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Abstract 

The major source of errors in B-ISDN/ATM systems is ex- 
pected to be bufler over$ow during congested conditions, result- 
ing in ATM cell losses which degrade the qualiry of service. It 
has been shown by many authors that the performance of the 
end-to-end system can be made much less sensitive to cell loss by 
means of forward error correction. This paper discusses the use 
of a two-level forward error correction scheme for virtual chan- 
nel and virtual path connections in ATM networks. The scheme 
exploits simple block coding and code interleaving simultane- 
ously. The simple block, interleaved, and joint coding schemes 
are studied and analyzed by using a novel and accurate discrete- 
time analytical method which enables the burstiness of cell losses 
be captured precisely. Detailed performance calculations, which 
indicate that it is possible to reduce the cell loss rate by several 
orders of magnitude overa wide range of network loadfor various 
trafic conditions, are discussed, and compared with simulation 
results. The comparisons show that the method is very accurate 
for bursty trafic. The advantages of the three coding techniques 
are quant$ed for different trafic characteristics and scenarios. 

1 Introduction 

In ATM networks the end-to-end propagation time for a typi- 
cal connection will be much larger than the duration of a packet. 
Since each retransmission increases the delay of a packet by ap- 
proximately the round-trip propagation time, the delay-throughput 
performance deteriorates significantly if the conventional error de- 
tection and Automatic Repeat reQuest (ARQ) mechanisms are em- 
ployed to provide end-to-end reliability. This is intolerable espe- 
cially for delay-sensitive high-speed applications such as real-time 
video. The same problem is present in satellite and deep-space 
communications, where open-loop error correction techniques are 
preferred to ARQ [l]. In 1975, Maxemchuk suggested the use 
of Forward Error Correction (FEC) to reduce the end-to-end de- 
lay for datagram-based services [2] .  In a similar manner, it has 
been suggested to use FEC in high-speed networks, in particular 
ATM networks, to improve reliability without increasing packet 
delay [3]-[ 121. 

In ATM, the basic unit of transport, switching, and queueing 
is a 53-octet cell composed of a 5-octet header and a 48-octet 
information field [13]. Since optical fibers have very low error 
rates, cell loss due to buffer overflow will be the dominant source 
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of errors in ATh4 networks [6]. FEC for ATM, compensating 
for cell losses, can be achieved by introducing separate parity 
cells transmitted along with the information-bearing cells. By 
this redundancy, the receiver can restore transmitted data without 
requiring retransmissions. But, in competition with this recovery 
capability, the parity cells increase the network load, and in turn, 
the cell loss rate before recovery. Therefore, the FEC scheme 
should introduce a reasonable parity overhead and be still suffi- 
ciently powerful to overcome this increase, so that a significant 
net gain is achieved. As long as the positions of losses are known, 
employment of erasure correcting codes is desirable in this re- 
spect since these codes are more powerful (typically by a factor 
of two) than error correcting codes of the same redundancy [14]. 

The principal motivation of this work is the fact that an ef- 
fective FEC scheme for ATM networks should be tailored to 
congestion losses. Simple block coding over consecutive cells, 
i.e., appending h parity cells to every group of IC consecutive 
information-bearing cells to form frames of n = E + h cells, is 
effective when losses are dispersed evenly over the cell stream 
(e.g., are random). Since ATM networks are intended to support 
a wide variety of services with different traffic characteristics in- 
cluding bursty ones, a congested buffer will remain congested for a 
sufficiently long period to last over several frames. Consequently, 
cell losses will be correlated in time, in other words, will occur 
in bursts. To be able to recover from burst cell losses, we intro- 
duce a second level of coding. In addition to simple block coding 
within individual frames (cell coding), we similarly append h’ par- 
ity frames to every group of E’ consecutive information-bearing 
frames, and form coding blocks of n’ = E’ + h’ frames (frame 
coding). This is equivalent to interleaving n rate k‘/n’ codes 
over a rate kfn  coded cell stream, and has been previously pro- 
posed in the particular form of adding one parity cell per frame 
and one parity frame per coding block [4]. This paper studies the 
performance of this joint cell-and-frame coding scheme, in addi- 
tion to cell-only and frame-only coding schemes, with a detailed 
analytical model. 

With regard to performance evaluation, some of the previous 
work focused on cell-only C31, 141, [81, [IO], [ l l l ,  and some on 
frame-only coding schemes [5], [9]. Shacham and McKenney 
assumed independent cell losses to analyze the performance of 
cell-only coding with one parity cell per frame, and made simu- 
lations for the actual case of correlated cell losses showing that 
independent cell loss assumption in the analysis may yield overly 
optimistic results [3], [4]. Kitami and Tokizawa analyzed the 
performance of frame-only coding under the independent cell 
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loss assumption [5] .  McAuley described a Reed-Solomon burst 
erasure coder based system for reliable broadband communica- 
tions [6], and Ayanoglu et al. discussedincorporation of FEC into 
high-speed protocols [7]. Zhang and Sarkies modeled a Virtual 
Path (VP) as a tandem queueing network, and considering inter- 
rupted and Markov modulated Bemoulli cell sources, developed 
a Markov chain model to estimate the output buffer contention, 
and hence, the cell loss process characteristics [8], [lo]. Ohta and 
Kitami improved the analysis in [5] via a two-state Markov chain 
characterization of the cell loss process (the Gilbert loss model), 
and dealt mainly with the practical issues of obtaining end-to-end 
erasure channel for a VP connection [9]. Biersack carried out 
extensive simulations to show the effectiveness of cell-only cod- 
ing for an ATM traffic stream derived from a real, compressed 
motion picture interfering at a node with its time-shifted replicas 
as well as bursty cell streams [ 1 11. The results of [ 1 11 revealed 
that cell-only coding would not be adequate for bursty traffic, thus 
confirming the motivation of this work. 

