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Abs t rac t .  In this paper, we present a model that facilitates view main- 
tenance within object-oriented databases. For that purpose, we differen- 
tiate between two categories of classes, base classes and brother classes. 
While the former constitute the actual database, the latter are intro- 
duced to hold virtual database, i.e., views derived from base classes. To 
achieve incremental view update, we introduce a modification list into 
each base class. A series of algorithms are developed to serve the pur- 
pose. Finally it happened that, view maintenance within object-oriented 
databases subsumes that within the nested and hence conventional rela- 
tionai models. 
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1 I n t r o d u c t i o n  

Views are derived (virtual) data that  can be materialized and subsequently 
queried against. View maintenance is an important  aspect of query models for 
having a lot of application areas ranging from integrity constraint maintenance 
to persistent queries among others. However, the difficulty and complexity of 
a view maintenance approach is dependent on the underlying data model. Al- 
though there have been man studies on view maintenance and materialization 
within the relational model [7, 8], much effort is still required on view main- 
tenance within the nested relational model and object-oriented data models in 
addition to the effort done in this respect e.g. [1, 2, 6, 9, 10, 11]. 

In object-oriented databases, through the use of object identifiers and vir- 
tual data, the view mechanism can be implemented correctly. Any update made 
through a view would be an indirect update, because the real data  would be 
accessed through the use of pointers. No replication is necessary, so no incon- 
sistencies due to the generation or updating of views emerge. We argue that  
deferred update is more reasonable within the object-oriented context, because 
updates are most of the time due to indirect modifications and hence require 
much more effort to be reflected into related views. We should not speak about  
the violation of referential integrity unless objects are accessed. Only at that  t ime 
references to deleted objects should be recognized and the violation of referential 
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integrity should be checked for. Earlier recognition might be t ime wasting and 
useless. 

In this paper, we describe a model which facilitates view maintenance in 
object-oriented databases. The basic idea in our approach is to distinguish mod-  
ifications to objects on which a view is dependent since the last derivation (up- 
date) of that  view. Therefore, in any subsequent view update  only such modi-  
fications are considered and hence the number  of objects to be accessed while 
updat ing a view is reduced. To achieve that ,  we categorize classes into base 
classes and brother classes. The latter correspond to view definitions and the 
former hold the actual database. Further, to each base class we add a modifi- 
cation list which keeps track of all modifications to be reflected on demand to 
dependent views. Different algorithms have been developed to handle the view 
maintenance. 

The rest of this paper is organized as follows. The basic model on which our 
work is based, is presented in Section 2. In Section 3, we give the algorithms 
that  govern and guarantee incremental view maintenance and materialization. 
Section 4 is the conclusions. 

2 The Basic Model  

In this section we introduce the data  model that  facilitates incremental view 
maintenance. To s tar t  with, any object with an object identifier Oid qualifies 
to be considered in the set of objects of a class c, denoted by Lin,ta~ces(c), if 
and only if object Oid understands nothing more than the behavior defined for 
objects of class c. The behavior for class c consists of two parts,  inherited behavior 
and locally defined behavior. So, let Lb~havior(C) denotes the local behavior for 
class c. Then, the whole behavior, object instances and at tr ibutes for class c are 
recursively defined based on its direct superclasses, say [cpl, cp2, ..., cp,]. 

Win,,~,~r Lin,,ance,(C) + E~=I Winstances(Cb,) 
wo.~b~..(c) = na.~ib~.~(c) + ~'=~ Wo.~b~.(cp,) 
Each method implements a certain function and has a receiver, former param-  
eters and a result. Further, a method is invoked via a corresponding message 
of the general form m(pl, P2, ..., Pk), where m is the method name, pl is the 
receiver and P2 to Pk are the parameters.  

So, based on what has been defined so far, a class is distinguished by some 
properties and constructs constituting the class definition. Consequently, con- 
sider a general class 3 to include all such class definitions. Therefore, by def- 
inition each object in Linstances(?) holds the definition of at least one class c 
(this will be clear later in this section). Such object is defined to be a quadrate 
(Cp(c), Cb(c), i~tt~ib~,t~(c), Lb~h~,io~(c)). I t  is obvious that ,  the definition of 
class 3 itself is an object in class 3. 

