
The Parallel Surrogate Constraint Approach to
the Linear Feasibility Problem

Hakan ()zakta~, Mustafa Akgiil, and Mustafa ~. Pmar*

Department of Industrial Engineering
Bilkent University

06533 Bilkent, Ankara, Turkey

A b s t r a c t . The hnear feasibility problem arises in several areas of ap-
plied mathematics and medical science, in several forms of image re-
construction problems. The surrogate constraint algorithm of Yang and
Murty for the linear feasibility problem is implemented and analyzed.
The sequential approach considers projections one at ~ time. In the par-
allel approach, several projections are made simultaneously and their
convex combination is taken to be used at the next iteration. The se-
quential method is compared with the parallel method for varied num-
bers of processors. Two improvement schemes for the parallel method
are proposed and tested.
Key Words. Linear and convex feasibility, projection methods, distributed
computing, parallel algorithms.
Subject Classifications (AMS). 90C25, 90C26, 90C60.

1 Introduct ion to Project ion M e t h o d s for the Convex
Feasibil ity Prob lem

In this paper some experimental results with the surrogate constraint algori thm
described in [Yang & Murty 92] are given. The algori thm has both sequential
and parallel versions. Emphasis is put on the parallel implementat ion.

The problem is to find a feasible point with respect to a set of linear inequal-
ities explicitly defined as Ax < b, where x C R" and A is an m by n matr ix . It
is assumed that the polyhedron defined by these inequalities is nonempty.

An iteration of the algori thm is carried out by projecting the current point
onto a surrogate constraint--defined by a set of violated constraints at the cur-
rent i teration. The algori thm m a y be seen as an extended version of the classical
methods like Cimmino 's algori thm and the relaxation algori thm for linear in-
equalities.

Before going into the sequential and parallel algorithms, an overview of sev-
eral projection algorithms to the feasibility problem will be given. Such algo-
r i thms are useful when the problem is to determine a feasible point in a nonempty
set defined by the intersection of many convex sets.

* The authors are indebted to K. Madsen for providing financial support to this
project.

566

A projection of a point x ~ E R n onto a convex set /2 gives a point (if there are
any) x E /2 which has the minimal Euclidean distance to x k [Hir.-Urr. & Lemar.
93]. However, projections are usuMly defined more generally as the nearest points
contained in the convex bodies with respect to appropriate distance definitions.

The method of successive orthogonal projections of Gubin, Polyak and Raik
works by projecting the current point onto a convex set at each iteration until
a point which is contained in the intersection of these convex sets is found. At
a typical iteration of the SOP algorithm (actually in many of these algorithms)
an overrelaxed or an underrelaxed step is taken in the computed projection
direction. Hence an iterative step becomes:

x k + l = x k + A k (P c , (x k) - x k) 0 < A k < 2 (1)

where Pc~ is the projection operator onto the closed convex set Ci and ;~k is
the so called relaxation parameter. When Ak = 1, the next point generated is
the exact orthogonal projection of the current point. On the other hand, when
Ak > 1, one has longer steps, which is the case of overrelaxation and when
Ak < 1, one has shorter steps, which is the case of underrelaxation [Censor ~z
Zenios 95].

One has to compute the projection of x k onto Ci for which x k q~ Ci. This
projection requires the solution of the following problem:

Pc,(x k) = min IIx ~ - xll (2)
~ECI

In this case, the minimization is made over the Euclidean distance, and the
nearest point of Ci to x ~ is found.

For the cases where Ci = {x E R n : f i (x) < 0}, f i (z) convex and differen-
tiable, the moving direction P c , (z k) - x k is given by ~Tfi (xk+l) . However, to
determine the direction and the next point, one needs to solve the minimization
problem defined above and in a way, to find the point x ~+1, in advance. The
cyclic subgradients projection method overcomes this difficulty by picking up
an alternate moving direction, v f i (z k) (or a suitable subgradient at x k, for the
nondifferentiable case) [Censor & Lent S2], [Censor & Zenios 95].

When an explicitly defined linear feasibility problem is considered, both SOP
and CSP methods are equivalent to the relaxation procedure of Agmon, Motzkin
and Schoenberg [Censor ~: Zenios 95]. In that case, the intersection of many
halfspaces define the convex set. At an iteration point x k, the routine proceeds
by considering a violated inequality aix k > bi and calculating the next point as:

aix k - bi a i (3)
z ~ + 1 = x ~ - ~ k i l a i l p

where 0 <)~k < 2. Clearly the gradient of f i (x) = aix - bi, is a i regardless of x,
hence there is no essential difference between these routines.

