleware, Research Tool.

1. INTRODUCTION
Distributed systems realize the distributed execution of software

systems over multiple resources to meet different requirements

and quality factors such as performance, interoperation, multi user

support. To reduce the effort for developing distributed systems,

common architectures have been introduced including OMG

Common Object Request Broker Architecture (CORBA), Java

Message Service (JMS), and OMG Data Distribution Service

(DDS) [1]. These middleware architectures provide common

services such as name and directory services, discovery, data

exchange, synchronization, transaction services, etc. DDS has

been defined by the OMG to provide a standard data-centric

publish-subscribe programming model for distributed systems.

DDS has been particularly applied in the development of

distributed systems with high performance requirements such as

in the defense, finance, automotive, and simulation domains.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

ECSAW , Aug 25-29 2014, Vienna, Austria

ACM 978-1-4503-2778-7/14/08.

http://dx.doi.org/10.1145/2642803.2642838

Domain

Application Node

1..*

 Domain Participant

Subscriber

Publisher

 DataReader

 DataWriter

 Topic

writes

reads

<0..1>

<0..1>

Figure 1 Reference Architecture for DDS Based Systems

The reference architecture for DDS based systems is shown in

Figure 1. A DDS system consisting of several DDS applications is

called a Domain. A typical DDS based system is deployed on a

number of Application Nodes. Each Application Node includes

one or more Domain Participants which are applications that

together form the system execution. Each Domain Participant may

include one Publisher which represents the objects responsible for

data production and updates. A publisher includes one or more

Data Writers that publish data of different data types. Domain

Participant may also include one Subscriber which is responsible

of receiving published data and making it available to the

participant. A subscriber includes one or more Data Readers to

access published data in a type-safe manner. Interaction between

data reader and data writers is established via Topics. A topic

defines a unique name, data type and a set of Quality Services to

the published/subscribed data [1]. Note that Domain is a logical

concept and a Domain Participant may participate to more than

one domain at the same time.

One of the important problems in DDS-based systems is the

deployment of modules to the corresponding nodes. The reference

architecture in Figure 1 can be configured in many different ways

based on the module and the physical node properties. For

configuring the system the objective is usually to have less

network communication and better system performance with

respect to resource consumption (e.g. CPU and memory). These

performance factors should be taken into account when deploying

the software modules on the available physical resources.

In general, the selection of the deployment configuration of DDS

is performed manually after the development phase. This might

require serious rework with costly and time consuming iterations

on the design and the related project lifecycle artifacts such as

detailed design, implementation, test artifacts, documentation, etc.

On its turn this will lead to delays and higher cost in the project.

Moreover, if the system is too complex and include many

modules and interactions finding a feasible deployment alternative

might not be tractable.

In this paper, we offer a tool framework to support the selection

and generation of the feasible configurations. Our tool Deploy-

DDS can be used to analyze and evaluate the performance of the

deployment architecture alternatives even in the design phase

before coding started. Deploy-DDS helps software architects to

analyze the deployment alternatives and decide the final

deployment configuration. The deployment configuration

alternatives are evaluated depending on the available physical

resources. The evaluation can be performed during the design

phase to minimize the rework effort which is a very important

concern in professional software development context.

The remainder of the paper is organized as follows:

In section 2 we present the example case study to illustrate the

problem. In section 3 we present the Deploy-DDS tool. Finally,

section 4 concludes the paper.

2. EXAMPLE CASE STUDY
To illustrate the problem statement and the approach, we use the

case study of the development of a DDS-based city wide

Advanced Traffic Management System (ATMS). The ATMS will

support optimization of city traffic by analyzing the traffic data

collected from the vehicles, traffic cameras, etc. Different from

traditional ATMS, the system subject to the case study will

support management of autonomous vehicles. The autonomous

vehicles will communicate with ATMS to adjust speed, make

turns, stop at traffic lights, etc. The ATMS will manage

emergency vehicles, traffic lights, ramp meters, variable speed

limiters, and hard shoulders in addition to autonomous vehicles.

The logical view for the ATMS case study is given in Figure 2.

A sample scenario for the case study may contain 300

Autonomous Vehicle Managers, 10 Emergency Vehicle

Managers, 20 Traffic Camera Managers, 5 Speed Limiter

Managers, 15 Traffic Light Managers, 15 Hard Shoulder

Managers, 10 Ramp Meter Managers, and 5 Regional Traffic

Manager Managers. Mapping this to a DDS system requires the

identification of the different data readers, data writers and the

many interactions. Obviously, selecting and generating feasible

deployment alternatives for such large scale systems is not trivial

and tool support is essential.

