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Stabilization and Disturbance Rejection For the Wave Equation

Abstract

We consider a system described by the one dimen-
sional linear wave equation in a bounded domain with
appropriate boundary conditions. To stabilize the
system, we propose a dynamic boundary controller
applied at the free end of the system. We also con-
sider the case where the output of the controller is
corrupted by a disturbance and show that it may be
possible to attenuate the effect of the disturbance at
the output if we choose the controller transfer func-
tion appropriately.

1 Introduction

We consider a system whose behaviour is modeled by the
following wave equation :

ytt(z$t) = 'yu(:c,t) TE (0'1) t 2 0 (1)

y(U,t) =0 yr(lvt) = '_f(t) (2)

where a subscript, as in y; ‘denotes a partial differential with
respect to the corresponding variable, and f(t) is the bound-
ary control force applied at the free end.

It is well known that if we apply the following boundary

controller
f)y=dy(l,t) , d>0 (3)

then the closed loop-system given by (1)-(3) is exponentially
stable, see [1]. However, we will show later that when the
system is subjected to a disturbance, due to measurements
and actuation, this choice may not be a good one.

The problem we consider in this paper is to choose the
controller which generates f(t) appropriately to make the
closed-loop system stable in some sense. Later we will ana-
lyze the effect of this controller to the output of the system,
(9:(1,1)), when the controller is corrupted by disturbance.

In this paper we assume that f(t) is generated by a dy-
namic controller whose relation between its input y;(1,1),
and its output f(¢) is given by the following :

>0

s = Az +by(1,t) (4)
By = wiEy , t2 = —wizy + w(1,t) (5)
F() = Tz + dye(1,t) + kr1y(1,t) + kaz2 (6)
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where z; € R™, for some natural number n, is the actuator
state, A € R"*" is a constant matrix, b,c € R" are con-
stant column vectors, d € R, and the superscript T denotes
transpose.

We make the following assumptions concerning the ac-
tuator given by (4)-(6) thoroughout this work :

Assumption 1 : All eigenvalues of A € R™*" have
negative real parts.

Assumption 2 : (4,b) is controllable and (¢, A) is ob-
servable.

Assumption 3 : d > 0,k; > 0,k; > 0; moreover there
exists a constant v, d > v > 0, such that the following holds
(M

d + Re{cT(jwl ~ A)~'b} > 7, . weR

Moreover for d > 0, we assume v > 0 as well. O

2 Stability Results

Let the assumptions 1-3 stated above hold. Then it follows
from the Meyer-Kalman-Yakubovich Lemma that given any
symmetric positive definite matrix @ € R™*", there exists
a symmetric positive definite matrix P € R™*", a vector
¢ € R" and a constant ¢ > 0 satisfying : (see [4, p. 133].)

ATP+ PA=—q¢" - Q (8)
Pb—c=/2(d~v)g (9)

To analyze the system given by (1)-(2), (4)-(6), we define
the following "energy” function :

E(t) = jlo widz + § [y v3dz + $hu®(L) (1)
+12f Pz + Lka(23 + 23)
© Theorem 1 : Consider the system given by (1)-(2), (4)-
i : The energy E(t) given by (10) is a nonincreasing
function of time along the solutions of this system.
ii : f wy # mn for some natural number m € N, then
solutions of this system asymptotically converge to zero.
Proof : i : We differentiate (10) with respect to time.
Then by using (1)-(2), (4)-(6), integrating by parts and using
(8), (9), we obtain :

E = —ygf(1,0) - 31/2@= w10 - a) - 57 Q=
()



Since E < 0, it follows that E(t) is a nonincreasing function
of time.

ii : To prove the assertion ii, we use LaSalle’s invariance
principle, extended to infinite dimensional systems. Accord-
ing to this principle, all solutions asymptotically tend to the
maximal invariant subset of the following set : S = {E = 0}
provided that the solution trajectories for ¢ > 0 are precom-
pact in the underlying space. By casting the equations in
operator form, it can be shown that the above system gen-
erates a Co-semigroup in an appropriate space, see [2] for
similar results. It could also be shown that this operator
has a compact resolvent, which, together with (11), implies
that the solutions are precompact in the space considered.

