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1 Abstract

A synthetic aperture acoustic imaging system
with a novel inversion algorithm is described. Data
is obtained by using a transducer insonifying the
sample surface at a critical angle which is excited
by a short electrical pulse. The critical angle is
chosen for a suitable surface wave or Lamb wave
mode that exists on the object. The transducer
is mechanically scanned in only one direction dur-
ing which many pulse excitations and subsequent
recordings are realized. The received signal is sam-
pled in time and digitized to be processed by using
the new inversion approach providing an optimal
2-D image of the surface reflectivity.

2 Introduction

Acoustic synthetic aperture imaging has found
many application areas. Various inversion algo-
rithms have been proposed to obtain high resolu-
tion images (1, 2]. In this report, a new inversion
algorithm is proposed to obtain high resolution im-
ages from reflection data acquired in a measure-
ment geometry shown in Fig. 1. In this geometry,
the measurements are obtained by using a trans-
ducer exited by a short electrical pulse. The trans-
ducer insonifies the sample surface at a critical an-
gle which is chosen for a suitable surface wave or
Lamb wave mode that exists on the object. The
transducer is mechanically scanned in only one di-
rection during which many pulse excitations and
subsequent recordings are realized. Although the
data acquisition scenario has similarities to that
of Synthetic Aperture Radar (SAR), there are sig-
nificant differences between them. Since, the scan
path of the transducer is relatively closer to the
surface patch of interest, the wavefront curvature
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is more prominent. Also, the transmitted pulses
are not necessarily the same. Hence, the avail-
able efficient inversion techniques for SAR mea-
surements need major modification to be applica-
ble in this case.

In this work, we begin with a very accurate for-
ward modeling of the data acquisition. Then, by
using Singular Value Decomposition (SVD) of the
measurement kernel, we optimally reduced a sin-
gle measurement of both time and space to mul-
tiple measurements of space only. This reduction
not only provides noise immunity, but also leads
to a specific integral equation form for which an
efficient inversion algorithm has been reported [3].
The inversion is performed in two stages. First,
the measurements are filtered by using multichan-
nel deconvolution filters. Then the results are used
to weight the set of vectors that define the mea-
surable subspace of the surface properties. Since
both these vectors and the set of rultichannel de-
convolution filters are just functions of the data
acquisition geometry, they can be precomputed to
provide efficiency to the repeated use of this inver-
sion approach.

3 Measurement Model

The forward model proposed for the measure-
ment system assumnes that a point scatterer on the
object surface produces a transducer output pro-
portional to the square of the field amplitude at
that point [6]. Hence, the response of a point scat-
terer at (x,y) is

K(z,y,t) = |lusaw (z, ) P(t — 24/2? + 42/ V&)
(1)

where P is the transmitted RF-pulse, and Vg is the
SAW velocity for the object material. The time
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waveform measured at the transducer is given by

oo ptoc
gz, t) = /_DC fo K(z -2 ,y,0)p(z’ y) dy d(IQ)

where p{x,y) describes surface objects. The field
expression on the object surface is found numeri-
cally. The field at the transducer surface is prop-
agated using angular spectrum decomposition.

4 Inversion Algorithm

In this section, the measurement model of the
data acquisition geometry shown in Fig. 1 will be
put into a new form which allows ns to use effi-
cient inversion algorithms that are developed for
a class of such measurements. We hegin with the
measurement relation

o0 [ 0]
g(z,t) 5/ / K(x — ',y O)p(z’, y)dz'dy .
—oa JO

The near vicinity of the transducer contributes
most of the energy in the measurements. Hence,
with a judicious choice of A, and A,, this mea-
surement relation can be well approximated by

4Ny phy
g(z,t) = f f K(z -y, )p(e, y)de'dy .
z—~Ar JO

The transducer acquires data along z—axis at lo-
cations &, apart, which is roughly the expected
resolution cell size along the z—axis. However,
the size of the resolution cell along the y— axis
gets larger for larger values of y. Therefore, the
integrals of the measurement model should be ap-
proximated with a non-uniform 2-D Riemann sum
approximation, giving

g(néz, 1) = (3)
n+N L
Z ZI(((” - nf)‘sxayl’t)azﬁygp(n’6x9y1)
n'=n—~NI=]

where along the y—axis L non-uniform partitions
with size é,, are chosen. The decision on the size
of this non-uniform partition is based on the sensi-
tivity of the measurements to a reflector located at
various positions along the y—axis. The cell size is
chosen larger when the sensitivity gets lower. Such
non-uniform partitions have heen used before in-
cluding [3]. In this new form of the measurement
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relation the the effective measurement kernel can
he identified as:

Ke(n, i, t) = K(nb, y1, )68, . (4)

The following auxiliary function will be used to
obtain the final form of the measurement relation:

N L

Qltrta) = 3 D Ke(n, L t)K(n,1ts) . {5)
n=-N|=1

Let the Hilbert-Schmidt decomposition of this
auxiliary function be:

Qi) = 3 Om@m(ts)gm(t2) (6)
m=1

where 0; > o7 > ... > 0 are called the singular val-
ues, and g, (t)'s are called the singular functions
which form an orthonormal set of functions. An
accurate approximation to this decomposition can
be obtained by using the Singular Value Decompo-
sition (SVD) of the discretized form of the Q(#1, t2)
function [4, 5]. The singular values obtained with
such a discretization is shown in Fig. 2. As seen
in this figure, only the first few of singular values
dominates the rest providing the following approx-
imation:
A

Q(tlsh) = Z GQO(tl)Qm(fQ)
m=1

Now using the obtained singular functions, the ef-
fective kernels can be rewritten as:

M
Ke(n,l,t) = Z Kn(n, Dam(t) . (7)

m=1

This leads to the following approximation to the
measurement relation:

g(né, t) = (8)
n+N L M

S Y Kl — o D (p(n'8e. 1)

nt=n-Nlil=1m=1

Now, by using the orthonormality of the singular
functions, gm{t)’s, we get the following set of rela-
tions for 1 < m < M:

gm(n) = /Umg(néx,t)qm(t)dt 9)
n+N L

= Y. Y Ku(n—n,0p(»'.1)(10)
n'=n-NJ[=1



where p(n',!) = p{n'é,,y). This final form of the
measurement relation replaces the single space and
time measurement of g(x, t) with M measurements
space measurements g,(n). In doing so, we also
eliminate that part of the inevitable additive mea-
surement noise which is not in the span of the g, (t)
functions. A regularized inversion method for this
type of measurement relations has been investi-
gated at depth in [3]. In the rest of this section,
major points of the inversion method will be pre-
sented.
The final form of the measurement relation

n+N L
gm(n) = Z ZKm(n —n', Dp(n', 1),
nt=n-N1I=1

1<m<M

has the form of convolution and projection opera-
tions. This form can be further exploited by using
the SVD of the concatenated kernel matrix:

K=[K{ Kj .. Kyt o (1)
where T denotes the transpose operator. The SVD
of K can be computed to obtain:

K =UsVT (12)

where U and V have orthonormal columns, and
S is a square diagonal matrix with positive non-
increasing diagonal entries [5]. The matrix W =
US can be partitioned into equal sized matrices

Wm for 1 < m < M such that:
w=[Wwf wi . wfT . (13

Now, let wp,; for 1 < @ < I be the i*" column
of W,,. Then, the measurement relation can be
rewritten as:

which can be regrouped to obtain:

I niN
() =3 S wiln— ) . (15)
t=lp'=n—-N

1<m<M

where

ri{n') = Z vi(Dp(n', 1) . (16)
=1

Eqn. 15 is in the form of multi-channel convolu-
tion, and Eqn. 16 is in the form of projection.
Therefore, we obtained the desired form of the
measurement relation in which the unknown prop-
erty p{n,!) is related to the measurements by the
separable two stage operations of projection and
convolution. Hence, inversion operation involves
the inversion of these stages: multi-channel decon-
volution followed by back-projection. These two
stages of the inversion can be written as:

M
fi(n) = z Fim(n) = gm(n) 1<i<I (17)
m=1

where * denotes convolution operation, and

I

pln, 0y =3 Filn)u(l) (18)

i=1

In Eqn. 17 a set of multi-channel deconvolution fil-
ters are used to obtain the estimate 7;(n) of r;{n).
Then, the estimate p{n,!) can be obtained by the
back-projection step of Eqn. 18. As it can be im-
mediately recognized, the critical part of the inver-
sion is the deconvolution stage. One of the require-
ments in the design of the required deconvolution
filters is that of robustness to the additive noise in
the measurements. In this work, we used one such
design procedure reported in [3]. It is important
to note that, although the design of the deconvolu-
tion filters is computationally involved, it has to be
done only once for a fixed data acquisition geom-
etry. Once the deconvolution filters are computed
and stored, the actual stages of inversion can be
performed quite efficiently.

5 Simulations

The measurement setup depicted in fig. 1 was
used for sirnulations. The sample material was
chosen as aluminutn {V;=6420 m/s, V,=3040 m/s
[7]}. The coupling fluid is water. The transducer is
excited with a gated RF-pulse of frequency 1 MHz
and duration 40 psec. Field generated by the
transducer is propagated down to the object sur-
face using angular spectrum decomposition. Field

1995 IEEE ULTRASONICS SYMPOSIUM — 781



on the surface was assumed to directly couple to
SAW. Along the x-axis, 256 field samples were
taken with dz = 0.98 mm., and there were 450
samples along the y-axis with dz = 1.2 mm.

A sample reconstruction is shown in Fig. 3.
Three point scatterers are assumed to exist at grid
points (0,51}, (0,90) and (3,90). The y-axis of the
image is expanded using the warping function.

6 Conclusions

In this work, it is shown that the measurement
relation of the commonly used synthetic aperture
data acquisition system can be put into a new form
allowing to use a novel efficient regularized inver-
sion algorithm. Simulations have shown that the
inversion algorithm provides robust high resolu-
tion images.
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Figure 1. Measurement setup.
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Figure 2: Singular values of the Hilbert-Schmidt
decompositon of the auxilary function Q(ty,12).

Figure 3: Sample reconstruction.
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