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Abstract 

We consider a system described by the one dimen- 
sional linear wave equation in a bounded domain with 
appropriate boundary conditions. To stabilize the 
system, we propose a dynamic boundary controller 
applied at the free end of the system. We also con- 
sider the case where the output of the controller is 
corrupted by a disturbance and show that it may be 
poasible to attenuate the effect of the disturbance at 
the output if we choose the controller transfer func- 
tion appropriately. 

1 Introduction 

We consider a system whose behaviour is modeled by the 
following wave equation : 

Yti(5, t )  = YZZ(5, t )  5 E (0,1) 1 2 0 (1) 

Y(0,t) = 0 Y,(l,t) = - f ( t )  t 2 0 (2) 

where a subscript, as in yt /denotes a partial differential with 
respect to  the corresponding variable, and f ( t )  is the bound- 
ary control force applied at the free end. 

It is well known that if we apply the following boundary 
controller 

f ( t )  =dy t ( l , t )  , d > 0 (3) 

then the closed loop-system given by (1)-(3) is exponentially 
stable, see [l]. However, we will show later that when the 
system is subjected to  a disturbance, due to  measurements 
and actuation, this choice may not be a good one. 

The problem we consider in this paper is to choose the 
controller which generates f ( t )  appropriately to make the 
closed-loop system stable in some sense. Later we will ana- 
lyze the effect of this controller to the output of the system, 
(yt( l , t ) ) ,  when the controller is corrupted by disturbance. 

In this paper we assume that f ( t )  is generated by a dy- 
namic controller whose relation between its input yt(l,t),  
and its output f ( t )  is given by the following : 

i 1  = At1 + b y d l ,  t )  (4) 

il = U 1 5 2  , x, = --w1+1 + yt(l,t) ( 5 )  

f ( t )  = c T 2 l  + d y t ( l , t ) + I c l Y ( l , t ) t k z z z  (6) 
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where .q E R", for some natural number n, is the actuator 
state, A E Rnxn is a constant matrix, b,c E R" are con- 
stant column vectors, d E R, and the superscript T denotes 
transpose. 

We make the following assumptions concerning the ac- 
tuator given by (4)-(6) thoroughout this work : 

Assumption 1 : All eigenvalues of A E Rnx" have 
negative real parts. 

Assumption 2 : (A,  b) is controllable and (e, A )  is ob- 
servable. 

Assumption 3 : d 2 0,kl  2 0 , k z  2 0; moreover there 
exists a constant 7, d 2 7 2 0, such that the following holds 

d + 72e{cT(jwI - A)-'b} > 7, , w E R (7)  

Moreover for d > 0, we assume 7 > 0 as well. 0 

2 Stability Results 

Let the assumptions 1-3 stated above hold. Then it follows 
from the Meyer-Kalman-Yakubovich Lemma that given any 
symmetric positive definite matrix Q E RnXn, there exists 
a symmetric positive definite matrix P E RnXn, a vector 
q E R" and a constant c > 0 satisfying : (see [4, p. 1331.) 

(8) ATP + P A  = -qqT - cQ 

(9) Pb - c = 4 2 ( d  - 7)q 

To analyze the system given by (1)-(2), (4)-(6), we define 
the following "energy" function : 

E ( t )  = b S o ' y : d ~ + f r S , ' y ~ d x + ~ k l y ~ ( l , t )  ( I O )  
+3ZTPZ1 + fkZ(2: + 5;) . 

Theorem 1 : Consider the system given by (1)-(2), (4)- 

i : The energy E ( t )  given by (10) is a nonincreasing 
function of time along the solutions of this system. 

ii : If w1 # m?r for some natural number m E N, then 
solutions of this system asymptotically converge to zero. 

Proof : i : We differentiate (10) with respect to time. 
Then by using (1)-(2), (4)-(6), integrating by parts and using 
(8), (9), we obtain : 

.@ = --yy:(l,t) - i [ d m y t ( l , t )  - zTq]' - i zTQz1  

(6). 

(11) 
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Since E 5 0, it follows that E ( t )  is a nonincreasing function 
of time. 

ii : To prove the assertion ii, we use LaSalle’s invariance 
principle, extended to  infinite dimensional systems. Accord- 
ing to  this principle, all solutions asymptotically tend.to the 
maximal invariant subset of the following set : S = { E  = O} 
provided that the solution trajectories for t >_ 0 are precom- 
pact in the underlying space. By casting the equations in 
operator form, it can be shown that the above system gen- 
erates a CO-semigroup in an appropriate space, see [2] for 
similar results. It could also be shown that this operator 
has a compact resolvent, which, together with ( l l ) ,  implies 
that  the solutions are precompact in the space considered. 