More recently, being motivated by high-speed services sen- 
sitive to both loss and delay, we considered a hybrid solution 
involving two-level FEC accompanied by ARQ [ 121. In this con- 
text, assuming ATM switches with dedicated and shared output 
queueing at the nodes, we simulated a four-node Krtual Chan- 
nel (VC) connection in a highly bursty traffic environment, and 
showed that two-level coding could significantly reduce frame 
retransmissions. 

The primary goal of this paper is to study the effect of traffic 
characteristics on the coding performance and to demonstrate the 
usefulness of two-level coding. For this purpose, focusing on a 
delay-sensitive VC traffic traversing a single node, we compare 
the cell-only, frame-only, and joint cell-and-frame coding perfor- 
mances separately for random and bursty traffic cases, seeking the 
most suitable coding technique for each case. 

The performance study is based on a new, discrete-time ana- 
lytical approach which has similarities to [8] and [IO]. It differs 
from [8] and [lo] mainly in that the buffer occupancy is char- 
acterized by a Markov chain with the burstiness of cell arrivals 
explicitly incorporated into the model. Recently, Cidon et al. ex- 
ploited this idea to analyze the packet loss process for continuous- 
and discrete-time systems, but not completely described the par- 
ticular case of discrete-time system with multiple sources [15]. 
Although our model has higher complexity as compared to those 
of [8] and [lo], and also to the Gilbert loss model abstraction of [9] 
(especially higher in this case), it captures the bursty nature of the 
cell loss process precisely, and hence, allows accurate quantifica- 
tion of the cell and frame loss rates for the uncoded and coded 
cases by means of computational algorithms similar to those of 
[81, [IO], and [151. 

2 The Two-Level FEC Scheme 

The two-level coding scheme is shown in Figure 1. Assume 
that cells fill a coding matrix row-wise as being transmitted. The 
FEC encoder generates h parity cells (p-cells) for every group 
of k consecutive information-bearing cells (i-cells). The p-cells 
are transmitted immediately after the kth i-cell of the correspond- 
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Figure 1: The two-level coding scheme. 

ing row, under the control of a peak rate policing mechanism. 
Each one of the first k’ rows of the coding matrix constitutes 
an information-bearing frame. We refer to coding cells within a 
frame as cell coding. Similarly, h’ parity cells @’-cells) are gen- 
erated for every column of k’ i-cells, and buffered in respective h’ 
parity frames which are appended h p”-cells according to the cell 
coding rules. The parity frames are transmitted similarly after the 
last information-bearing frame. We would like to be able to use a 
p”-cell in both row and column decoding, therefore we consider 
systematic linear block codes. The p”-cells can also be generated 
by using the corresponding k’ p-cells according to the rules of 
coding over columns, which we refer to asframe coding. 

We assume that the end-to-end connection can be viewed as 
an erasure channel. That is, the locations of lost cells in the 
coding matrix are known by the receiver. It is then possible to find 
optimal, maximum distance separable erasure correcting codes for 
both cell and frame coding so that the FEC decoder can recover 
up to h losses in a frame and h’ losses in a column [14]. In the 
simplest case of single-parity cell-only coding ( h  = 1, h’ = 0), 
each bit in the payload of the p-cell is the modulo-2 sum of the 
corresponding bits of k i-cells. This p-cell can be constructed 
without any encoding delay by carrying out a bitwise modulo-2 
addition on the i-cells as they are being transmitted. Since any cell 
in a frame is the bitwise modulo-2 sum of the remaining kcells, the 
decoder can easily make up for loss of one i-cell provided that its 
location is known. Multiple-parity coding involves manipulation 
of the information payloads of cells m bits taken at a time. Similar 
to the case of single-parity coding, there is no encoding delay due 
to the multiply-and-add nature of the encoding operation. 

Observe that the two-level code allows recovery of up to 
h’n + k’h lost cells out of nn’ provided that they are distributed 
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over the coding matrix appropriately. In particular, loss of h’n 
consecutive cells, or complete loss of h’ frames can be compen- 
sated for by frame coding if the number of losses in other frames 
does not exceed h per frame. Obviously, the most powerful code 
with the same parameters is the one that can recover any pattern 
of h’n + k’h lost cells out of nn’. This can be achieved by cell 
coding with kk’ i-cells and h’n + k’h p-cells. However, the av- 
erage decoding delay, i.e., the average time that a lost cell waits 
for a possible recovery, may then be too large. Furthermore, the 
higher the block length is, the higher the coding complexity will 
be. With the two-level coding approach, the recovery capability 
is structurally distributed over rows and columns of the n’ x n 
matrix, and we take the advantage of reduced code complexity 
at the expense of losing decoding flexibility. Also, the average 
decoding delay is reduced if decoding within a frame is done im- 
mediately upon detection of the frame boundary without waiting 
for the completion of the whole coding matrix. 

The two-level FEC can be performed for both VC and VP 
connections as described in detail in [16]. 

3 Analytical Framework 

In this section, we develop a discrete-time analytical frame- 
work to evaluate the performance of the two-level coding scheme 
for a VC connection. The tagged traffic belonging to this con- 
nection is assumed to traverse a single node at which it interferes 
with N - 1 untagged traffic streams. Assuming that there is an 
N x M ATM switch with dedicated output queueing at the node, 
and concentrating on the tagged output port, the node is modeled 
by an N-to-1 ATM multiplexer where the output buffer is a FIFO 
queue of capacity B cells. 

