
View Maintenance in Object-Oriented
Databases

Reda Alhajj 1 and Faruk Polat 2

Department of Computer Engineering and Information Science, Bilkent University,
06533 Ankara, Turkey

2 Department of Computer Engineering, Middle East Technical University, 06531
Ankara, Turkey

Abs t rac t . In this paper, we present a model that facilitates view main-
tenance within object-oriented databases. For that purpose, we differen-
tiate between two categories of classes, base classes and brother classes.
While the former constitute the actual database, the latter are intro-
duced to hold virtual database, i.e., views derived from base classes. To
achieve incremental view update, we introduce a modification list into
each base class. A series of algorithms are developed to serve the pur-
pose. Finally it happened that, view maintenance within object-oriented
databases subsumes that within the nested and hence conventional rela-
tionai models.

K e y w o r d s : Algorithms; Base Classes; Modification Lists; Object-
Oriented Databases; Views.

1 I n t r o d u c t i o n

Views are derived (virtual) data that can be materialized and subsequently
queried against. View maintenance is an important aspect of query models for
having a lot of application areas ranging from integrity constraint maintenance
to persistent queries among others. However, the difficulty and complexity of
a view maintenance approach is dependent on the underlying data model. Al-
though there have been man studies on view maintenance and materialization
within the relational model [7, 8], much effort is still required on view main-
tenance within the nested relational model and object-oriented data models in
addition to the effort done in this respect e.g. [1, 2, 6, 9, 10, 11].

In object-oriented databases, through the use of object identifiers and vir-
tual data, the view mechanism can be implemented correctly. Any update made
through a view would be an indirect update, because the real data would be
accessed through the use of pointers. No replication is necessary, so no incon-
sistencies due to the generation or updating of views emerge. We argue that
deferred update is more reasonable within the object-oriented context, because
updates are most of the time due to indirect modifications and hence require
much more effort to be reflected into related views. We should not speak about
the violation of referential integrity unless objects are accessed. Only at that t ime
references to deleted objects should be recognized and the violation of referential

154

integrity should be checked for. Earlier recognition might be t ime wasting and
useless.

In this paper, we describe a model which facilitates view maintenance in
object-oriented databases. The basic idea in our approach is to distinguish mod-
ifications to objects on which a view is dependent since the last derivation (up-
date) of that view. Therefore, in any subsequent view update only such modi-
fications are considered and hence the number of objects to be accessed while
updat ing a view is reduced. To achieve that , we categorize classes into base
classes and brother classes. The latter correspond to view definitions and the
former hold the actual database. Further, to each base class we add a modifi-
cation list which keeps track of all modifications to be reflected on demand to
dependent views. Different algorithms have been developed to handle the view
maintenance.

The rest of this paper is organized as follows. The basic model on which our
work is based, is presented in Section 2. In Section 3, we give the algorithms
that govern and guarantee incremental view maintenance and materialization.
Section 4 is the conclusions.

2 The Basic Model

In this section we introduce the data model that facilitates incremental view
maintenance. To s tar t with, any object with an object identifier Oid qualifies
to be considered in the set of objects of a class c, denoted by Lin,ta~ces(c), if
and only if object Oid understands nothing more than the behavior defined for
objects of class c. The behavior for class c consists of two parts, inherited behavior
and locally defined behavior. So, let Lb~havior(C) denotes the local behavior for
class c. Then, the whole behavior, object instances and at tr ibutes for class c are
recursively defined based on its direct superclasses, say [cpl, cp2, ..., cp,].

Win,,~,~r Lin,,ance,(C) + E~=I Winstances(Cb,)
wo.~b~..(c) = na.~ib~.~(c) + ~'=~ Wo.~b~.(cp,)
Each method implements a certain function and has a receiver, former param-
eters and a result. Further, a method is invoked via a corresponding message
of the general form m(pl, P2, ..., Pk), where m is the method name, pl is the
receiver and P2 to Pk are the parameters.

So, based on what has been defined so far, a class is distinguished by some
properties and constructs constituting the class definition. Consequently, con-
sider a general class 3 to include all such class definitions. Therefore, by def-
inition each object in Linstances(?) holds the definition of at least one class c
(this will be clear later in this section). Such object is defined to be a quadrate
(Cp(c), Cb(c), i~tt~ib~,t~(c), Lb~h~,io~(c)). I t is obvious that , the definition of
class 3 itself is an object in class 3.