To sum up, a class c is formally defined as a pair (Pa, t9o); where Pd is an iden- 
tifier, it is either the oid of an object in class 3 or the identifier of another existing 
class, say c ~. For the former case, t'o refers to a pair (iinstances(C), Mli~t(c)), 
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where Mzist (c) denotes a modification list consisting of modification tuples. For 
the latter case, on the other hand, Po refers to a view definition; it is a view 
directly derived from class c ~. 

A modification tuple, denoted Mt=pt,(~d), is a quadrate 
(~/id, Oinserted, Odeleted, Oupdated), where ~/id is an identifier of a view derived 
from class c; Oinserted , Odeleted and Oupdated a r e  respectively the sets of objects 
inserted into, deleted from and updated in Winstan**,(c), after the last update  
of view ~/id and before the update  of another view based on class c. The latter 
update  causes a new modification tuple to be added to the list of class c. 

A view is a triplet (~d, Win,t . . . . .  (~a),  Pr . . . .  io,(~d)), where Winstanees(Yld) is 
the set of Oid'S for objects from Win~tances(c') matching the conjunction of pred- 
icates in P~=p~,~io,~(Vid). In other words, P~=p~,io~(V~d) is a list of predicates 
the conjunction of which constitute the predicate expression tha t  filters objects 
f rom Wins,~,~r to be included in Wi~stanr Further, Pexpression(~d) 
must  be updated to reflect schema changes, i.e., if a schema change drops some 
of the messages incorporated within some predicates in P~=p,~s~ion(Via), then 
those predicates should be adjusted to reflect the change [4]. For a detailed for- 
mal  definition of predicates see our previous work on query models [3, 5]. 

This way, we differentiate between two categories of classes according to the 
instantiat ion of Pa; base classes and brother classes. A base class directly points 
to a class definition in class 3, i.e., its Pd is the oid of an object in class 3. A brother 
class holds a view definition and indirectly refers to an object in class j via a base 
class, i.e., its Pd is the identifier of the base class from which the view is derived. 
According to this classification, all brother classes in the database are arranged 
into sets of equivalent-classes *** and hence each group of brother classes sharing 
the same base class definition constitute an equivalent-class. The cardinality of 
each equivalent-class is the number  of views derived directly f rom the related 
base class. On the other hand, the cardinality of the modification list of a class 
shows the number  of views dependent on that  class. F~arther, modification lists 
hold the update  history of the actual database. 

To illustrate what has been introduced above, consider the class hierarchy 
shown in Fig. 2 and the objects shown in Fig. 2. Next to each class in Fig. 2, 
there are three sets which include nattributes, Lbehavior and Linstartces, respec- 
tively. In addition, for every class given in Fig. 2, Cp and Cb are implicitly 
indicated via class connections. Some example brother classes are enumerated 
next. 
* Females is a brother class of person with Pal=person, 

P~=p . . . .  ion(Females)= [sex(p)="F"] t, Winst . . . . .  (Females) = {o~a:, oia4} 
�9 BasicCourses is a brother class of course with Pet=course, 

*** In the set theory, a set is partitioned into sets of equivalent-classes with each 
equivalent-class containing related elements; while all the equivalent-classes of a set 
are pairwise disjoint 

t Variable p is used as a pointer to objects in the target base class, here person 
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{name:raring, age:integer 
sex: [ "M" ,"F"] ,  chi ldren:  { person  } ] 

{nameO, age(), sex(),ehildrenO] 
{old l ,o ld2 ,o ld3  } 

{ name:string, head:staff} 
{name(), headO] 
{ old7 } 

person 

{name:string, code:string, 
credit:integer, prerequisite: {course) } 
/code(), name(), r prerequixite()] 
{ old8, oidg, oldlO, o ld l  l } 

student 

[year() coursesO 
student_itff ) ) 
{old4} 

{salary:integer. works_in:department} 
{salatTO wor~" in() net_salary(), increaxe_,valary()) 
{old5 -- ' 

