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A b s t r a c t .  The hnear feasibility problem arises in several areas of ap- 
plied mathematics and medical science, in several forms of image re- 
construction problems. The surrogate constraint algorithm of Yang and 
Murty for the linear feasibility problem is implemented and analyzed. 
The sequential approach considers projections one at ~ time. In the par- 
allel approach, several projections are made simultaneously and their 
convex combination is taken to be used at the next iteration. The se- 
quential method is compared with the parallel method for varied num- 
bers of processors. Two improvement schemes for the parallel method 
are proposed and tested. 
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1 Introduct ion  to Project ion  M e t h o d s  for the  Convex  
Feasibil ity Prob lem 

In this paper  some experimental  results with the surrogate constraint algori thm 
described in [Yang & Murty 92] are given. The algori thm has both sequential 
and parallel versions. Emphasis  is put  on the parallel implementat ion.  

The problem is to find a feasible point with respect to a set of  linear inequal- 
ities explicitly defined as Ax < b, where x C R"  and A is an m by n matr ix .  It  
is assumed that  the polyhedron defined by these inequalities is nonempty.  

An iteration of the algori thm is carried out by projecting the current point 
onto a surrogate constraint--defined by a set of violated constraints at the cur- 
rent i teration. The algori thm m a y  be seen as an extended version of the classical 
methods like Cimmino 's  algori thm and the relaxation algori thm for linear in- 
equalities. 

Before going into the sequential and parallel algorithms, an overview of sev- 
eral projection algorithms to the feasibility problem will be given. Such algo- 
r i thms are useful when the problem is to determine a feasible point in a nonempty  
set defined by the intersection of many  convex sets. 

* The authors are indebted to K. Madsen for providing financial support to this 
project. 
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A projection of a point x ~ E R n onto a convex set /2 gives a point (if there are 
any) x E /2  which has the minimal Euclidean distance to x k [Hir.-Urr. & Lemar. 
93]. However, projections are usuMly defined more generally as the nearest points 
contained in the convex bodies with respect to appropriate distance definitions. 

The method of successive orthogonal projections of Gubin, Polyak and Raik 
works by projecting the current point onto a convex set at each iteration until 
a point which is contained in the intersection of these convex sets is found. At 
a typical iteration of the SOP algorithm (actually in many of these algorithms) 
an overrelaxed or an underrelaxed step is taken in the computed projection 
direction. Hence an iterative step becomes: 

x k + l = x  k + A k ( P c , ( x  k ) - x  k) 0 < A k  < 2  (1) 

where Pc~ is the projection operator onto the closed convex set Ci and ;~k is 
the so called relaxation parameter. When Ak = 1, the next point generated is 
the exact orthogonal projection of the current point. On the other hand, when 
Ak > 1, one has longer steps, which is the case of overrelaxation and when 
Ak < 1, one has shorter steps, which is the case of underrelaxation [Censor ~z 
Zenios 95]. 

One has to compute the projection of x k onto Ci for which x k q~ Ci. This 
projection requires the solution of the following problem: 

Pc,(x k) = min IIx ~ - xll (2) 
~ECI 

In this case, the minimization is made over the Euclidean distance, and the 
nearest point of Ci to x ~ is found. 

For the cases where Ci = {x  E R n : f i ( x )  < 0}, f i ( z )  convex and differen- 
tiable, the moving direction P c , ( z  k) - x k is given by ~Tfi (xk+l) .  However, to 
determine the direction and the next point, one needs to solve the minimization 
problem defined above and in a way, to find the point x ~+1, in advance. The 
cyclic subgradients projection method overcomes this difficulty by picking up 
an alternate moving direction, v f i ( z  k) (or a suitable subgradient at x k, for the 
nondifferentiable case) [Censor & Lent S2], [Censor & Zenios 95]. 

When an explicitly defined linear feasibility problem is considered, both SOP 
and CSP methods are equivalent to the relaxation procedure of Agmon, Motzkin 
and Schoenberg [Censor ~: Zenios 95]. In that  case, the intersection of many 
halfspaces define the convex set. At an iteration point x k, the routine proceeds 
by considering a violated inequality aix  k > bi and calculating the next point as: 

aix  k - bi a i (3) 
z ~ + 1  = x ~ - ~ k  i l a i l p  

where 0 < )~k < 2. Clearly the gradient of f i ( x )  = aix - bi, is a i regardless of x, 
hence there is no essential difference between these routines. 

