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Abstract 
The performance of a commonly employed linear array 
of sonar sensors is assessed for  point-obstacle localiza- 
tion intended f o r  robotics applications. Two different 
methods of combining time-of-flight information from 
the sensors are described to estimate the range and az- 
imu-th of the obstacle: pairwise estimate method and 
the maximum likelihood estimator. The variances of 
the methods are compared t o  the Cram&-Rao Lower 
Bound, and their biases are investigated. Simulation 
studies indicate that in estimating range, both methods 
perform comparably; in estimating azimuth, maximum 
likelihood estimate is superior at a cost o f  extra com- 
putation. The results are useful for target localization 
in mobile robotics. 

1 Introduction 
In this paper, the performance of a commonly em- 

ployed linear array of sonar sensors is assessed for 
point-target localization. Characterizing point-target 
response of a sensor has been important not only for its 
application to point targets but also to assess its per- 
formance on extended targets which can be modeled 
using different approaches [l, 2 ,  31. If the approach 
is one of hypothesis testing or one of parametrizing 
the extended target, then sensor performance may not 
be easily related to its point-target response. On the 
other hand, for extended targets of unknown shape 
with possible roughness [4], or for small spherical tar- 
gets, point target analysis can be extremely useful. 
Aside from modelling extended targets, the point tar- 
get analysis can be easily extended to spherical targets 
of finite radius which may be of interest in robotics 
applications. In this study, only point targets are con- 
sidered. By implementing a multi-transducer system 
that exploits the differences in the signal travel times 
and combining information from the array elements, 
the location of a point target can be accurately esti- 
mated in two dimensions. 

In the next section, the transducer model and 
the linear array configuration are described. In Sec- 
tion 3 ,  two different approaches for point target lo- 
calization are described and the CramCr Rao Lower 
Bound (CRLB) is derived. The performances of the 
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Figure 1: A linear array of N = 4 transducers for 
localization. 

two methods are discussed in terms of bias and vari- 
ance, and their variances are compared to the CRLB 
in Section 4. In the concluding section, the usefulness 
of the methods is assessed for point-target localization. 

2 The Sensor Model and the Array 

A single acoustic transducer can be employed both 
as a transmitter and receiver. After the transmitted 
pulse encounters an object, an echo is detected by the 
same transducer acting as a receiver. In this study, the 
excitation is chosen to be a gated Gaussian-modulated 
sinusoid. Localization of a point target is performed in 
the far-zone of the transducer where the propagating 
pulse is considered to be a series of plane waves. 

In this investigation, it is assumed that the point 
target and all the transducers lie in the same plane as 
illustrated in Figure 1 for N = 4 transducers. Uni- 
formly spaced sensors in this array are modeled as 

Configuration 
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identical Polaroid sensors pointing in the same direc- 
tion. Both of these assumptions can be relaxed with- 
out significant change in the following development. 

Suppose there is a point obstacle located at (x,  y) 
and that the i’th transducer transmits a pulse whose 
mathematical model will be provided in the next sec- 
tion. The rectangular coordinates of the i’th and 
j’th transducers, where i, j = 1, ..., N ,  are (xi, 0) and 
(x j ,O)  respectively as shown in Figure 1 for N = 4. 
The distance-of-flight (DOF) measured a t  transducer 
i is fi, and the corresponding DOF at j is fj. These 
DOF’s at the two transducers define a circle and an 
ellipse whose point of intersection with a positive y co- 
ordinate corresponds to the obstacle location, Solving 
for the intersection point: 

One of the two roots x1,2 is chosen as x such that 
f;” - (x - xi)2 is positive. Using x and y, the polar 
coordinates of the target can be found as 

r = Jm 
(3 0 = sin-’ (3) 

3 Estimation of Point-Target Position 

3.1 Description of the two Methods 
Using the given array configuration, information 

from the sensors can be combined in a number of ways. 
In earlier work, finding the optimal receiver separa- 
tion at a given range for plane-corner differentiation 
was considered and the pair that best approximates 
this separation in a linear array of N transducers was 
chosen [5]. With the same configuration, fusing infor- 
mation pairwise from all pairs of receivers symmetric 
around the center of the array have been investigated 
and the ‘optimal’ weighting factors for the estimates 
from these pairs were found [5]. This method im- 
proved the accuracy of the estimates approximately 
by 10% although the processing time was increased 
threefold for N = 6. This method will be referred as 
the s u b - a r r a y  method since it does not make use of all 
the received signals available in the system. 