{old6} 

Fig. 1. An example class hierarchy 

Oidl <"Jack", 21,"M", r Oid~ <"Mary", 42/~F ", {oi~1, Oid4 } > 
oi~3 <"John", 65,"M", {Oid5 } > ola4 <"Susan", 25,"F", r 5, { Oid9 , Oid~o }, Oid~ > 
Oid5 <"Smith", 45,"M", { Oid, , Oid4 }, 50K, oidv > 
Oidg <"George", 22,"M", r 5, {oiaaa }, Oid~, 15K, oid~> o,aT<"CompSci", oid6> 
oidg <"CSlOl","Int. to Prog.", 3, r > oid9 <"CS211","Prog. Lang.", 3, {Oidg }> 
Oidxo <"CS330","Data Struc.", 3, r  OidH <"CS450","Databases", 3, {Oidg, Oidxo }> 

Fig. 2. Example objects from the classes given in Figure 1 

P,=p . . . .  io,( BasicCourses)= {prerequisites(p) = r Wi,ot . . . . .  ( BasicCourses) = {o,ds, Oid,o } 
�9 StaffBrothersOfSusan is a borther class of staffwith Pa=staff, 

P~=p . . . .  ~o,(Staf f BrothersOf Susan)= {sex(p)="M", 
3p1(pl e w e . .  . . . . .  (person), name(p1) =" Susan"), 
3p2 (P2 E Winst . . . . .  (person), {p, pl } c children(p2 ) ) ]. 

Winst . . . . .  ( Sta f f Brother sO f Susan ) = r 
As it is obvious from the examples and detailed more in [4, 5], brother classes 

serve to hold the result of a query. 

3 V i e w  M a i n t e n a n c e  A l g o r i t h m s  

In this section, we elaborate more on the basic model introduced in Section 2 
and describe the algorithms that facilitate incremental view maintenance and 
materialization. 

Any base class, say c, is in general the root of two orthogonal subhierar- 
chies. Consequently, it is not sufficient to reflect into views which are brothers of 
class c only local modifications to objects in Wi,~stanceg(C), global modifications 
should also be considered. An object is locally modified when it is accessed from 
within class c itself. On the other hand, global modifications against objects in 
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Wi,~ta~ces(c) are performed from within a subclass of class c against objects 
subsumed in Wi~tances(c) or else from within another class against shared ob- 
jects along the class-composition hierarchy. Therefore, locating and controlling 
global modifications is as important as local modifications and also it is required 
in preserving database consistency and integrity. 

M~i,t(person)=[(Females, r r r 
Mu~t(staff)=[(Females, r r {o/as})] 
Mu~t( department )=~ 

(a) After the addition of Females view 

Mu,t(person)=[(Females, r r r 
Mu~t(staff)=[(Females, r r {oias})] 

Must(student)=[(Females, 0, {oia4}, ~b)] 
Mu~t(res-ass)=[(Females, ~b, r r 

Mti~t(course)=~ 

Mlist(student)=[(Females, fb, {o/a,}, ~b)] 
Mu~t(res-ass)=[(Females, r r r 

M~ist( department )=~ M~ist( course )=[ ( BasicCour ses, r { Oid9 }, { oidlo })] 

(b) After the addition of BasicCourses view 

Mzi~t(person)=[( Females, (b, r (~), ( S ta f f  BrothersO f Susan, r r r 
M..t(stude~t)=[(Female~, r {o,a4 }, r 
Ml/st(staff)=[(Females, r r {oias}), (StaffBrothersOfSusan, r r r 
Ml/st(res-ass)--:[(Females, r r (b), (StaffBrothersOfSusan, r r {oia6})] 
Mu~t(department)=[(StaffBrothersOfSusan, r r r 
M.~,(eo~se)=[(Sasi~Co~es, r {o/~}, {o~o })] 
(c) After the addition of StaffBrothersOfSusan view 

Fig. 3. Modification lists of the base classes given in Figure 1 

To keep track of global modifications, each addition of a modification tuple 
to Mu,t(c) triggers the addition of a modification tuple with the same V/d to 
the list of every class along both subhierarchies rooted at class c. Such tuples 
are utilized to indicate objects to consider from W i ~ r  in the process of 
updating view V/d. To illustrate this, shown in Fig. 3 are the modification lists of 
the base classes given in Fig. 2, after the addition of the example brother classes 
introduced in Section 2. First, we assume that after defining the Females view, 
object Oid, is deleted from the student class and object Oids is updated in the 
staff class; this is reflected into the modification lists shown in Fig. 3(a). Second, 
as shown in Fig. 3 3(b) , after the BasicCourses view is generated, object Oid 9 
is. ~eIeted from the course class and object Oid~o is updated in the course class. 
Fina~l~i, i~ Fig: 3~c)~, it is: shown tha t  after the StaffBrothersOfSusan view is 
generated, object O~d~ is updated in the researck-assis, tant: dass. 