Cimmino's algorithm considers all violated inequalities at a time. Projec- 
tions are made separately and their convex combination is taken. The routine is 
quite slow when the number of constraints is large. The interest in the surrogate 
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constraint algorithm stems from this fact. In the Yang-Murty algorithm instead 
of making projections for all violated constraints, block projections are made. 
However, the paper by Yang and Murty reports computational results only with 
the sequential surrogate constraint method. Our point of departure is to inves- 
tigate the performance of the parallel version of this algorithm. Implementation 
of a similar but  somewhat different parallel algorithm is described in IGar.-Pal. 
& Gon.-Cas. 96] which will also be discussed in Section 3. 

2 T h e  S e q u e n t i a l  S u r r o g a t e  C o n s t r a i n t  M e t h o d  

The matr ix  A and the RHS vector b are split into p blocks so that  one has A %  <_ 
b ~, t = 1, ...,p. Each block consists of mt rows. During the iterations, projections 
are made not to individual half spaces defined by violated inequalities, but  to 
sets defined by surrogate constraints. The surrogate constraint for each block is 
rc*A*x <_ rc*b ~, where ~r* is an appropriate weight vector. 

The sequential surrogate constraint algorithm of Yaag and Murty is given as 
follows: 

Step O. Generate or read a feasible problem, with A E R mx~, b E R m with 
previously known values of n, m,  p, m l , . . . ,  mp. Initially, let k = 0 and t = 1. 
Fix a value of A so that 0 < A < 2. 

Step I. Check, if A t x  k ~ b t. If so, then let x k+l = x k, otherwise let 

xk+ 1 = x k _ )~ ( ~r*'~A*x~ _ ~r*,kb*)(~rt,kAt ) 

Ii~,,kA, ii 2 (4) 
t,k 

where ~r/ > 0, if constraint i is violated and rr~ 'k 0 otherwise, and rn, ~r~,~ 
1 is required for convenience. Update the value of the counter of violated inequal- 
ities. 

Step 2. If t < p, let k = k + 1, t = t + 1 and go to Step 1. If t = p and if 
the total number of violated constraints in the major  iteration is zero then stop, 
the current solution is feasible. Otherwise, assign zero as the new value of  the 
counter of violated constraints, let t = 1, k = k + 1 and go to Step 1. 

Note that  one can make the feasibility check also by setting Xold ~ x k at the 
end of each major  iteration, i.e. when t = p. If at the end of the following major  
iteration, the current x is same with Xo~d, then this solution is feasible. 

This algorithm is finitely convergent, if the feasibility check in Step 1 is 
adjusted to allow for a certain degree of tolerance. Hence, one needs to make the 
comparison between aix  k and bi + r where r is a small positive value [Yang & 
Murty 92]. 

During our implementation, A has been generated as a sparse matr ix  without 
any structure. The blocks are divided almost evenly, since the matr ix  doesn't 
have a special structure. Implementation results of the sequential algorithm is 
given in Table 1. Details related to problem generation, weight selection rules 
and matr ix  storage are given in Section 5. 
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p I I  2 I I  14 I I  18 I I  1'6 I I  
i ' i+ l  ~, 1"1 

5000, 25001106.6(52.8) 1191.8(47.4) 1367(45 ) 1681.6(43.6) 

Table  1. Average number of iterations (numbers in the parentheses represent the ma- 
jor iterations) of an implementation of the sequential algorithm. Matrices are randomly 
generated with a sparsity value of 0.02. m and n are the row and column sizes respec- 
tively and p represents the number of blocks. Five test problems for each size have been 
solved. 

3 T h e  P a r a l l e l  S u r r o g a t e  M e t h o d  

The parallel algorithm of Yang and Murty uses the same structure. The problem 
is divided into blocks evenly and surrogate constraints are considered for block 
projections. But in this case, the projections are made simultaneously and a 
convex combination of these is taken. Thus, a single combined step is taken 
at a major  iteration when compared to p distinct movements  in the sequential 

algorithm. 
Hence, the algorithm will be modified as follows: 