To prove that S contains only the zero solution, we set 
E = 0 in ( l l ) ,  which results in 21 = 0. This implies that 
i.1 = 0, hence by using (4) and (6) we obtain yt ( l , t )  = 0, 
f ( t )  = kly ( l , t )  f k2x2. By using these it can be shown 
that to  have a nontrivial solution for the system considered, 
we must have w1 = ms for some natural number m E N. 
Therefore if w1 # mn for some natural number m E N, we 
conclude that the only solution of this system which lies in 
the set S is the zero solution, hence, by LaSalle’s invariance 
principle, we conlude that the solutions asymptotically tend 
to  the zero solution. 0 

3 Disturbance Rejection 

In this section we show the effect of the proposed control 
law given by (4)-(6) on the solutions of the system given by 
(1)-(2), when the output of the controller is corrupted by a 
disturbance d(t), that  is (6) has the following form : 

f ( t )  = cTzi t dyt(1,t) t h y ( 1 , t )  t k2zz t d(t) (12) 

or equivalently 

i(s) = g(s)!qLs) t 4 s )  (13) 

where d^(s) is the Laplace transform of the disturbance d( t ) .  
For another type of disturbance acting on the system, see 

To find the transfer function from d( t )  to yt(1, t ) ,  we take 
the Laplace transform of (1)-(2) and set initial conditions to  
zero. Then, the solution of ( l ) ,  becomes : 

PI. 

y(z,s) = csinhxs (14) 
where c i s  a constant and sinh is the hyperbolic sine function. 
By using (2) and (13), we obtain : 

4 s )  (15) 
1 

s(cosh s t g(s) sinh s) 
c = -  

Now, consider the controller given by (3). It is known 
that,  without disturbance, this system is exponentially sta- 
ble, and that by choosing d appropriately, one can achieve 
arbitrary decay rates. Moreover d = 1 is the best choice 
since in this case all solutions become zero for t 2 2. How- 
ever, from (15) one can easily see that  the case d = l is not a 
good choice for disturbance rejection. To see this, first note 
that in this case the controller transfer function g(s) is given 
by g(s) = d = 1, (see (3), and (13)). Hence, we obtain 

In case d(t) is sinusoidal, from (16) it follows that yt(1,t) is 
sinusoidal as well. Hence the case d = 1 is not a good choice 
for disturbance rejection. It can be shown that d # 1, d E R 
yields similar results. 

Another choice for disturbance rejection is the use of 
dynamic controllers proposed here. From (15) we can also 
derive a procedure to  design g(s) if we know the structure 
of d(t). For example if d( t )  has a band-limited frequency 
spectrum, (i.e. has frequency components in an interval of 
frequencies [fll,Q,]), then we can choose g(s) to  minimize 
I c( jw)  for w E [a,, Q z ] .  As a simple example, assume that 
d(t) = a coswo(t). Then we may choose g(s)  in the form with 
w1 = WO. Provided that the assumptions 1-2 are satisfied 
and that WO # mx for some natural number m E N, the 
closed-loop system is asymptotically stable, (see Theorem 
1). Moreover, if kz > 0, then C(W) given above satisfies 
c(w0) = 0. From (15) we may conclude that this eliminates 
the effect of the disturbance at  the output yt(1,t). 

4 Conclusion 

In this note, we considered a linear time invariant system 
which is represented by one-dimensional wave equation in 
a bounded domain. We assumed that the system is fixed 
at  one end and the boundary control input is applied at  the 
other end. For this system, we proposed a finite dimensional 
dynamic boundary controller. This introduces extra degrees 
of freedom in designing controllers which could be exploited 
in solving a variety of control problems, such as disturbance 
rejection, pole assignment, etc., while maintaining stability. 
The transfer function of the controller is a proper rational 
function of the complex variable s, and may contain a single 
pole at  s = 0 and another one s = jq, w1 # 0, provided that 
the residues corresponding to  these poles are nonnegative; 
the rest of the transfer function is required to be a strictly 
positive real function. We then proved that the closed-loop 
system is asymptotically stable provided that w1 # mr for 
some natural number m E N. We also studied the case 
where the output of the controller is corrupted by a distur- 
bance. We showed that,  if the frequency spectrum of the 
controller is known, then by choosing the controller appro- 
priately we can obtain better disturbance rejection. 

- _. 
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