To sum up, a class c is formally defined as a pair (Pa, t9o); where Pd is an iden-
tifier, it is either the oid of an object in class 3 or the identifier of another existing
class, say c ~. For the former case, t'o refers to a pair (iinstances(C), Mli~t(c)),

155

where Mzist (c) denotes a modification list consisting of modification tuples. For
the latter case, on the other hand, Po refers to a view definition; it is a view
directly derived from class c ~.

A modification tuple, denoted Mt=pt,(~d), is a quadrate
(~/id, Oinserted, Odeleted, Oupdated), where ~/id is an identifier of a view derived
from class c; Oinserted , Odeleted and Oupdated a r e respectively the sets of objects
inserted into, deleted from and updated in Winstan**,(c), after the last update
of view ~/id and before the update of another view based on class c. The latter
update causes a new modification tuple to be added to the list of class c.

A view is a triplet (~d, Win,t (~a), Pr io,(~d)), where Winstanees(Yld) is
the set of Oid'S for objects from Win~tances(c') matching the conjunction of pred-
icates in P~=p~,~io,~(Vid). In other words, P~=p~,io~(V~d) is a list of predicates
the conjunction of which constitute the predicate expression tha t filters objects
f rom Wins,~,~r to be included in Wi~stanr Further, Pexpression(~d)
must be updated to reflect schema changes, i.e., if a schema change drops some
of the messages incorporated within some predicates in P~=p,~s~ion(Via), then
those predicates should be adjusted to reflect the change [4]. For a detailed for-
mal definition of predicates see our previous work on query models [3, 5].

This way, we differentiate between two categories of classes according to the
instantiat ion of Pa; base classes and brother classes. A base class directly points
to a class definition in class 3, i.e., its Pd is the oid of an object in class 3. A brother
class holds a view definition and indirectly refers to an object in class j via a base
class, i.e., its Pd is the identifier of the base class from which the view is derived.
According to this classification, all brother classes in the database are arranged
into sets of equivalent-classes *** and hence each group of brother classes sharing
the same base class definition constitute an equivalent-class. The cardinality of
each equivalent-class is the number of views derived directly f rom the related
base class. On the other hand, the cardinality of the modification list of a class
shows the number of views dependent on that class. F~arther, modification lists
hold the update history of the actual database.

To illustrate what has been introduced above, consider the class hierarchy
shown in Fig. 2 and the objects shown in Fig. 2. Next to each class in Fig. 2,
there are three sets which include nattributes, Lbehavior and Linstartces, respec-
tively. In addition, for every class given in Fig. 2, Cp and Cb are implicitly
indicated via class connections. Some example brother classes are enumerated
next.
* Females is a brother class of person with Pal=person,

P~=p ion(Females)= [sex(p)="F"] t, Winst (Females) = {o~a:, oia4}
�9 BasicCourses is a brother class of course with Pet=course,

*** In the set theory, a set is partitioned into sets of equivalent-classes with each
equivalent-class containing related elements; while all the equivalent-classes of a set
are pairwise disjoint

t Variable p is used as a pointer to objects in the target base class, here person

156

{name:raring, age:integer
sex: ["M" ,"F"] , chi ldren: { person }]

{nameO, age(), sex(),ehildrenO]
{old l ,o ld2 ,o ld3 }

{ name:string, head:staff}
{name(), headO]
{ old7 }

person

{name:string, code:string,
credit:integer, prerequisite: {course) }
/code(), name(), r prerequixite()]
{ old8, oidg, oldlO, o ld l l }

student

[year() coursesO
student_itff))
{old4}

{salary:integer. works_in:department}
{salatTO wor~" in() net_salary(), increaxe_,valary())
{old5 -- '

{old6}

Fig. 1. An example class hierarchy

Oidl <"Jack", 21,"M", r Oid~ <"Mary", 42/~F ", {oi~1, Oid4 } >
oi~3 <"John", 65,"M", {Oid5 } > ola4 <"Susan", 25,"F", r 5, { Oid9 , Oid~o }, Oid~ >
Oid5 <"Smith", 45,"M", { Oid, , Oid4 }, 50K, oidv >
Oidg <"George", 22,"M", r 5, {oiaaa }, Oid~, 15K, oid~> o,aT<"CompSci", oid6>
oidg <"CSlOl","Int. to Prog.", 3, r > oid9 <"CS211","Prog. Lang.", 3, {Oidg }>
Oidxo <"CS330","Data Struc.", 3, r OidH <"CS450","Databases", 3, {Oidg, Oidxo }>

Fig. 2. Example objects from the classes given in Figure 1

P,=p io,(BasicCourses)= {prerequisites(p) = r Wi,ot (BasicCourses) = {o,ds, Oid,o }
�9 StaffBrothersOfSusan is a borther class of staffwith Pa=staff,

P~=p ~o,(Staf f BrothersOf Susan)= {sex(p)="M",
3p1(pl e w e (person), name(p1) =" Susan"),
3p2 (P2 E Winst (person), {p, pl } c children(p2))].