The main objective in our analytical approach is to obtain an 
accurate model for the tagged cell loss process. This requires 
the burstiness of the input traffic streams be incorporated into the 
model. For this purpose, considering discrete-time Markovian 
cell sources, we construct a Markov Chain (MC) for the buffer 
occupancy with the states of the tagged and aggregate untagged 
sources augmented explicitly into the state variable. For realis- 
tic N and B ,  this augmentation results in a very large MC as 
compared to those of [8]-[lo], but it enables the burstiness of 
tagged cell losses be captured precisely, and hence, allows accu- 
rate quantification of the cell and frame loss rates by means of 
computational algorithms similar to those of [8], [lo], and [15]. 
For the sake of tractable time and memory complexity of these 
algorithms, we consider simpler sources than the interrupted and 
Markov modulated Bernoulli sources of [8] and [lo] so that the 
state transition probability matrix for the augmented MC becomes 
sparse. Yet these sources are capable of generating traffic streams 
of diverse characteristics. 

We first discuss the input traffic model in Section 3.1. Then, 
the cell loss process model, i.e., the augmented MC, is introduced 
in Section 3.2. Based on this model, we obtain an approximate 
frame loss process characterization in Section 3.3. Finally, in 
Section 3.4, the computation of the cell and frame loss rates is 
discussed. In these computations, we assume that the end-to-end 
systemoperates properly, i.e., the receiver can always identify the 

q1,m = = P  

Figure 2: MC model of one source. 

lost cells. 

3.1 Input Traffic Model 

We consider N independent discrete-time Markovian cell 
sources at the input of the multiplexer, which have identical statis- 
tics when there is no coding. The MC model of one source is 
shown in Figure 2, where the states 0 and 1 correspond respec- 
tively to the “idle” and “active” states of the source. 

The state transitions occur once per slot, which is the unit 
time required to transmit a cell over the output link, and a source 
generates one cell per slot when it is active. Therefore, the steady 
state probability for the active state, given by 

p1 = (1  - a)/@ - a - P ) ,  

is the normalized load offered by one source. Consequently, the 
normalized aggregate load becomes 

N 

P = P I  = Npi  
m= 1 

since the sources are independent and identical for the no coding 
case. 

When the tagged traffic is coded as described in Section 2, 
the Markovian behavior of Figure 2 is no longer valid due to 
the periodic insertion of parity cells. However, we assume that 
this behavior is preserved even after the encoding operation, and 
reflect the effect of parity overhead in the traffic parameter ,L3 only 
so that the effective normalized tagged load becomes 

Pet = pl(1 + h/k) ( l+  h’ /k’ ) .  (3) 

That is, the probability distribution of idle duration for the tagged 
source is not affected by parity cell insertion. This is reasonable 
due to the memoryless property of the underlying discrete-time 
geometric random process. 

Superposition of M = N - 1 > 1 independent and identical 
untagged sources results in an aggregate source, which is modeled 
by an ( M  + 1)-state discrete-time MC. The state variable is the 
number of active untagged sources, or equivalently, the number of 
simultaneous untagged cells. The subscript 1 in q1,ij of Figure 2 
is attributed to the single source. With similar notation, let q M , i j ,  

a,  J = 0, 1,2,  . . . , M ,  be the state transition probabilities for this 
MC. Observe that a transition from state a to state j occurs when 
I of i active sources become idle, and j - ( i  - I) of M - i idle 
sources become active simultaneously in a slot. Therefore, we 

. .  
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(a 
Figure 3: Some typical cell stream realizations over 200-slot 
periods for the following offered loads and clustering coefficients: 
(a) p1 = 0.05, c = 1.2; (b) p1 = 0.05, c = 1.9; (c) pi = 0.1, 
c = 1.2; and (d) pl = 0.1, c = 1.9. Cells generated consecutively 
are represented by a single pulse of height 1 and width proportional 
to the number of cells in the batch. 

have 

where 1 = max(0, i - j) and i = min(i, M - j ) .  It can be shown 
that (4) reduces to the transition probabilities of Figure 2 when 
M = l .  

Observe that a source as just described generates a correlated, 
or bursty, traffic in general. However, when cy + /3 = 1, we 
have a simple independent Bernoulli process since ql,w = q1,lo 
and q1,11 = q1,01, and a completely uncorrelated cell stream is 
generated. Let 

be the clustering coeficient which serves as a measure of the 
burstiness of a source when the offered load is small. In general, 
the closer c to 2 is, the burstier the source becomes. For example, 
when pl E (0,0.1], (1) and (5 )  imply cy E [0.92,1) and /3 E 
(0.2,0.28] for c = 1.2, meaning that cell arrivals tend to be 
dispersed over time. On the other hand, we have cy E [0.99,1) 
and /3 E (0.9,0.91] for c = 1.9, and cells are likelier to arrive in 
clusters. In Figure 3, the typical cell stream realizations obtained 
over 200-slot periods for the offered loads p1 = 0.05 and p1 = 
0.1 illustrate the respective random and bursty characteristics for 
c = 1.2 and c = 1.9, thus proving the capability of the sources 
we consider to generate traffic streams of diverse characteristics. 

c L + p  E (0,2) (5 )  