Modifications along the inheritance hierarchy nre tocated by recursively trac- 
ing the Cb's of classes along the inheritance subhierarchy rooted at class c. On 
the other hand, to successfully reflect modifications along the class-composition 
subhierarchy, it is necessary to locate modified objects in each particular class 
along that subhierarchy and to backtrack (mostly by utilizing an index) to locate 
in W i ~ , t ~ , ( c )  objects referencing such modified objects. We accomplish this 
by introducing two general base classes into the class hierarchy, namely NEsting 
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of Classes (NEC) and Complex Objects References (COR), to keep track of the 
relationships between classes and objects, respectively. 

Explicitly, N E C  holds all class-to-class relationships along the class compo- 
sition hierarchy, i.e., a relationship between two classes ci and cj is included in 
N E C  to show that class ci has an attribute the value of which is drawn from 
Win~t~,~e~(Cj). When a relationship between two classes ci and cj is registered 
in NEC,  the relationships between their corresponding objects is reflected into 
COR to show that object Oidj from class cj is contained in the state of object 
Oid~ from class ci. The definitions in class 3 for N E C  and COR classes are given 
in Fig. 3. On the other hand, shown in Fig. 3 are the objects contained in N E C  
and COR classes, as the example classes given in Fig. 2 and the corresponding 
objects shown in Fig. 2 are concerned. This is achieved because in our query 
model [3, 5] we allow the specification of the result of a recursive query to be a 
subset of the transitive closure. 

�9 Cp(NEC)=r �9 Cb(NEC)=$, 
�9 L~tt~ib~,t,~(NEC)={LeftClass:C, RightClass:C} t 
�9 Lb~ha~io~(NEC)={FindClassCompositionHierarchy(}} 

�9 Cp(COR)=~, �9 Cb(COR)=~, 
�9 Latt~ibu,es(COR)---{Le]tObject:OID, RightObject:OxD} w 
�9 Lb~h~,io~(COR)={FindRe/erencingObjects(TargetClass)} 

Fig. 4. Definitions of classes NEC and COR in class 3 

oid~2<person, person> 
oia~4 <student, course> 
Oidl6 <COUrSe, course> 

oia13 <student, department> 
o~d15 <staff, department> 
oidxr<department, staff> 

Oidls<Oid2, Oidl>~ Oidl9<Oid2~ Oid4>~ Oid2o<Oids, Oids>~ Oid21<Oid4, Oidg> 
Oid22<Oid4, Oidlo>, Oid23<Oids, Oidl>~ Oid24<Oids, Oid4>, Oid2s<Oid6, Oidll> 
Oid26<Oid9~ Oids>~ Oid2v<Oidll, Oidg>, Oid28<Oidll~ Oidlo> 

Fig. 5. Objects in NEC and COR classes 

Objects in the two classes NEC and COR are utilized by the algorithms 
given next in this section. According to Algorithm 3.2, related to a given view 
~r which is a brother class of base class c, modification tuples in each class 
along the class-composition subhierarchy rooted at class c are located by tracing 
the hierarchy in the forward direction starting with class c and using objects in 
NEC.  After that,  COR is utilized to trace in the backward direction every object 
in the sets included within the located tuples to determine referencing objects 
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in Winsta,c~8(c). So, given view Vid, Algorithm 3�9 determines three sets of oid's 
for objects to be utilized in Algorithm 3.3 which updates that view�9 These sets 
Wo~ . . . .  ~ ,  Wo~o~.,.d and Wo.p~o,.~ contain respectively objects which are locally 
or globally inserted into, deleted from and updated within Wi,s,a,~e~(C) since 
the last update of view ~d. To have every modified object located, Algorithm 3.1 
is utilized to determine modifications along the inheritance subhierarchy rooted 
at a particular class. 