Step O. Generate or read a feasible problem. Let k = 0 and fix A so that  

0 < A < 2 .  
Step 1. For t = 1, ...,p, 

check, if A t x  k < b t. If  so, then let Pt(x k) = x k, otherwise let 

(~r~,kA'xk -- ~d,%t)(~r',k A *) p , ( x  k) = x k _ (5) 

where 7r t'~, is the same as that  of the sequential algorithm. When the entire 
mat r ix  is processed, let P ( x  k) = ~Pt=t rtP~(xk) where ~tP=l vt = 1, vt > 0, and 
r~ > 0 for all blocks which violate feasibility. The next point is generated as: 

= +  (P(xb - x (6) 

Update  the total  number  of violated constraints, in all blocks. 
Step 2. If  the total  number  of violated constraints in the major  i teration is 

zero then stop, the current solution is feasible. Otherwise, assign zero to the 
number  of violated constraints, let k = k + 1 and go to Step 1. 

Our experimental  results reveal that  the parallel algori thm as given in this 
pure form is much slower than the sequential algorithm. Compar ing the results 
in Table 1 and Table 2 (assuming that  an i teration of the sequentiM routine is 
more or less equivalent to one major  iteration of the parallel routine) indicates 
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p II 2 II 4 II s 11 16 11 
/n~ n 

500, 1000 27.6 69.4 209.4 507 
2000, 1000 267.4 1422.8 3393.8 6921.4 
5000, 2500 1087.6 3274.8 6524.2 13069.2 

Table 2. Average number of major iterations of an implementation of the parallel 
algorithm, p represents the number of blocks and hence the processors. Same test 
problems with the sequential experiments given in Table 1, are used. 

that  the two algorithms have incomparable performances. However, it is still 
desirable to benefit from the effects of parallelization. Clearly, one should be 
able to obtain some better results when it is possible to distribute the feasibility 
checks of the blocks to distinct machines. 

An examination of the two algorithms reveals the problem of the parallel 
routine and suggests a partial remedy. The sequential routine takes several steps 
(the number being equal to the number of blocks which have infeasibility) which 
accumulate, whereas the parallel routine provides a single step (which is a con- 
vex combination of the steps generated from infeasible blocks) during a major  
iteration. The overall effect of this fact is much worse, as seen from the test 
results. 

Let us recall the sequential moving direction (with an appropriate magni- 
tude based on the Euclidean distance to the surrogate hyperplane) for a certain 
infeasible block t: 

- d t  = ( ~ r t ' k A t x k - -  7r t 'kb*)(~r t '~At)  

ii~.~,kA~ll2 (7) 

The next test point is calculated as, x k+l = x k - ~ d t .  

The parallel algorithm also uses the direction given in (7) for the correspond- 
ing block. However, instead of accumulating these steps, a convex combination 
of these, hence a shorter step is taken. The movement in the parallel routine, 
given in (5) and(6) can be rewritten as (assuming that  dt k = 0 when block t is 
feasible): 

) x ~ + l = x  k + A  T*Pt (  z k ) - x  k , T t = l  

t---1 

= x k + ~ r t ( x  k - dkt) - -  x k 

k t = l  

= x k - ) t  7 t d  

\ t = l  ] 
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X k+l = X k -- A~ ,  d~ = vtd (8) 
t = l  

One can suggest the usage of longer steps having magnitudes comparable to those 
obtained in the sequential algorithm. An idea is to implement the algorithm by 
increasing the step size by multiplying it with p at each major  iteration. 

Using this idea somewhat improves the performance during implementation. 
However, it will yield unnecessarily long steps which slows down the algorithm, 
in the cases where some of the blocks reach feasibility immediately and some do 
not. Therefore, choosing the number of violated blocks at a given iteration as 
the multiplicative parameter  will be a better  strategy to approach the trajectory 
obtained from the sequential algorithm. Thus, one can obtain the next point 
alternatively as: 

~gk+l : xk -- ()l~k)dk, (9) 

where/~k is the number of blocks which have infeasibility at the k th iteration. 
The results obtained with this adjusted step sizing rule is given in Table 

3. It can be seen that,  for relatively small values of p, the results are better  
than the pure application of the parallel algorithm. Furthermore, some of these 
results are better  than those obtained by the sequential algorithm, assuming that  
one major iteration of a parallel routine is more or less equivalent to a normal 
iteration of the sequential routine. However, utilizing purely (9) might yield us 

v i i  211411 8111611 
171, n 

500, 1000 7.2 7 6.6 7 
2000, 1000 84 152.2!- - 
5000, 2500 86.6 979.6 1164.6 

Table 3. Average number of major iterations of an implementation of the parallel al- 
gorithm with new step sizing policy. Same test problems with the previous experiments 
given in Table 1, and Table 2 are used. ' - '  represents a typical case where the routine 
does not converge to a feasible point. 

a nonconvergent routine, especially when p is relatively large. We were not able 
to obtain the complete test results for p = 8 and p = 16. The reason is that ,  the 
generated steps might still become too long, in some cases. Thus a regulatory 
mechanism of the step size is required to use (9) successfully. 