3.2 Cell Loss Process Characterization 

Given the tagged and untaggedtraffic parameters, to character- 
ize the cell loss process for the tagged VC connection accurately 
without ignoring the burstiness of cell arrivals, we construct a 3- 
Dimensional (3-D) discrete-time MC model for the buffer, which 
is driven by 1 tagged and N - 1 untagged cell sources. The 
state variable is the (a, t ,  U) triplet, where t E (0,l)  is the state 
of the tagged source, U E (0, 1,2, .  . . , N - 1) is the number of 

active untagged sources, and b E {0,1,2,. . . , B }  is the buffer 
occupancy after t + U new cells arrive in a slot. The multiplexer 
is assumed to be intemally non-blocking and capable of trans- 
porting all the simultaneous input cells to the buffer in zero time. 
If the buffer is empty, a randomly chosen one of the new cells 
is transmitted immediately over the output link, and the rest is 
stored in random order. Otherwise, the leading cell in the buffer 
is transmitted first, and the new cells are stored in random order 
again, provided that there is enough room for them. Therefore, 
the buffer occupancy is characterized by the relation 

b,  = min (B,  max(0, b,- l  + t ,  + us - 1)) (6) 

where the index s is the slot variable. 
Observe that there are 2N(B + 1) distinct ( b ,  t ,  a) triplets. 

However, some of them are inconsistent: they correspond to 
transient states due to the boundary conditions at b = 0 and 
b = B. It follows from (6) that 

( i )  if b, < B, t ,  + us > b8 + 1 implies that b,-1 < 0, or more 
than one cells are transmitted over the output link in slot s; 
and, 

(ii) ifb, = B , t s + u d  =Oimpliesthatb,-l > B,orthebuffer 
remains full although no new cells arrive in slot s. 

Discarding these transient states, we have the following irre- 
ducible state space: 

S = { ( b , t , u )  : t + u  5 b +  1 if b < B,and 
t + U > 0 if b = B}. (7) 

Since b in the ( b ,  t ,  U) triplet is dependent on t and U, the state 
transition probabilities of the 3-D MC follow from those for t and 
u given by (4). That is, in a slot, a transition from ( b ,  t ,  U) E 
S to (b’ ,  t’, U’) E S occurs with probability ql,ttjqN--l,uu’ if 
b’ = min ( B ,  max (0, b + t’ + U‘ - 1)), and with probability 0 
otherwise. 

Suppose that we are in state ( b ,  t ,  U) E S at the end of a slot. 
Then, the maximum number of new cells that can be served in the 
nextslot is B - b +  1. Therefore,if there are t’+ U’ > B - b +  1 
new cell anivals, randomly chosen t’ + U’ - ( B  - b + 1) of them 
are lost. In particular if t‘ = 1 and U’ > B - b,  the tagged cell is 
lost with probability 1 - (B - b + 1)/( 1 +U’), and the new state 
becomes (B, 1, U ’ ) .  We distinguish the potentially “bad” states 
( B ,  1, U’) with U’ 2 1 from the others, and decompose each 
oneinto two states (B, 1, U’) and (B, 1, U’)*, which respectively 
indicate tagged cell “success” and “loss.” This decomposition is 
illustrated in Figure 4 where it is assumed that U’ > B - b. 

Let SL be the set of tagged cell ‘‘loss’’ states, i.e., 

SL = { ( B ,  1 , U ) *  : u = 1,2 , .  . . , N - 1). (8) 

Then, we have the extended 3-D MC with state space SE = 
S U SL . For i, j E S E ,  let pi j be the transition probability from 
state i to state j ,  and p ,  be the steady state probability of state i .  
For B 2 N - 2, it can be shown that the number of states in SE 
is 

(9) 
Therefore, l S ~ l  gets very large for realistic N and B. For ex- 
ample, when N = 16 and B = 100, we have I S E ~  = 3021, 

ISEI = 2 N ( B +  1) - (N2  - 3 N + 3 ) .  
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Figure 4: Decomposition of a potentially “bad“ state into tagged 
cell “success” and “loss” states. 

and the solution for pi, i E SE, may seem infeasible. However, 
the number of states reachable from any state in SE in just one 
transition is limited to be at most 3N - 1 in the worst case of 
reachable subset containing all of the tagged cell “loss” states. 
This means that the state transition probability matrix for SE is 
sparse for large B ,  and consequently, the problem is of tractable 
complexity with respect to both time and memory requirements. 

Observe that this model captures the burstiness of the traffic 
streams, and hence, constitutes a basis for accurate study of the 
effectiveness of the two-level FEC scheme. For this purpose, let 
{ F ( v ,  n) : v = 0, 1,2,. . . , n} be the Cell Loss Pattern Distri- 
bution (CLPD), where F ( v ,  n) is the probability of v losses in a 
frame of n tagged cells. To compute the CLPD, we partition S 
into two subspaces 

(10) 

and 
(1 1) 

where SD is the set of “don’t care” states in which there is no 
tagged cell arrival, and SS is the set of tagged cell “success” 
states. For i E SE, let fi(v, w), v = 0,1,2,. . . , w, be the 
conditional probability that v of next w tagged cells are lost given 
that the system is initially in state i. From this definition, we have 
the recursive relation 

S D  = { (a, 0, U )  E S}, 

Ss = ( ( 4  1, U )  E S}, 

j E S L  

where fj(0,O) = 1,  and f;(v, w) = 0 if v > w or min(v, w) < 
0. Therefore, the CLPD can be computed by the following itera- 
tive algorithm: 
(I) Initial condition: fi(0,O) = 1 for all i E SE. 
(2)  Boundary condition: fi(v, w) = 0 for all i E SE if v > w 

(3) Set w := 1. 
(4) For v = 0, 1 ,2 , .  . . , w, find fi(v, w) for a E SI, by using 

(12) and the results of the previous iteration cycle. 
(5) For v = 0, 1 ,2, . . . , w, compute f i  (v, w) for a E Ss U Sr. 

by using (12), and the results of step (4) and the previous 
iteration cycle. 

or min(v, w) < 0. 