Cimmino's algorithm considers all violated inequalities at a time. Projec-
tions are made separately and their convex combination is taken. The routine is
quite slow when the number of constraints is large. The interest in the surrogate

567

constraint algorithm stems from this fact. In the Yang-Murty algorithm instead
of making projections for all violated constraints, block projections are made.
However, the paper by Yang and Murty reports computational results only with
the sequential surrogate constraint method. Our point of departure is to inves-
tigate the performance of the parallel version of this algorithm. Implementation
of a similar but somewhat different parallel algorithm is described in IGar.-Pal.
& Gon.-Cas. 96] which will also be discussed in Section 3.

2 T h e S e q u e n t i a l S u r r o g a t e C o n s t r a i n t M e t h o d

The matr ix A and the RHS vector b are split into p blocks so that one has A % <_
b ~, t = 1, ...,p. Each block consists of mt rows. During the iterations, projections
are made not to individual half spaces defined by violated inequalities, but to
sets defined by surrogate constraints. The surrogate constraint for each block is
rc*A*x <_ rc*b ~, where ~r* is an appropriate weight vector.

The sequential surrogate constraint algorithm of Yaag and Murty is given as
follows:

Step O. Generate or read a feasible problem, with A E R mx~, b E R m with
previously known values of n, m, p, m l , . . . , mp. Initially, let k = 0 and t = 1.
Fix a value of A so that 0 < A < 2.

Step I. Check, if A t x k ~ b t. If so, then let x k+l = x k, otherwise let

xk+ 1 = x k _)~ (~r*'~A*x~ _ ~r*,kb*)(~rt,kAt)

Ii~,,kA, ii 2 (4)
t,k

where ~r/ > 0, if constraint i is violated and rr~ 'k 0 otherwise, and rn, ~r~,~
1 is required for convenience. Update the value of the counter of violated inequal-
ities.

Step 2. If t < p, let k = k + 1, t = t + 1 and go to Step 1. If t = p and if
the total number of violated constraints in the major iteration is zero then stop,
the current solution is feasible. Otherwise, assign zero as the new value of the
counter of violated constraints, let t = 1, k = k + 1 and go to Step 1.

Note that one can make the feasibility check also by setting Xold ~ x k at the
end of each major iteration, i.e. when t = p. If at the end of the following major
iteration, the current x is same with Xo~d, then this solution is feasible.

This algorithm is finitely convergent, if the feasibility check in Step 1 is
adjusted to allow for a certain degree of tolerance. Hence, one needs to make the
comparison between aix k and bi + r where r is a small positive value [Yang &
Murty 92].

During our implementation, A has been generated as a sparse matr ix without
any structure. The blocks are divided almost evenly, since the matr ix doesn't
have a special structure. Implementation results of the sequential algorithm is
given in Table 1. Details related to problem generation, weight selection rules
and matr ix storage are given in Section 5.

568

p I I 2 I I 14 I I 18 I I 1'6 I I
i ' i+ l ~, 1"1

5000, 25001106.6(52.8) 1191.8(47.4) 1367(45) 1681.6(43.6)

Table 1. Average number of iterations (numbers in the parentheses represent the ma-
jor iterations) of an implementation of the sequential algorithm. Matrices are randomly
generated with a sparsity value of 0.02. m and n are the row and column sizes respec-
tively and p represents the number of blocks. Five test problems for each size have been
solved.

3 T h e P a r a l l e l S u r r o g a t e M e t h o d

The parallel algorithm of Yang and Murty uses the same structure. The problem
is divided into blocks evenly and surrogate constraints are considered for block
projections. But in this case, the projections are made simultaneously and a
convex combination of these is taken. Thus, a single combined step is taken
at a major iteration when compared to p distinct movements in the sequential

algorithm.
Hence, the algorithm will be modified as follows:

Step O. Generate or read a feasible problem. Let k = 0 and fix A so that

0 < A < 2 .
Step 1. For t = 1, ...,p,

check, if A t x k < b t. If so, then let Pt(x k) = x k, otherwise let

(~r~,kA'xk -- ~d,%t)(~r',k A *) p , (x k) = x k _ (5)

where 7r t'~, is the same as that of the sequential algorithm. When the entire
mat r ix is processed, let P (x k) = ~Pt=t rtP~(xk) where ~tP=l vt = 1, vt > 0, and
r~ > 0 for all blocks which violate feasibility. The next point is generated as:

= + (P(xb - x (6)

Update the total number of violated constraints, in all blocks.
Step 2. If the total number of violated constraints in the major i teration is

zero then stop, the current solution is feasible. Otherwise, assign zero to the
number of violated constraints, let k = k + 1 and go to Step 1.