Autonomous

Vehicle

Manager

Speed

Limiter

Manager

Traffic

Camera

Manager

Traffic Light

Manager

*

*

*

*

Regional

Traffic

Manager

Network

Hard

Shoulder

Manager

*

Emergency

Vehicle

Manager

*

Ramp Meter

Manager

*

*

Figure 2 Logical view of the case study

3. THE DEPLOY-DDS TOOL
The Deploy-DDS tool provides an integrated environment for

modeling DDS based applications, generating and analyzing

deployment models. Deploy-DDS tool is built on the Eclipse

platform and implemented as a set of plug-ins. The developed

plug-ins are built on other Eclipse framework plug-ins including

Eclipse Modeling Framework (EMF) [3], Graphical Editing

Framework (GEF) [4], and Graphical Modeling Framework

(GMF) [5]. EMF is a modeling framework and code generation

facility that we use to develop the metamodels. GEF is a

framework that is used for generating rich graphical editors and

views. GMF is a generative component and runtime infrastructure

that we use for developing graphical editors for the developed

metamodels. Further, we use Emfatic [6], which provides a text

editor and a language for editing EMF models. In addition we use

EuGENia [7] GMF tool that provides mechanisms for abstracting

away the complexity of GMF and for easier development of GMF

editors. EuGENia tool is a part of Epsilon project [7]. The layered

tool architecture of the Deploy-DDS is given in Figure 3.

Physical Resources

Design Tool
DDS Types Design Tool

DDS Application Design

Tool

Execution Configuration

Design Tool

Deployment Model

Generation Tool

Eclipse Platform

EMF GEF

GMF

E
m

fa
ti
c

E
u
G

E
N

ia

Figure 3 Layered Architecture of S-IDE environment

The common perspective of Deploy-DDS tools is given in Error!

Reference source not found.. The left pane includes the Model

Navigator that shows the available models and their elements. The

Model Editing Pane in the middle provides the main drawing area

for the simulation design. The Item Palette on the right provides

the objects and the connections that are used for creating a design

model. The items in this palette can be added to the Editing pane

by dragging and dropping. The Properties View at the bottom

provides an editing area for the attributes of the design model

elements that are selected from the Editing Pane or the Model

Navigator.

Figure 4 General Perspective of Deploy-DDS

The remaining part of this section explains each of Deploy-DDS

sub-tools showed in Figure 3.

3.1 DDS Types Design Tool:
This tool is used for defining DDS data object model elements

that will be used for data exchange among DDS domain

participants. Actually, this tool realizes data type section of OMG

UML profile for Data Distribution [2]. The tool supports simple

datatypes (Integer, Boolean, Char, Enumerations, etc.),

Collections (Sequence, Array), Complex Data Types (Union,

Topic Structs), and TypeDefs to enable definition of data

exchange models.

3.2 DDS Application Design Tool
This tool is used for modeling DDS applications in means of

defining Topics, Data Readers, Data Writers, Publish/Subscribe

relations, Domain Participants and DDS Domain (Figure 1). This

tool also enables association of the topics with applicable data

type elements defined with “DDS Types Design Tool”. This tool

realizes application definition section of OMG UML profile for

Data Distribution [2].

3.3 Physical Resources Design Tool
This tool is used for definition of available physical resources in

means of hardware nodes (with their processing power and

memory capacity), and the network connections among the nodes.

For example, one may decide to adopt 6 nodes on which the DDS

Domain Participants will be deployed. Further it could be decided

that each node contains two processing units at the frequency of

3.2 MHz and memory capacity of 36840 MB. All nodes in the

design are not supposed to be identical; they could have different

memory capacity and processing powers.

3.4 Execution Configuration Design Tool
This tool is used for definition of the run-time properties of the

domain participants, domain and publish/subscribe relations

defined with “DDS Application Design Tool”. In this context, the

number of each domain participants in the domain, the update rate

of domain participants for each publication, and the execution cost

of each domain participant instance on each target node defined in

Physical Resources Design Tool. This tool provides some

shortcuts to enable definition of large scenarios. For example, user

can add a domain participant to the execution configuration and

define total instance count (e.g. 250) instead of adding same

domain participant 250 times one by one.

3.5 Deployment Model Generation Tool
After both the static and run-time properties of the DDS

application, the domain participants and the physical resources are

defined within previous tools; this tool enables automatic

generation and analysis of deployment model alternatives.

Deployment model generation process can be summarized as

follows:

1. Derive the necessary parameter values (tasks, data

exchange relations of tasks, available resources)

from the design for the algorithms that define

feasible deployment alternatives.

2. Take the outputs of the previous parameter

extraction step as input parameters and execute the

task allocation algorithms to compute feasible

deployment alternatives. If a feasible deployment

is found, this activity yields a table that represents

the mapping of tasks (domain participant

instances) to processors (nodes in physical

resources design). The designer can select

different algorithms to generate deployment

alternatives. (It is also possible to extend Deploy-

DDS tool by adding new algorithm

implementations as Eclipse plugins. Deploy-DDS

tool searches and automatically detects available

algorithm implementations via OSGI services

provided by Eclipse Equinox framework [9].

Deploy DDS tool provides a genetic algorithm

implementation [10] out of the box.)