P = l - Q  

Q @  
A 

p = l - q  

Figure 5: Gilbert loss model for the frame loss process. 

(6) If w < n, set w := w + 1,  and go to step (4). 

(7) For v = 0,1 ,2 , .  . . , n, compute 

where p e t  is the effective normalized tagged load given by 
(3), and is equal to the sum of all pi for i E SS U SL. 

Note that, in step (4), we have a set of ]SI, I linear equations with 
(SI,( unknowns, where IS0 1 is thenumberofstates inSD. That is, 
we have to solve the matrix equation Ax = y for column vector 
x, where A is an IS0 I x /SI, I matrix. Although ISD I M [SE I /2 
is very large for realistic N and B, A is a sparse matrix, and 
hence, the solution for the unknowns is feasible. Yet the algorithm 
requires (n + 1) (n + 2)/2 - 1 such solutions, and the complexity 
is determined mainly by this step. Therefore, the frame size n for 
which the CLPD computation takes a reasonable time is limited 
for realistic N and B. 

3.3 Frame Loss Process Characterization 

Let a frame with more than h missing cells be defined to be 
lost. Then, observe that frame losses are also correlated in time 
due to the correlation between the adjacent cells of consecutive 
frames. This has to be incorporated into the analysis in order to 
obtain accurate results in the frame coded cases. For this purpose, 
we approximate the frame loss process by a two-state MC, i.e., 
by the Gilbert Loss Model (GLM) shown in Figure 5, where the 
states FS and FL stand for frame success and loss, respectively. 
The computation of the GLM parameters Q and q based on the 
extended 3-D MC model will be discussedin [16]. 

Similar to the CLPD, let {G(v, n’) : v = 0,1,2,. . . , n’}, be 
the Frame Loss Pattem Distribution (FLPD), where G(v, n’) is 
the probability of v frame losses in a coding matrix of n’ frames. 
To compute the FLPD based on the GLM, let us also define 
gfs(v, w) and gfi(v, w), v = 0,1 ,2 , .  . . , w, as the conditional 
probabilities of losing v of next w frames given that the current 
frame is successful and lost, respectively. Then, similar to the 
CLPD computation, the FLPD can be computed by the following 
iterative algorithm: 

(I) Initialcondition: gfd(O,O) = grl(0,O) = 1. 

(2) Boundarycondition: gjs(v, w) = gjl(v, w) = Oif v > w 

(3) Set w := 1 .  

or min (U, w) < 0. 
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For v = 0,1,2, . . . , w, compute 

gfs(v, w) = Q g f s ( v ,  - 1) + P g j l ( u  - 1, w - 11, (14) 

and 

S f I ( ” ,  w) = pg.f.(w’, w - 1) + 99fI(W - 1,w - 1). (15) 

If w < n’, set w := w + 1, and go to step (4). 
For w = 0,1,2, . . . , n’, compute 

G(v, n’) = Pfsgfs(v, n’) + Pf ig j l ( ” ,  n’) (16) 

where, similar to (l), Pfs and Pfl are given respectively by 

(17) 

(18) 

Pfs = P / ( P  + PI, 

Pfl = P/(P + P) .  
and 

Observe that, given the GLM parameters Q and q, this algorithm 
is of negligible complexity as compared to that of Section 3.2 
used for the CLPD computation. However, the computation of 
Q and q requires an additional execution of the former algorithm 
(see [16]). Therefore, given N and B ,  the frame size n is the 
major quantity that is constrained so that the CLPD and FLPD 
computations are both feasible, whereas there is not any practical 
limit on the coding block size n’. 

3.4 Performance Evaluation 

Observe that the most natural decoding strategy for the two- 
level coding scheme is to recover lost cells within each frame as 
frames are being received, and to check columns independently 
for subsequent possible recoveries upon reception of the whole 
coding matrix. Since recoveries over columns may enable new 
recoveries over rows and vice versa, it is possible to achieve bet- 
ter performance than that offered by this single-truce decoding, 
and the optimal decoder is the one which traces the coding matrix 
successivelyover rows and columns until no more new recoveries 
are left. However, due to the high computational complexity of 
our analytical framework, we consider a much simpler decoding 
strategy for the frame coded cases. We assume that column decod- 
ing is performed in a constrained manner over successful frames 
only, instead of independent recoveries over columns. In other 
words, the successful cells of lost frames are ignored. Although 
this constraineddecoding weakens the code interleaving effect of 
frame coding, the results of Section 4 indicate that the associated 
frame coding gain can still be quite significant. 

After this simplifying assumption, the cell and frame loss 
rates, abbreviated respectively as CLR and FLR, follow eas- 
ily for the uncoded and coded cases. For any normalized ag- 
gregate load p E (0,1], let {Fhhr(v, n )  : v = o, 1,2, .  . . , n }  
be the CLPD computed with the effect of parity overhead 
taken into account as described in Section 3.1. Also let 
{Ghhr (w, a’) : w = o,I ,  2, . . . , n’} be the K P D  computedsim- 
ilarly. Then, the FLR defined as the ratio of the expected number 
of unrecoverable frame losses in a coding matrix to n’ is given by 

u=h’+l  

since up to h’ frame losses in a coding matrix of n’ frames can 
be recovered. On the other hand, the CLR defined similarly as 
the ratio of the expected number of unrecoverable cell losses in a 
coding matrix to nn‘ is given by 

where 
nr 

E [rift] = vGhh’(v,n‘) (21) 
v=h’+l  

is the expected number of unrecoverable frame losses in a coding 
matrix, and 

/ n  \ - 1  n 

\v=h+l  / v=h+l 

(22) 
is the expected number of cell losses in a frame that is given to be 
lost. 