Our experimental results reveal that the parallel algori thm as given in this
pure form is much slower than the sequential algorithm. Compar ing the results
in Table 1 and Table 2 (assuming that an i teration of the sequentiM routine is
more or less equivalent to one major iteration of the parallel routine) indicates

569

p II 2 II 4 II s 11 16 11
/n~ n

500, 1000 27.6 69.4 209.4 507
2000, 1000 267.4 1422.8 3393.8 6921.4
5000, 2500 1087.6 3274.8 6524.2 13069.2

Table 2. Average number of major iterations of an implementation of the parallel
algorithm, p represents the number of blocks and hence the processors. Same test
problems with the sequential experiments given in Table 1, are used.

that the two algorithms have incomparable performances. However, it is still
desirable to benefit from the effects of parallelization. Clearly, one should be
able to obtain some better results when it is possible to distribute the feasibility
checks of the blocks to distinct machines.

An examination of the two algorithms reveals the problem of the parallel
routine and suggests a partial remedy. The sequential routine takes several steps
(the number being equal to the number of blocks which have infeasibility) which
accumulate, whereas the parallel routine provides a single step (which is a con-
vex combination of the steps generated from infeasible blocks) during a major
iteration. The overall effect of this fact is much worse, as seen from the test
results.

Let us recall the sequential moving direction (with an appropriate magni-
tude based on the Euclidean distance to the surrogate hyperplane) for a certain
infeasible block t:

- d t = (~ r t ' k A t x k - - 7r t 'kb*)(~r t '~At)

ii~.~,kA~ll2 (7)

The next test point is calculated as, x k+l = x k - ~ d t .

The parallel algorithm also uses the direction given in (7) for the correspond-
ing block. However, instead of accumulating these steps, a convex combination
of these, hence a shorter step is taken. The movement in the parallel routine,
given in (5) and(6) can be rewritten as (assuming that dt k = 0 when block t is
feasible):

) x ~ + l = x k + A T*Pt (z k) - x k , T t = l

t---1

= x k + ~ r t (x k - dkt) - - x k

k t = l

= x k -) t 7 t d

\ t = l]

570

X k+l = X k -- A~ , d~ = vtd (8)
t = l

One can suggest the usage of longer steps having magnitudes comparable to those
obtained in the sequential algorithm. An idea is to implement the algorithm by
increasing the step size by multiplying it with p at each major iteration.

Using this idea somewhat improves the performance during implementation.
However, it will yield unnecessarily long steps which slows down the algorithm,
in the cases where some of the blocks reach feasibility immediately and some do
not. Therefore, choosing the number of violated blocks at a given iteration as
the multiplicative parameter will be a better strategy to approach the trajectory
obtained from the sequential algorithm. Thus, one can obtain the next point
alternatively as:

~gk+l : xk -- ()l~k)dk, (9)

where/~k is the number of blocks which have infeasibility at the k th iteration.
The results obtained with this adjusted step sizing rule is given in Table

3. It can be seen that, for relatively small values of p, the results are better
than the pure application of the parallel algorithm. Furthermore, some of these
results are better than those obtained by the sequential algorithm, assuming that
one major iteration of a parallel routine is more or less equivalent to a normal
iteration of the sequential routine. However, utilizing purely (9) might yield us

v i i 211411 8111611
171, n

500, 1000 7.2 7 6.6 7
2000, 1000 84 152.2!- -
5000, 2500 86.6 979.6 1164.6

Table 3. Average number of major iterations of an implementation of the parallel al-
gorithm with new step sizing policy. Same test problems with the previous experiments
given in Table 1, and Table 2 are used. ' - ' represents a typical case where the routine
does not converge to a feasible point.

a nonconvergent routine, especially when p is relatively large. We were not able
to obtain the complete test results for p = 8 and p = 16. The reason is that , the
generated steps might still become too long, in some cases. Thus a regulatory
mechanism of the step size is required to use (9) successfully.

An improved step for a similar parallel projection algorithm outlined in [Gar.-
Pal 93] has been given in [Gar.-Pal. & Gon.-Cas. 96] recently. This paper dis-
cusses the slow performance of the parallel Cimmino algorithm (without any
adjustment) and proposes an accelaration procedure. The partit ioning mecha-
nism and projective subroutines in the resulting algorithm are different than

571

that of the Yang-Murty algorithm, however the overall algorithm is similar. The
pure parallel algorithm uses the following combined step:

x k - ~ r t d (10)
\ t----1 /

which is identical with (8). The improved step yields the following test point:

E,=~ IId~ll ~ ~df (11) x~+l xk 1A P p

= - ~ kllE~=ld~ii 2 ,=1

It has been established in [Gar.-Pal. & Gon.-Cas. 96] that the algorithm with
adjusted step sizing policy performs better under some assumptions, both theo-
retically and practically.