Algorithm 3.1 ( I M T )  
/ *  This algorithm considers only classes along the inheritance subhierarchy rooted at 
class c. The target is to determine modifications to objects in Winst . . . . .  (c), i.e., objects 
inserted into, deleted]from or updated within Win~t . . . . .  (c) since the last update to view 
Via which directly or indirectly depends on base class c. 
Input: a class c and a view Vid. 
Output:  sets off Oid'S Coi . . . .  ~.~, Co~.~.,~, Co~pa~.~ 

of modified objects in Wi~,t . . . . .  (c). 
Steps: 

Let Coi . . . .  t~  =Coa.~r = C o . p ~  =r 
Let C~,h~it . . . .  =[c] 

/ *  Ci,merlta,ce is a list to include all classes ]found along the inheritance subhierarchy 
rooted at class c. 

Let i=O 
While not end off Cinheritance do 

Let c'=Ci,~h~it . . . .  [i] 

Find Mt=pl~(Via) within Mti, t(c ') .  
While not end off Mli~t(c') do 

�9 C o ~  . . . .  ,o~=Coi . . . .  , . , [ 3 0 ~  . . . .  ~ , d  

�9 Co~ez~,l =Co,~l=~a D Odeleted 
�9 Co,,pa~,~ea =Co,,pa=~a U Oupdated 

End While 
I f  there exists an immediate predecessor 

of M,=r~o(~a) in M.~t(c')  then 
�9 Merge Mt=pte(Viu) with its 

immediate predecessor 
Else 

�9 Delete Mtupte(Vid) 
EndI]f 
Append (V~d, r r r at the rear of Mt,st(c') 
i=i+l  

End While 
EndAlgorithm [] 

Algorithm 3.2 ( I D U )  
/ *  To determine since the last update to view Vid, the sets off objects inserted into, 
deleted from or updated within Wi,~t . . . . .  (c), where c is the base class c of which view 
Yid iS a brother class. 
Input: V~d of a view which is a brother class of 

base class c. 
Output:  Sets of objects Woi  . . . .  ~ ,  W o ~ ,  
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Wo~pd.t.d to be utilized in Algorithm 3.3 for 
incremental update of view Vid 

Steps: 
Let Woi . . . .  t.d =Wodozo~d =Wo~pd~o~ =r 
Find Mt.pt.(Vid) within Mu,t(c).  
If Mt~pte(Vid) is not found then 

/ *  derive view Vid from scratch; it is a new view 
W o ,  . . . .  ,o,  = w ~ . , t  . . . . .  (c )  

Wod.z~ =Wo.pd~.d =~b 
Else 

Perform IMT(Via, c) 

WOinser~ed =COiBser~ed 
WOdelcted ~COde|eted 
Woupda~ed ---- Coupda~d 
Cr162 = FindClassCompositionHierarchy(c) / *  Cr162 is a list to include classes 

within the class-composition subhierarchy rooted at class c. 
Let G=4 

/ *  G is a set to include all modified objects along the class-composition subhierarchy 
rooted at class c. 

For every class ci in Cc,h do 
�9 Perform IMT(Vid, ci) 
�9 G =G U Co, . . . .  ,.d U Cod.,.,~ [.J Co . , , . , . ,  EndFor 

For every object o~a in G do 
�9 Wo~pd.tod =Wo.~d.~.d 4" 

FindRe f erencingObjects(oia, c) 
EndFor 

Woinserted =Woi  . . . .  ted -- WOdeleted 
Wonpd~d  ----Wo~pa.~ed -- Wo i  . . . .  ~.d 
Woupdated ----Wo~pda~ed -- Wodel,~ed 

EndIf 
EndAlgorithm [] 

Algorithm 3.3 (ViewUpdate) 
/ *  To utilize modified objects within Winst . . . . .  (c) in deriving (updating) view Via which 
is a brother class of base class c. 
Input: Via of a view which is a brother class of 

base class c. 
Output: Wi,~st . . . . .  (t~a) 
Steps: 

Perform 1DU(Vid) 
W ~ 8 ,  . . . . .  (v~d)  = W ~ . , ,  . . . . .  (V id)  - W o , o , o , o ,  
W,.s, . . . . .  ( v ,d )  = w , . , ,  . . . . .  ( v ,d )  - W o . , ~  

WOi . . . .  ted--~Woi~,arfed U WOupdated 
For every object Old in Woi . . . .  ,~d do 