An improved step for a similar parallel projection algorithm outlined in [Gar.- 
Pal 93] has been given in [Gar.-Pal. & Gon.-Cas. 96] recently. This paper dis- 
cusses the slow performance of the parallel Cimmino algorithm (without any 
adjustment) and proposes an accelaration procedure. The partit ioning mecha- 
nism and projective subroutines in the resulting algorithm are different than 
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that  of the Yang-Murty algorithm, however the overall algorithm is similar. The 
pure parallel algorithm uses the following combined step: 

x k - ~ r t d  (10) 
\ t----1 / 

which is identical with (8). The improved step yields the following test point: 

E,=~ IId~ll ~ ~df  (11) x~+l xk 1A P p 

= - ~ kllE~=ld~ii  2 ,=1 

It has been established in [Gar.-Pal. & Gon.-Cas. 96] that  the algorithm with 
adjusted step sizing policy performs better under some assumptions, both theo- 
retically and practically. 

We have used the Garcia Palomares-Gonzs Castafio step given by (11) in 
the parMlel surrogate algorithm of Yang-Murty, for the same test problems. The 
results are given in Table 4. It can be seen that  this step improves the parallel 
version of the Yang-Murty algorithm, however it seems that  using the step given 
in (9) performs better when p is relatively small. 

Another interesting observation is that  for a given problem size the number 
of  iterations of the parallel algorithm is almost constant as the number of blocks 
increases. This is in contrast to the results of Table 2 where the number of major 
iterations increases directly for a given problem as more blocks are used. Based 
on this limited evidence we can conclude that  the new step provides a significant 
stabilizing effect on the parallel surrogate constraint algorithm. 

p// 2// 4// 8// 16// 

500, 1000 24.2 24.2 26.6 27.8 
2000, 1000 193 200.2 193.4!197.8 

i5000, 2500 612.8 643 646.6 669 

Table 4. Average number of major iterations of an implementation of the parallel 
algorithm with the Garcfa Palomares-Gonzs Castafio step. Same test problems with 
the previous experiments given in Table 1, Table 2 and Table 3 are used. 

4 P r a c t i c a l  C o n s i d e r a t i o n s  for  t h e  P a r a l l e l  A l g o r i t h m  

In the parallel routine the number of submatrix blocks should be equal to the 
number of processors. Each processor deals exactly with a single block, there- 
fore it is quite natural to divide the matrix into p submatrices evenly or almost 
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evenly, so that  each submatrix has [~-] rows. Each processor checks its con- 
straints (which are equal or almost equal in size) for feasibility and computes 
the projection if necessary. When a processor finishes its task, it waits for the 
others to finish as well. 

During the subroutine operations (feasibility checks and projection calcula- 
tions for distinct blocks) each processor works independently and no message 
passing within the machines is required. When all processes are finished the 
projection data is transferred to one of the processors, where the new point is 
calculated according to (6). The calculation of the cumulative projection and the 
new point, is the sequential part  of the algorithm. After this step, the new point 
is broadcasted to all processors and the procedure is repeated until a feasible 
point is found. 

The initialization phase is carried out on each processor independently to 
avoid further communication within the blocks. If the problem is to be randomly 
generated, the initial seed is broadcasted to all machines. If data  has to be read 
from the files, this is done by all machines. 

A distributed implementation of the algorithm is being developed using PVM 
3.3.11 on several Sparc workstations. The algorithm is being governed by a main 
C routine, which makes calls to a C subroutine (for parallel block operations) 
and to several PVM functions suitable to C programs (see [Geist et al. 94]). 
These results will be reported elsewhere. 