In the array configuration assumed here, every 
transducer takes turn in transmitting, and after each 
transmission, received waveforms are recorded a t  ev- 
ery transducer. Hence, after a full cycle of transmis- 
sion, there are N 2  received waveforms. This allows 
us to extend the sub-array method to a more com- 
plete one in which every available echo is used. In 
total, there are N ( N  - 1) such pairs from which b o t h  
6’ and T estimates can be obtained [5]. This method 
will be referred as the p a i r w i s e  e s t i m a t e  (PE) method. 
Although this extension makes more complete use of 
the acquired data in localizing the point obstacle, a 
single, robust location estimate needs to  be extracted 

from the data. From the geometry of Figure 1, T and 6‘ 
estimates (given by Equation 3) are obtained at each 
receiver when one of the N transducers is used as a 
transmitter. These N ( N  - 1) estimates are combined 
by calculating their mean and excluding any estimate 
not within two standard deviations of the mean while 
doing so. 

In a second approach, all received waveforms are 
considered at the same time and the best r and 0 
which provide the most probable fit (the MLE) to the 
acquired data are chosen as the final estimate. This 
procedure requires the use of nonlinear iterative opti- 
mization techniques. Since the cost function used in 
this optimization procedure is observed to have mul- 
tiple local minima, the choice of the starting point is 
important in reaching the optimal values. One good 
choice is the minimum of the cost function on a coarse 
mesh centered around the PE result. The minimum 
so obtained is used as an initial estimate to find an 
approximation to the MLE of r and 0 by minimizing 
the cost function described below. 

The following additive noise signal-observation 
model is assumed: 

r i j ( t k , z )  = S i j ( t k , z )  + ni j ( tk)  (4) 

for i , j  = 1, ..., N and k = 1, ..., M .  Here, r i , ( t k )  is 
the received waveform at time sample t k  at t i e  j’ th 
transducer when the i’th transducer is activated. The 
vector z is the location parameter vector of the point- 
target given by 

(11) 
~2 cos2 6’ + ( T  sin 6’ - xi)z  

t i ( T ’ 8 )  = J 
C 

where IC = y ,  c is the speed of sound in air, and 
fo = 50 kHz is the resonant frequency of the Polaroid 
transducer with aperture radius a = 2 cm. Here, 
A(xi,r,B) is the free-space attenuation factor of the 
pressure amplitude, G xi! T ,  0) is the gain pattern of 
the transducer, and M i t]  is the envelope of the wave- 
form modeled as a gated Gaussian. 
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Note that the received waveform has nonlinear de- 
pendence on range and azimuth. I t  is desirable to have 
unbiased r and 6' estimates based on the acquired ar- 
ray data. In this type of nonlinear estimation prob- 
lems, it is difficult to find an exact expression for the 
variance of the estimate. In the following section, the 
performance of any nonlinear unbiased estimator will 
be characterized by deriving a lower bound on its vari- 
ance. 

3.2 Derivation of the  Cram&-Rao 

Cram&-Rao Lower Bound (CRLB) defines a lower 
bound on the variance of any unbiased estimator [6]. 
To find the CRLB in this particular case, an inde- 
pendent identically distributed Gaussian noise model 
is assumed with the following conditional probability 
density function: 

Lower Bounds 

!la) 
The MLE estimate given above chooses that value 

of z which maximizes the conditional probability. By 
taking the natural logarithm of both sides, we obtain 
a simpler expression to be maximized: 

From above, the final form of the cost function t o  b;? 
minimized for the MLE is 

Due to the nonlinearity of the expression in z ,  an ex- 
act expression for the MLE is difficult to find, and an 
iterative numeric method is used. From the above ex- 
pression the CRLB can be derived by computing the 
following partial derivatives of Equation 13 

- d21npriz(rlz) = -E [ T t J ( t k )  - S 2 3 ( t k ) Z ) ]  a 2 s t j ( t k , z )  

az,az, U2 az,az, 
r , 3 , k  

(15)  
1 a s L j ( t k , Z )  a S , J ( t k , Z )  +,.E 32, az77l 

C , J , 1 :  

where the righthandside for n,m = 1 , 2  defines the 
entries of J ,  the Fisher Information Matrix [6]. Then 
the expected value of J is: 

E{J} = H (16) 

where 

Here, Z is any unbiased estimate of the parameter vec- 
tor elements r and 6'. 

To find the expressions in Equation 15, partial 
derivatives of the amplitude and gain terms in Equa- 
tion 8 were evaluated. 

Beam Pattern 

3 

Figure 2: Transducer beam pattern at the resonant 
frequency fo = 50 kHz.  

0.1 

Amplitude 
I 

32 0.0232 0.0233 0.0233 0.0234 0.0234 0.0235 

time(s) 

Figure 3: 
when r=4 m. 

Received waveforms at  each transducer 

In the next section, performances of both of the 
PE and MLE for point-obstacle localization will be 
investigated and compared to  the CRLB over some 
synthetic test cases. 
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4 Results and Discussion 
The results presented in this section are obtained 

from a simulation study for an array of N = 4 trans- 
ducers of Polaroid sensors with resonant frequency 
fo = 50 kHz and separation 6 cm. Neglecting the 
narrow bandwidth around fo, the beam pattern of the 
transducer is a first-order Bessel function of the first 
kind as illustrated in Figure 2. 