When there is no frame coding, it can be shown that (19) and 
(20) reduce respectively to 

n 

and 

v=h+l 

In the particular case of no coding, it can also be shown that (24) 
further reduces to 

where pi  = p / N  is the normalized tagged load, as (2) implies. 

4 Results and Discussion 

In this section, we fix the number of sources as N = 16 
to obtain a reasonable traffic mix, and study the effectiveness 
of the two-level coding scheme via the analytical framework of 
Section 3 for a buffer capacity of B = 100 cells. We assume 
that only the tagged traffic is coded, and recalling the extremely 
diverse characteristics of the sources with clustering coefficients 
c = 1.2 and c = 1.9 illustrated in Figure 3, consider interference 
of various combinations of these generic sources, which we refer 
to as “random” and “bursty” sources throughout this section. 

We consider the homogeneous traffic scenarios R16 and B16, 
where all of the 16 sources are either random or bursty, respec- 
tively, and evaluate the performances of cell-only, frame-only, 
and joint cell-and-frame coding techniques separately for these 
two scenarios under heavy traffic conditions. In particular, for 
the B 16 scenario, we choose the normalized aggregate load to be 
p = 0.8, which yields a CLR in the order of lo-* for the no cod- 
ing case. For the R16 scenario, since the CLR appears to be well 
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Figure 6: Effect of cell-only coding for the R16 scenario at p = 
0.96, where n is the frame size in cells, and h is the number of 
parity cells in a frame. 

below lo-’’ at p = 0.8 even when there is no coding, we choose 
a higher normalized aggregate load of p = 0.96. Although such 
high loads may not be typical for the long-term behavior of an 
ATh4 network, our steady state analysis thus gives emphasis to 
transient heavy traffic periods during which congestion is likelier 
to occur, and hence, FEC is functional. Furthermore, the gen- 
eral conclusions drawn are valid also for lower loads, as will be 
shown at the end of Section 4. We first study the effective- 
ness of cell-only coding for the homogeneous traffic scenarios 
R16 and B16. For both scenarios, we consider the frame sizes 
n E { 16,32,48,64}, and constrain the parity cells to constitute 
at most 25% of the total tagged traffic, i.e., h / n  5 0.25. For 
the R16 scenario, the CLRs computed at p = 0.96 are plotted in 
Figure 6. Observe that cell coding with n = 16 does not improve 
the CLR for any h 5 4. Referring to a frame with at least one 
lost cell as being corrupted, this is because a significant fraction 
of the corrupted 16-cell frames lose more than 4 cells. Since 
the most powerful erasure correcting code among those with the 
same rate is the one with the largest block length, the cell coding 
gain increases uniformly with n for any 0 < h / n  5 0.25, and 
approximately 2.6 orders of magnitude reduction in the CLR is 
achieved when n = 64 and h = 16. 

The cell-only coding results obtained at p = 0.8 for the B16 
scenario are shown in Figure 7. Observe that Figures 6 and 7 
exhibit similar trends in general. However, cell coding for the 
B16 scenario is not as effective as it is for the R16 scenario. This 
is obviously because the cell loss process is much burstier for the 
B16 scenario than it is for the R16 scenario. Better results can be 
achieved if larger frame sizes are considered, but frame coding 
with appropriate parameters should be expected to be far more 
effective. 

The performance of frame coding depends not only on the 
parameters n’ and h’ but also on the frame size n. Too small an 
n may not provide sufficient code interleaving effect desired to 
overcome the burstiness of cell losses. On the other hand, given 
n’ and h’, the larger n is, the larger the average decoding delay 
will be. Also since, when there is no cell coding, loss of even one 
cell results in the loss of the frame that it belongs to, the frame 
loss process is adversely affected by increasing n. Note that this 

Figure 7: Effect of cell-only coding for the B16 scenario at p = 
0.8, where n is the frame size in cells, and h is the number of 
parity cells in a frame. 

16hln’ 

Figure 8: Effect of frame-only coding with frame size n = 16 
for the R16 scenario at p = 0.96, where n’ is the coding matrix 
size in frames, and h’ is the number of parity frames in a coding 
matrix. 

effect is important for the constrained decoding strategy discussed 
in Section 3.4. As our preliminary results indicate that n = 16 
is a reasonable choice in these respects for both traffic scenarios, 
we consider frame coding with n = 16 in the sequel. 

For the R16 scenario, the results of frame-only coding with 
n’ E { 16,32,48,64} are shown in Figure 8, where p = 0.96 
and h’/n’ 5 0.25 again. Comparing these results with those 
of Figure 6, it is observed that frame-only coding with n’ = 16 
improves the CLR slightly in contrast with the case for cell-only 
coding with n = 16. This indicates that although the sources are 
highly random, cell losses are still bursty for the R16 scenario, 
and hence, code interleaving provides an improvement. This is 
observed much more clearly for larger n’, and frame-only coding 
with n’ = 48 and h’ = 9, or with n’ = 64 and h’ = 8, outper- 
forms cell-only coding with n = 64 and h = 16. In particular, 
when n‘ = 64 and h’ = 16, the CLR is reduced by approximately 
4.4 orders of magnitude as compared to the no coding case. 