5 I m p l e m e n t a t i o n  I s s u e s  

It is assumed that  the matr ix  underlying the feasibility problem is sparse. This 
matr ix  is stored both in the rowwise format  and the columnwise format, to ease 
the access. When computing Atx k or aix k, the rowwise format is used and when 
computing 7ct'kAt the columnwise format  is used. The widely known standard 
formats are used almost without any changes [Pissa. 84], but  to ease the control 
over the storage arrays, we have added one more cell to each, which marks the 

end of the array. 
Sample test problems have been generated as follows: First of all, a matr ix  

with a given size and sparsity percentage is generated so that  the nonzero el- 
ements are distributed uniformly, so that  each nonzero value is distributed in 
between -5 .0  and 5.0. The random distribution has been done in two ways. In 
the first, an exact number of nonzero entries is fixed and they are distributed uni- 
formly (with parameters depending on the problem size) to rows of the matr ix  
so that  each row has at least one nonzero element. Then, their column num- 
bers are generated uniformly. In the second, a simulated sequence of a Poisson 
process is obtained and points are generated with exponential interarrival times 
with parameter  equal to the sparsity of the matrix. The exponential density is 
truncated between 1 and n and the generated interarrival t ime is rounded to the 
nearest integer and the next nonzero entry position is found by adding this value 
to the column number of the previously placed nonzero entry. When one row is 
finished, the process is continued in the next row. This is somewhat better  than 
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the first, since the nonzero entries are generated sequentially and one does not 
require a reordering when storing the data in rowwise format.Here we utilize the 
property stating that  in a Poisson process, given that  n arrivals have occurred 
within a time interval (0, t), the distribution of the arrival times $ 1 , . . . ,  Sn have 
the same distribution as the order statistics of n independent random variables 
distributed on this interval (O, t) (see for example [Ross 83]). We assume that  
the idea is applicable to a discrete interval since it is quite a long interval, and 
that  the truncation of the exponential distribution does not have a significant 
effect on the uniformity of the nonzeros over the matrix. 

After generating the random matrix,  a random x is generated, so that  each 
of its elements are in the interval ( -4 .5 ,  4.5). Following this, Ax is computed and 
the b vector is generated so that  bi = A i z  + ui  where ui is a discrete uniform 
random variable between 0 and 1. In this way a feasible polyhedron is created. 
Our aim is to try to keep this polyhedron somewhat small and distant to the 
initial point of the algorithm, so that  trivial convergence in a few steps will not 
occur. 

An important  issue is the selection of the weight vector zr t,k. Weights may 
be distributed equally among all violated constraints or they can be assigned, 
proportional to the amount  of violations. Or a suitable combination of the two 
approaches may also be used. In our tabulated results we have used the hybrid 
approach (which has also been used in [Yang & Murty 92]): 

0 2(A = k - b,) 0.8 
= x--, ~A ~ ~k + (12) A-,h:A~ =*>b[ ~, h "~ -- b'h) number of violated constraints 

For convenience it is assumed that  ~ 7r~ 'k = 1. The relaxation parameter  A has 
been taken to be 1.7 and the tolerance limit for feasibility, ~ is 10 -9. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In our test problems it has been observed that  the parallel surrogate constraint 
method without any adjustment is quite poor when compared to the sequential 
surrogate constraint method. The reason is that  the magnitudes of the steps 
obtained in the parallel algorithm remain quite small with respect to the accu- 
mulated sequential steps. 

In order to compensate for this loss, we have magnified the parallel step 
length by multiplying it with the number of infeasible blocks at that  time. In 
this way we have obtained some favorable results. We have also used a longer 
step which has been recently used in a similar (but not the same) parallel routine 
by [Gar.-Pal. & Gon.-Cas. 96]. The results are also improved when compared to 
the pure version of the parallel algorithm. This approach also seems to stabilize 
the number of iterations when more blocks are used to parti t ion the problem. 

It seems that  increasing the step simply by multiplying it with the current 
number of infeasible blocks, yields quite an improvement when the number of 
blocks is relatively small. However, this idea should be used with some sort of 
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regulation over the step given by (9), since the idea gives unnecessarily long 
steps which may prevent convergence, especially when the number of processors 
is relatively large. 

The issue that  is of interest at this point is to obtain an adjusted parallel 
algorithm and establish convergence. This can be possibly done by using the 
improved step and adapting a control mechanism. We are also foreseeing the 
completion of the PVM implementation of the parallel algorithm. 
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