Figure 3 displays received waveforms at each trans- 
ducer when the leftmost one transmits. The point 
obstacle is located at a range of r = 4m and an az- 
imuth of 0 = 4”. The standard deviation of the added 
Gaussian noise is chosen to be 5% of the maximum 
signal amplitude at a range of 1 m. 

In this simulation study, statistical performances of 
the two methods (PE and MLE) are compared with 
each other as well as with the CRLB derived previ- 
ously. Each of the N ( N  - 1) pairs provides a single 
range and azimuth estimate. The mean values and 
standard deviations of these estimates are computed 
based on ten different realizations for a given range 
and azimuth. Figure 4, shows the standard error of 
the range and azimuth estimates that are obtained 
from PE when the azimuth is kept constant at B = 0”, 
and the range r is changed between 1-4 m with 25 cm 
increments. The standard error is found by summing 
the squares of standard deviation and the bias of the 
estimate and then taking the square root. The corre- 
sponding results for the MLE are given in Figure 5. 
Both of these approaches indicate similar trends. The 
standard deviation of MLE in r is slightly more than 
that of PE. The slight increase in the standard de- 
viations as T increases is due to the decrease in the 
signal-to-noise ratio because of the free-space atten- 
uation factor. For comparison purposes, the CRLB 
for unbzased estimators has also been included in each 
figure. It is not possible to make a comparison to  the 
CRLB for bzased estimators since an analytic expres- 
sion for the bias is not available. The estimation bias 
partially derives from that one already present in the 
raw DOF measurements since these measurements are 
obtained by thresholding [7]. Although these standard 
deviations have an increasing trend as a function of r ,  
even at r =4 m ,  their values are of the order of 1 cm 
in T and approximately 0.1” in 8. These values are 
acceptable in practice. 

The results obtained when T is kept constant a t  2 
m and B is varied between 0 - 4” with increments of 
1” is illustrated in Figures 8 and 9. All of the above 
observations apply to these two cases as well. In this 
case, the increasing trend with B is due to the reduced 
transducer gain as a function of increasing /el. 

Biases of these estimates have als0 been investi- 
gated based on the same set of simulations. The re- 
sults are shown in Figures 6, 7, 10 and 11. In the 
first two figures, biases of PE and MLE as function 
of r have been displayed when B is kept constant at 
0”.  For a better display, the data points have been 
fitted with a spline. The bias in estimating range as a 
function of r in both cases is acceptable, at worst 5.9 
mm. Corresponding biases in the azimuth estimates 
are also within the acceptable range of f0 .14” for PE 
and f0.055” for MLE. In the last two figures, biases 

as functions of 6’ are investigated at a constant range 
of T = 2 m.  Again, the available data has been in- 
terpolated by a spline fit. All of these biases are also 
within acceptable levels. 

Based on this simulation study, it has been observed 
that although in estimating range, both PE and MLE 
perform comparably, MLE is superior in estimating 
the azimuth of the point target. 

5 Conclusion 
Two different methods of fusing inforrnation from a 

linear array of N acoustic transducers for estimating 
the position of a point target have been described. 
The methods are characterized by small biases, and 
standard errors larger than the CRLB by an order 
of 2-4. Although the PE and MLE methods provide 
similar range estimation accuracy, MLE outperforms 
the PE in estimating azimuth. 

This study is useful for characterizing the point- 
target response of acoustic sensors and forms a basis 
to find their response to rough surfaces which can be 
modeled as a random collection of point targets. The 
system is being implemented in hardware and the ob- 
tained experimental results will be compared with the 
analytical and simulation results. The results are use- 
ful for target localization in mobile robotics. 
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Figure 4: RMS error of PE in range and azimuth as a 
function of range when B = 0" in dashed line. CRLB 
in solid line. 
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Figure 5: RMS error of MLE in range and azimuth as 
a function of range when 0 = 0" in dashed line. CRLB 
in solid line. 
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Figure 6: Bias of P E  and MLE in range as a function 
of range when B = 0". 
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Figure 7: Bias of PE and MLE in azimuth as a func- 
tion of range when B = 0". 
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Figure 8: RMS error of PE in range and azimuth as 
a function of azimuth when r = 2 m in dashed line. 
CRLB in solid line. 
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Figure 9: RMS error of MLE in range and azimuth as 
a function of azimuth when r = 2 m in dashed line. 
CRLB in solid line. 

Figure 10: Bias of PE and MLE in range as a function 
of azimuth when r = 2 m.  
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Figure 11: Bias of PE and MLE in azimuth as a func- 
tion of azimuth when r = 2 m. 
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