We have used the Garcia Palomares-Gonzs Castafio step given by (11) in
the parMlel surrogate algorithm of Yang-Murty, for the same test problems. The
results are given in Table 4. It can be seen that this step improves the parallel
version of the Yang-Murty algorithm, however it seems that using the step given
in (9) performs better when p is relatively small.

Another interesting observation is that for a given problem size the number
of iterations of the parallel algorithm is almost constant as the number of blocks
increases. This is in contrast to the results of Table 2 where the number of major
iterations increases directly for a given problem as more blocks are used. Based
on this limited evidence we can conclude that the new step provides a significant
stabilizing effect on the parallel surrogate constraint algorithm.

p// 2// 4// 8// 16//

500, 1000 24.2 24.2 26.6 27.8
2000, 1000 193 200.2 193.4!197.8

i5000, 2500 612.8 643 646.6 669

Table 4. Average number of major iterations of an implementation of the parallel
algorithm with the Garcfa Palomares-Gonzs Castafio step. Same test problems with
the previous experiments given in Table 1, Table 2 and Table 3 are used.

4 P r a c t i c a l C o n s i d e r a t i o n s for t h e P a r a l l e l A l g o r i t h m

In the parallel routine the number of submatrix blocks should be equal to the
number of processors. Each processor deals exactly with a single block, there-
fore it is quite natural to divide the matrix into p submatrices evenly or almost

572

evenly, so that each submatrix has [~-] rows. Each processor checks its con-
straints (which are equal or almost equal in size) for feasibility and computes
the projection if necessary. When a processor finishes its task, it waits for the
others to finish as well.

During the subroutine operations (feasibility checks and projection calcula-
tions for distinct blocks) each processor works independently and no message
passing within the machines is required. When all processes are finished the
projection data is transferred to one of the processors, where the new point is
calculated according to (6). The calculation of the cumulative projection and the
new point, is the sequential part of the algorithm. After this step, the new point
is broadcasted to all processors and the procedure is repeated until a feasible
point is found.

The initialization phase is carried out on each processor independently to
avoid further communication within the blocks. If the problem is to be randomly
generated, the initial seed is broadcasted to all machines. If data has to be read
from the files, this is done by all machines.

A distributed implementation of the algorithm is being developed using PVM
3.3.11 on several Sparc workstations. The algorithm is being governed by a main
C routine, which makes calls to a C subroutine (for parallel block operations)
and to several PVM functions suitable to C programs (see [Geist et al. 94]).
These results will be reported elsewhere.

5 I m p l e m e n t a t i o n I s s u e s

It is assumed that the matr ix underlying the feasibility problem is sparse. This
matr ix is stored both in the rowwise format and the columnwise format, to ease
the access. When computing Atx k or aix k, the rowwise format is used and when
computing 7ct'kAt the columnwise format is used. The widely known standard
formats are used almost without any changes [Pissa. 84], but to ease the control
over the storage arrays, we have added one more cell to each, which marks the

end of the array.
Sample test problems have been generated as follows: First of all, a matr ix

with a given size and sparsity percentage is generated so that the nonzero el-
ements are distributed uniformly, so that each nonzero value is distributed in
between -5 .0 and 5.0. The random distribution has been done in two ways. In
the first, an exact number of nonzero entries is fixed and they are distributed uni-
formly (with parameters depending on the problem size) to rows of the matr ix
so that each row has at least one nonzero element. Then, their column num-
bers are generated uniformly. In the second, a simulated sequence of a Poisson
process is obtained and points are generated with exponential interarrival times
with parameter equal to the sparsity of the matrix. The exponential density is
truncated between 1 and n and the generated interarrival t ime is rounded to the
nearest integer and the next nonzero entry position is found by adding this value
to the column number of the previously placed nonzero entry. When one row is
finished, the process is continued in the next row. This is somewhat better than

573

the first, since the nonzero entries are generated sequentially and one does not
require a reordering when storing the data in rowwise format.Here we utilize the
property stating that in a Poisson process, given that n arrivals have occurred
within a time interval (0, t), the distribution of the arrival times $ 1 , . . . , Sn have
the same distribution as the order statistics of n independent random variables
distributed on this interval (O, t) (see for example [Ross 83]). We assume that
the idea is applicable to a discrete interval since it is quite a long interval, and
that the truncation of the exponential distribution does not have a significant
effect on the uniformity of the nonzeros over the matrix.