For the B16 scenario, the frame-only coding results obtained 
at p = 0.8 are shown in Figure 9. Due to the heavily bursty 
nature of cell losses, n‘ < 64 does not yield significant im- 
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Figure 9: Effect of frame-only coding with frame size n = 16 for 
the B16 scenario at p = 0.8, where n’ is the coding matrix size in 
frames, and h’ is the number of parity frames in a coding matrix. 

provements. Therefore, we consider frame-only coding with 
n’ E (64,128,192,256). Comparing Figures 7 and 9, observe 
that frame coding is much more effective than cell coding as 
expected. In particular, approximately 6 orders of magnitude 
reduction in the CLR is achieved when n’ = 256 and h’ = 64. 

Note that these significant frame coding gains for both traffic 
scenarios are achieved despite the constrained decoding strategy. 
Much better results should be expected when we switch to the 
single-trace decoding which treats the columns of the coding ma- 
trix independently. 

Also observe that the frame coding gain saturates with in- 
creasing h’/n‘ for the R16 scenario (see Figure 8). In fact, when 
n’ = 16, there is a relative worsening for h’ = 4 as compared to 
h’ = 3. Referring to a coding matrix with at least one lost frame 
as being corrupted, this saturation indicates that a significant frac- 
tion of the corrupted coding matrices amve with no more than 
0 .25~~‘  lost frames. When n’ 1 32, if h’/n’ is increased further 
from 0.25, the increase in the tagged load due to the parity over- 
head will start to dominate, and a relative worsening will occur 
as in the case of n’ = 16 and h‘ = 4. For this reason, we do not 
consider h‘ > 0.2%’. 

Contrary to this behavior, the frame coding gain does not 
saturate within the range h’/n’ 5 0.25 for the B16 scenario 
(see Figure 9). Even for n’ = 256, a significant fraction of the 
corrupted coding matrices lose more than 6.25% of their frames, 
and hence, frame coding with h’ = 0.0625n’ does not improve 
the CLR for any n’ considered. As h‘/n’  increases, it becomes 
more effective. The trend toward h’/n’ = 0.25 indicates that 
there is still a significant fraction of the corrupted coding matrices 
that lose more than 25% of their frames. However, we do not 
increase h’/n’ further from 0.25 since otherwise the resulting 
frame code will no longer be efficient. 

For the case of joint coding, we choose n = 16 and n’ = 64 
for the R16 scenario. The CLRs computed at p = 0.96 are 
shown in Figure 10, where the total number of parity cells in the 
coding matrix is constrained to be less than 0.3nn’. Observe that, 
although cell coding with n = 16 alone is not effective for any 
h 5 4, it provides a significant improvement when used together 
with frame coding. In particular, when n’ = 64 and h’ = 16, 

t6h’In’ h 

Figure 10: Effect of joint coding with frame size n = 16 and 
coding matrix. size n’ = 64 for the R16 scenario at p = 0.96, 
where h is the number of parity cells in a frame, and h’ is the 
number of parity frames in a coding matrix. 

0 

16h’ln’ h 

Figure 11: Effect of joint coding with frame size n = 16 and 
coding matrix size n’ = 256 for the B16 scenario at p = 0.8, 
where h is the number of parity cells in a frame, and h’ is the 
number of parity frames in a coding matrix. 

even the simple single-parity cell coding with n = 16 reduces the 
CLR by approximately 2.3 orders of magnitude as compared to 
the frame coding alone. With the constrained decoding strategy 
in mind, this is because cell coding can improve the frame loss 
process characteristics, and in tum, increase the effectiveness of 
frame coding considerably. 

For the B16 scenario, the joint coding results obtained at 
p = 0.8 are shown in Figure 11, where n = 16 and n’ = 256. 
Similar to the case for the R16 scenario, cell coding increases 
the effectiveness of frame coding. However, the additional gain 
is not as significant as it is for the R16 scenario. Nevertheless, 
despite the heavily bursty nature of cell losses, cell coding with 
n = 16 and h = 1 provides an additional gain of approximately 
1.4 orders of magnitude as compared to frame-only coding with 
n’ = 256 and h’ = 64. 

The results for the R16 and B16 scenarios are summarized in 
Table1,wherePP = 100(1-kk’/nn’)istheparitycellpercent- 
age, and G is the coding gain measured in orders of magnitude. 
Comparing the CLRs for the codes with P P  x 25%, it is ob- 
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Table 1: Summary of the results for the R16 and B16 scenarios 
respectively at p = 0.96 and p = 0.8, where n is the frame size 
in cells, h is the number of parity cells in a frame, n’ is the coding 
matrix size in frames, and h’ is the number of parity frames in a 
coding matrix. 

Figure 12: Comparison of the codes with P P  M 25% of Table 1 
for the R16 scenario. The coding parameters are indicated in the 
[(n,  h) ,  (n‘, h,‘)] format, where h is the number of parity cells in a 
frame of n cells, and h‘ is the number of parity frames in a coding 
matrix of n’ frames. Continuous curves are the computational 
results, and discrete points are the simulation results. 

served that, for the R16 scenario, the joint code outperforms both 
the cell-only and frame-only codes. For the B 16 scenario, on the 
other hand, the most effective code among those with P P  M 25% 
is the frame-only code. Due to the heavily bursty nature of cell 
losses, the probability of having scattered cell losses over the cod- 
ing matrix is negligible. Therefore, for any P P  given, it is better 
to arrange the whole parity overhead in the form of parity frames. 

Figures 12 and 13 compare the performances of the codes with 
P P  M 25% of Table 1 respectively for the R16 and B16 traffic 
scenarios, where the CLR is plotted as a function of p for each 
code. By these comparisons, the superiority of the joint code for 
the R16 scenario, and that of the frame code for the B 16 scenario 
are validated for a wide range of p .  