I f  Oid satisfies P~.p .... io,~(Via) then 
w , . , , o . . , ( ~ )  = w , . .  . . . .  ,(v,~) U { o , . }  

Endlf  
Endfor 

EndAlgorithm [] 
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Mu~t(person) = [(StaffBrothersOfSusan, r r 0), (Females, r r r 
Mu,t(student) = [(Females, r r r 
Must(staff) = [(StaffBrothersOfSusan, r r r (Females, r r r 
Mu~t(res-ass)=[(StaffBrothersOfSusanr162 {Oids}), (Females, r r r 
Mtist( department) = [( Sta f f BrothersO f Susan, r r r 
Mtist(eourse) = [(BasicCourses, r {Oidg}, {Oidlo})] 

Fig. 6. Modification fists of the base classes given in Figure 1 after the update of 
Females view 

M l i s t ( p e r s o n )  -:  [(Females, r r r (StaffBrothersOfSusan, 0, r r 
M.d,(student) = [(Females, r {o~. }, r 
Mu~t(staff) = [(Females, r r {oias }), (StaffBrothersOfSusan, r r r 
Mu~t(res-ass) = [(Females, r r {oiae}), (StaffBrothersOfSusan, r r r 
Mti~t(department) = [(StaffBrothersOfSusan, r r r 
M . . ( c o ~ s e )  = [(BasieCo~ses, r { o ~ } ,  {o~o})]  

(a) Before the update of Females view 

Mlist(person) -= [(Females, r r r (StaffBrothersOfSusan, r r r 
M . ~ d s t ~ d e ~ t )  = [(Females, r r r 
M~t ( s ta f f )  = [(Females, r r r (StaffBrothersOfSusan, r r r 
Mu~t(res-ass) = [(Females, r r r (StaffBrothersOfSusan, r r r 
Mllst( department) = [( Sta f f BrothersO f Susan, r r r 
Mtist(eourse) = [(BasicCourses, r {oia9 }, {oid~6 })] 

(b) After the update of Females view 

Fig. 7. Modification fists of the base classes given in Figure 1 after the update of 
StaffBrothersOfSusan view 

To illustrate the already introduced algorithms, assume that it is desired to 
access the Females view. However, accessing a view results in updating its objects 
because we employ deferred update. Consequently, Algorithm 3.3 is executed and 
hence Algorithms 3.2 and 3.1, since Algorithm 3.3 calls Algorithm 3.2 which, in 
its turn, calls Algorithm 3.1. So, on executing ViewUpdate(Females),  the re- 
lated modification lists shown in Fig. 3(c) are traced by Algorithms 3.2 and 3.1 
to locate modified objects in Winstances(person); because person is the base class 
of which Females is a brother class. The following modification sets are returned 
by Algorithms 3.2: 
Wo, . . . .  , ~ = r  Wo~,,o~={oia4}, Wo~,,~ Oid6}. Algorithms 3.3 utilizes 
these modification sets to return Winsta,~8(Females) = {Oid2}. To mark the 
starting point of the forthcoming update of the Females view, Algorithm 3.1 
updates the utilized modification lists from Fig. 3(c) into the lists shown in 
Fig. 3. To realize the change in the lists more explicitly, consider the execu- 
tion of ViewUpdate(SlaffBrothersOfSusan) b y  utilizing the lists in Fig. 3(c) 
and Fig. 3, i.e., without executing ViewUpdate(FemaleQ and after executing 
ViewUpdate(Females), respectively. Modification lists of the base classes after 
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such executions are shown in Fig. 3(a) and (b), respectively. Notice how in Fig. 
3(a), oi~6 moved within M t i s t ( r e s e a r c h - a s s i s l a n l ) .  

4 C o n c l u s i o n s  

In this paper, we presented a model that facilitates incremental view mainte- 
nance within object-oriented databases. Instant reflection of class updates into 
dependent views is not only time consuming, but also proved to be useless and 
hence time wasting. View maintenance within the object-oriented context is 
more challenging than that  within the relational model. Thus, our algorithms 
serve more than the requirements of the relational model. Explicitly speaking, 
Algorithms 3.1, 3.2 and 3.3 are applicable for both the nested relational model 
and the relational model as well. 
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