After generating the random matrix, a random x is generated, so that each
of its elements are in the interval (-4 .5 , 4.5). Following this, Ax is computed and
the b vector is generated so that bi = A i z + ui where ui is a discrete uniform
random variable between 0 and 1. In this way a feasible polyhedron is created.
Our aim is to try to keep this polyhedron somewhat small and distant to the
initial point of the algorithm, so that trivial convergence in a few steps will not
occur.

An important issue is the selection of the weight vector zr t,k. Weights may
be distributed equally among all violated constraints or they can be assigned,
proportional to the amount of violations. Or a suitable combination of the two
approaches may also be used. In our tabulated results we have used the hybrid
approach (which has also been used in [Yang & Murty 92]):

0 2(A = k - b,) 0.8
= x--, ~A ~ ~k + (12) A-,h:A~ =*>b[~, h "~ -- b'h) number of violated constraints

For convenience it is assumed that ~ 7r~ 'k = 1. The relaxation parameter A has
been taken to be 1.7 and the tolerance limit for feasibility, ~ is 10 -9.

6 C o n c l u s i o n s a n d F u t u r e W o r k

In our test problems it has been observed that the parallel surrogate constraint
method without any adjustment is quite poor when compared to the sequential
surrogate constraint method. The reason is that the magnitudes of the steps
obtained in the parallel algorithm remain quite small with respect to the accu-
mulated sequential steps.

In order to compensate for this loss, we have magnified the parallel step
length by multiplying it with the number of infeasible blocks at that time. In
this way we have obtained some favorable results. We have also used a longer
step which has been recently used in a similar (but not the same) parallel routine
by [Gar.-Pal. & Gon.-Cas. 96]. The results are also improved when compared to
the pure version of the parallel algorithm. This approach also seems to stabilize
the number of iterations when more blocks are used to parti t ion the problem.

It seems that increasing the step simply by multiplying it with the current
number of infeasible blocks, yields quite an improvement when the number of
blocks is relatively small. However, this idea should be used with some sort of

574

regulation over the step given by (9), since the idea gives unnecessarily long
steps which may prevent convergence, especially when the number of processors
is relatively large.

The issue that is of interest at this point is to obtain an adjusted parallel
algorithm and establish convergence. This can be possibly done by using the
improved step and adapting a control mechanism. We are also foreseeing the
completion of the PVM implementation of the parallel algorithm.

References

[Censor & Lent 82] Censor, Y., Lent, A.: Cyclic Subgradient Projections. Mathemat-
ical Programming, 24:233-235, 1982.

[Censor & Zenios 95] Censor, Y., Zenios, S. A.: Parallel Optimization: Theory, Algo-
rithms and Applications (to be published by Oxford University Press). October
18, 1995.

[Gar.-Pal. 93] Garcfa Palomares, U. M.: Parallel Projected Aggregation Methods for
Solving the Convex Feasibility Problem. SIAM Journal on Optimization, 3-4:882-
9(19, November 1993.

[Gar.-Pal. & Gon.-Cas. 96] Garcia Palomares, U. M., Gonzs Castafio, F. J.: Accel-
eration technique for solving convex (finear) systems via projection methods. Tech-
nical Report OP960614, Universidade de Vigo, ESCOLA T]~CNICA SUPERIOR
DE ENXENEIROS DE TELECOMUNICACION, Lagoas Marcosende 36200 Vigo,
Espafia, 1996.

[Geist et al. 94] Geist, A., Beguelin, A., Dongarra, J., Jinng, W., Manchek, R., Sun-
deram, V.: PVM: Parallel Virtual Machine. A User's Guide and Tutorial .for
Networked Parallel Computing. The MIT Press., Cambridge, Massachusetts, 1994.

[Hir.-Urr. & Lemar. 93] Hiriart-Urruty, Jean-Baptiste and Lemar6chal, Claude: Con-
vex Analysis and Minimization Algorithms. Springer-Verlag, Berlin, 1993.

[Pissa. 84] Pissanetzky, Sergio: Sparse Matrix Technology. Academic Press Inc., Lon-
don, 1984.

[Ross 83] Ross, Sheldon M.: Stochastic Processes. John Wiley & Sons Inc., 1983.
[Yang & Murty 92] Yang, K., Murty, K.G.: New Iterative Methods for Linear Inequal-

ities. Journal of Optimization Theory and Applications, 72:163-185, January 1992.