We have also simulated transmission of 10’ tagged cells for 
both scenarios, and the results are shown in comparison with the 
computational results in Figures 12 and 13. The almost perfect 

Figure 13: Comparison of the codes with P P  G 25% of Table 1 
for the B16 scenario. The coding parameters are indicated in the 
[(n,  h ) ,  (n’, h’)] format, where h is the number of parity cells in a 
frame of n cells, and h’ is the number of parity frames in a coding 
matrix of n’ frames. Continuous curves are the computational 
results, and discrete points are the simulation results. 

matches in the uncoded and cell-only coded cases for the B16 
scenario and in the uncoded case for the R16 scenario are because 
we have not made any simplifying assumptions in these cases, 
and indicate the accuracy of the analytical model in capturing the 
bursty nature of cell losses. The slight deviation in the cell-only 
coded case for the R16 scenario should be attributed to the fact that 
the smaller the CLR is, the lower the confidenceof a fixed-length 
simulation becomes. 

Observe that the GLM approximation to the frame loss process 
summarizes the cell loss behavior roughly from frame to frame. 
It claims that the loss and success of a frame both depend merely 
on the loss and success of the previous frame. The extent to 
which this claim holds is determined basically by the burstiness 
of cell losses and the frame size. Obviously, the larger the frame 
size is, the less relevant the information about more than just one 
preceding frame is, and consequently, the more accurate the GLM 
approximation becomes. The surprisingly perfect match in the 
frame coded cases for the B16 scenario indicates that the GLM 
approximation works quite well in this respect with n = 16 for 
bursty traffic. Unfortunately, the simulation results for the R16 
scenario reveal that the analysis is underestimating the CLR by 
approximately an order of magnitude in the frame coded cases 
for random traffic. To figure out the reason of this difference, 
we ran simulations to find the consecutive frame loss and suc- 
cess length distributions for both traffic scenarios. For the R16 
scenario, although the consecutive frame loss behavior is found 
to be well-approximated by a simple geometric distribution as in 
the case for the B16 scenario, thus justifying the sufficiency of 
one frame loss state in the GLM, the likelihood of the success 
of a frame increases abruptly after the number of consecutively 
preceding successful frames exceeds a certain threshold. This in- 
dicates that, for the R16 scenario, the consecutivesuccessof a few 
16-cell frames may correspond to an occasional success period in 
the close neighborhood of frame loss, and hence, the past infor- 
mation of success of just one preceding frame is not sufficient 
to accurately determine what will happen next. As we switch 
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to the B16 scenario, the cell loss process gets burstier, and the 
success of only one preceding 16-cell frame carry almost all the 
relevant past information. Consequently, one frame success state 
in the GLM suffices. Although, in light of these observations, the 
analysis can be improved by exploiting a more complicated frame 
loss process model with more than one success states, additional 
computational complexity will be very high. 

5 Summary and Conclusions 

We have considered a two-level forward error correction 
scheme for lost cell recovery in ATM networks. The scheme 
is basedon transmitting parity cells, which are generated by using 
optimal, maximum distance separable erasure correcting codes, 
along with the information-bearing ones, and composed of two 
types of coding: (i) cell coding (appending h parity cells to every 
group of k consecutive information-bearing cells to form n-cell 
frames); and, (ii) frame coding (appending h’ parity frames to ev- 
ery group of k‘ consecutive information-bearing frames to form 
n’-frame coding blocks). 

Several papers have previously proposed and studied the per- 
formances of cell and frame coding techniques separately, via 
simulations andor analytical methods [31-[5], [8]-[11]. This pa- 
per differs from the previous work mainly in that it has combined 
the two individual coding techniques in order to achieve efficient 
recovery of burst as well as random cell losses, and carried out 
a comparative performance analysis of the cell-only, frame-only, 
and joint cell-and-frame coding techniques separately for random 
and bursty traffic streams under various interfering traffic condi- 
tions. 

To analyze the coding performance for a delay-sensitive vir- 
tual channel traffic traversing a single node, we have developed 
a new, discrete-time analytical framework which allows accurate 
quantification of the cell and frame loss rates. The crucial aspect 
of this framework is explicit incorporation of the burstiness of 
traffic streams into a Markov chain model for the output buffer 
occupancy at the node. Based on this model which character- 
izes the cell loss process precisely, we have provided iterative 
algorithms to compute the loss rates for the uncoded and coded 
cases. 

The performance results obtained indicate that although trans- 
mitting parity cells increases the network load, an appropriately 
chosen one of the three coding techniques can improve the end- 
to-end reliability significantly over a wide range of network load 
without requiring retransmissions. Since the coding performance 
is not much sensitive to the interfering traffic characteristics, the 
determination of the coding technique to be used can be based 
merely on the nature of the traffic stream for which forward error 
correction is desired. In particular, for a stream of cells dispersed 
evenly over time, although joint coding outperforms both of the 
individual coding techniques, cell coding alone may suffice since 
it yields substantial reductions (by several orders of magnitude) 
in the cell loss rate with smaller average decoding delay. For a 
bursty cell stream, on the other hand, cell coding is not effective 
at all simply because not only the rate but also the burstiness 
of cell losses increases as the traffic gets burstier. In this case, 

code interleaving is required, and frame coding which serves this 
purpose is quite effective. 

Joint coding combines the early and burst cell loss recovery 
capabilities of the cell and frame coding techniques, and provides 
fairly good performance improvement regardless of the traffic 
characteristics. Therefore, it is preferable especially when the 
nature of the traffic stream is not known a priori, or subject to 
change in time. It should be preferred also when forward error 
correction is to be performed for a virtual path connection onto 
which several individual traffic streams of different characteristics 
are multiplexed. 
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