To prove that § contains only the zero solution, we set
E = 0 in (11), which results in 2, = 0. This implies that
%, = 0, hence by using (4) and (6) we obtain y,(1,t) = 0,
f(t) = k1y(1,t) + kaz,. By using these it can be shown
that to have a nontrivial solution for the system considered,
we must have w; = mnr for some natural number m € N.
Therefore if w; # mn for some natural number m € N, we
conclude that the only solution of this system which lies in
the set S is the zero solution, hence, by LaSalle’s invariance
principle, we conlude that the solutions asymptotically tend
to the zero solution. O

3 Disturbance Rejection

In this section we show the effect of the proposed control
law given by (4)-(6) on the solutions of the system given by
(1)-(2), when the output of the controller is corrupted by a
disturbance d(t), that is (6) has the following form :

£ = T2y +dge(1, 1) + kay(L, ) + kazo + d()  (12)

or equivalently
f(s) = 9()3(1, ) + d(s)

where d(s) is the Laplace transform of the disturbance d(t).
For another type of disturbance acting on the system, see
{31.

To find the transfer function from d(t) to y¢(1,1), we take
the Laplace transform of (1)-(2) and set initial conditions to
zero. Then, the solution of (1), becomes :

(13)

(14)
where c is a constant and sinh is the hyperbolic sine function.

By using (2) and (13), we obtain :

1
= " 5(cosh s + g(s)sinh 5)

y(z,8) = csinhzs

d(s) (15)

Now, consider the controller given by (3). It is known
that, without disturbance, this system is exponentially sta-
ble, and that by choosing d appropriately, one can achieve
arbitrary decay rates. Moreover d = 1 is the best choice
since in this case all solutions become zero for t > 2. How-
ever, from (15) one can easily see that the case d = 1is not a
good choice for disturbance rejection. To see this, first note
that in this case the controller transfer function g(s) is given
by g(s) = d = 1, (see (3), and (13)). Hence, we obtain

w(1,1) = 3(d(t - 2) - o)) (16)
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In case d(t) is sinusoidal, from (16) it follows that y(1,1) is
sinusoidal as well. Hence the case d = 1 is not a good choice
for disturbance rejection. It can be shown that d # 1, d € R
yields similar results.

Another choice for disturbance rejection is the use of
dynamic controllers proposed here. From (15) we can also
derive a procedure to design g(s) if we know the structure
of d(t). For example if d(t) has a band-limited frequency
spectrum, (i.e. has frequency components in an interval of
frequencies [2;,;]), then we can choose g(s) to minimize
| e(jw) for w € [Q4, ;). As a simple example, assume that
d(t) = a coswp(t). Then we may choose g(s) in the form with
w; = wp. Provided that the assumptions 1-2 are satisfied
and that wy # mn for some natural number m € N, the
closed-loop system is asymptotically stable, (see Theorem
1). Moreover, if k; > 0, then c(w) given above satisfies
c(wp) = 0. From (15) we may conclude that this eliminates
the effect of the disturbance at the output y,(1,1).

4 Conclusion

In this note, we considered a linear time invariant system
which is represented by one-dimensional wave equation in
a bounded domain. We assumed that the system is fixed
at one end and the boundary control input is applied at the
other end. For this system, we proposed a finite dimensional
dynamic boundary controller. This introduces extra degrees
of freedom in designing controllers which could be exploited

in solving a variety of control problems, such as disturbance
rejection, pole assignment, etc., while maintaining stability.
The transfer function of the controller is a proper rational
function of the complex variable s, and may contain a single
pole at s = 0 and another one s = jwy,w; # 0, provided that
the residues corresponding to these poles are nonnegative;
the rest of the transfer function is required to be a strictly
positive real function. We then proved that the closed-loop
system is asymptotically stable provided that w; # mr for
some natural number m € N. We also studied the case
where the output of the controller is corrupted by a distur-
bance. We showed that, if the frequency spectrum of the
controller is known, then by choosing the controller appro-
priately we can obtain better disturbance rejection.
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