3. If no feasible solution was found in the previous

step, detailed feedback is presented to the designer

to optimize the design model. The designer will

first try to update the execution configuration with

“Execution Configuration Design Tool”. If a

feasible deployment can still not be found, then

the designer can decide to return to the beginning

of the process to refine the DDS types and/or DDS

application design according to tool feedback. For

example, the designer may use calculated data

exchange amounts among domain participants to

detect anomalies/potential optimization points and

update data update rates defined in “Execution

Configuration Design Tool”.

4. If at least one feasible deployment alternative is

found, the task-processor mapping tables that are

the output of the Step 2 will be used to generate

one or more deployment models.

5. The designer evaluates the generated deployment

model by comparing it with other alternative

deployment models. The alternative deployment

models to compare may be the other models

generated by the selected algorithm if the

algorithm in Step#4 generates more than one

deployment models. The designer may also

compare the generated deployment models with

models generated by alternative algorithms or

even manually generated deployment models with

expert judgment. The Deploy-DDS tool provides

automatic analysis and comparison capabilities to

enable evaluation of alternative deployment

models. The generated deployment models will be

improved until they are considered to meet the

expected communication and execution costs. If a

satisfying deployment model cannot be found, the

designer uses diagnostic feedback report generated

by the Deploy-DDS tool to improve the design.

4. CONCLUSION
One of the important problems in DDS based systems is the

allocation of the different modules to the available nodes. Usually,

the deployment of the modules to the nodes can be done in many

different ways. We have developed a tool framework, Deploy-

DDS that provides an integrated development environment for

deriving feasible deployment alternatives. The tool framework

consists of several tools for modeling, generating and analyzing of

the deployment alternatives.

5. REFERENCES
[1] OMG, Jan 2007, Data Distribution Service for Real Time

Systems (DDS), http://www.omg.org/spec/DDS/

[2] OMG, May 2010, UML Profile for Data Distribution

Specification, http://www.omg.org/spec/UML4DDS/

[3] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and

Timothy J. Grose. 2003. Eclipse Modeling Framework.

Addison-Wesley Professional.

[4] Moore, W., Dean, D., Gerber, A., Wagenknecht, G.,

Vanderheyden, P., 2004. Eclipse Development using the

Graphical Editing Framework and the Eclipse Modeling

Framework. IBM RedBooks.

[5] Voelter, M., Kolb, B., Efftinge, S., Haase, A. 2006. From

Front End To Code – MDSD in Practice,

http://www.eclipse.org/articles/Article-

FromFrontendToCode-MDSDInPractice/article.html.

[6] Daly, C. 2004. Emfatic Language Reference.

http://www.eclipse.org/gmt/epsilon/doc/articles/emfatic/.

[7] Kolovos, Dimitrios S., Rose, Louis M., Abid, S., Paige,

Richard F., Polack, Fiona A. C., and Botterweck, Goetz.

2010. Taming EMF and GMF Using Model Transformation.

In Model Driven Engineering Languages and Systems,

Lecture Notes in Computer Science, Springer Berlin /

Heidelberg, vol. 6394, ch.15, 211-225.

[8] Kolovos, Dimitrios S, Paige, Richard F. and Polack, Fiona A.

C. 2006. Eclipse Development Tools for Epsilon. In Eclipse

Summit Europe, Eclipse Modeling Symposium.

[9] McAffer, J., Vanderlei, P., and Archer, S. 2010. Osgi and

Equinox: Creating Highly Modular Java Systems (1st ed.).

Addison-Wesley Professional.

[10] Mehrabi, A., Mehrabi, S. and Mehrabi, A.D. 2009. An

Adaptive Genetic Algorithm for Multiprocessor Task

Assignment Problem with Limited Memory. In Proceedings

of the World Congress on Engineering and Computer

Science 2009 Vol II

http://www.omg.org/spec/DDS/
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html

Appendix – Presentation Outline
The Deploy-DDS tool is a complete research prototype tool. With the tool we have implemented all of the five tools of the framework

which are:

(1) DDS Types Design Tool

(2) DDS Application Design Tool

(3) Physical Resources Design Tool

(4) Execution Configuration Design Tool

(5) Deployment Model Generation Tool

The video of the Deploy-DDS tool can be found on the following of the YouTube video server:

http://youtu.be/l_pXo_NrQ30

For more information about the tool please refer to https://code.google.com/p/dds-modeling-tools/wiki/Introduction

The presentation will consist of the following steps:

- Short discussion on Data Distribution Service and the problem statement

- Short discussion on Deployment Model Generation Approach

The deployment model generation approach which will be used as our case study as such we need to explain this

beforehand.

- Explanation of the metamodel based tool architecture of Deploy-DDS
This will include an outline of the basic tool framework. Short explanation about the supporting tools will be given.

- Modeling DDS Based Applications and Generating Deployment models in Deploy-DDS

After the overall motivation and the structure of the tool are explained, we will show realization of deployment model

generation approach in Deploy-DDS tool.

- Summary and possible extensions of the tool

We will discuss possible extensions of the tool such as runtime data collection and deployment model optimization.

http://youtu.be/l_pXo_NrQ30
http://youtu.be/l_pXo_NrQ30
https://code.google.com/p/dds-modeling-tools/wiki/Introduction