Winst (Sta f f Brother sO f Susan) = r
As it is obvious from the examples and detailed more in [4, 5], brother classes

serve to hold the result of a query.

3 V i e w M a i n t e n a n c e A l g o r i t h m s

In this section, we elaborate more on the basic model introduced in Section 2
and describe the algorithms that facilitate incremental view maintenance and
materialization.

Any base class, say c, is in general the root of two orthogonal subhierar-
chies. Consequently, it is not sufficient to reflect into views which are brothers of
class c only local modifications to objects in Wi,~stanceg(C), global modifications
should also be considered. An object is locally modified when it is accessed from
within class c itself. On the other hand, global modifications against objects in

157

Wi,~ta~ces(c) are performed from within a subclass of class c against objects
subsumed in Wi~tances(c) or else from within another class against shared ob-
jects along the class-composition hierarchy. Therefore, locating and controlling
global modifications is as important as local modifications and also it is required
in preserving database consistency and integrity.

M~i,t(person)=[(Females, r r r
Mu~t(staff)=[(Females, r r {o/as})]
Mu~t(department)=~

(a) After the addition of Females view

Mu,t(person)=[(Females, r r r
Mu~t(staff)=[(Females, r r {oias})]

Must(student)=[(Females, 0, {oia4}, ~b)]
Mu~t(res-ass)=[(Females, ~b, r r

Mti~t(course)=~

Mlist(student)=[(Females, fb, {o/a,}, ~b)]
Mu~t(res-ass)=[(Females, r r r

M~ist(department)=~ M~ist(course)=[(BasicCour ses, r { Oid9 }, { oidlo })]

(b) After the addition of BasicCourses view

Mzi~t(person)=[(Females, (b, r (~), (S ta f f BrothersO f Susan, r r r
M..t(stude~t)=[(Female~, r {o,a4 }, r
Ml/st(staff)=[(Females, r r {oias}), (StaffBrothersOfSusan, r r r
Ml/st(res-ass)--:[(Females, r r (b), (StaffBrothersOfSusan, r r {oia6})]
Mu~t(department)=[(StaffBrothersOfSusan, r r r
M.~,(eo~se)=[(Sasi~Co~es, r {o/~}, {o~o })]
(c) After the addition of StaffBrothersOfSusan view

Fig. 3. Modification lists of the base classes given in Figure 1

To keep track of global modifications, each addition of a modification tuple
to Mu,t(c) triggers the addition of a modification tuple with the same V/d to
the list of every class along both subhierarchies rooted at class c. Such tuples
are utilized to indicate objects to consider from W i ~ r in the process of
updating view V/d. To illustrate this, shown in Fig. 3 are the modification lists of
the base classes given in Fig. 2, after the addition of the example brother classes
introduced in Section 2. First, we assume that after defining the Females view,
object Oid, is deleted from the student class and object Oids is updated in the
staff class; this is reflected into the modification lists shown in Fig. 3(a). Second,
as shown in Fig. 3 3(b) , after the BasicCourses view is generated, object Oid 9
is. ~eIeted from the course class and object Oid~o is updated in the course class.
Fina~l~i, i~ Fig: 3~c)~, it is: shown tha t after the StaffBrothersOfSusan view is
generated, object O~d~ is updated in the researck-assis, tant: dass.

Modifications along the inheritance hierarchy nre tocated by recursively trac-
ing the Cb's of classes along the inheritance subhierarchy rooted at class c. On
the other hand, to successfully reflect modifications along the class-composition
subhierarchy, it is necessary to locate modified objects in each particular class
along that subhierarchy and to backtrack (mostly by utilizing an index) to locate
in W i ~ , t ~ , (c) objects referencing such modified objects. We accomplish this
by introducing two general base classes into the class hierarchy, namely NEsting

158

of Classes (NEC) and Complex Objects References (COR), to keep track of the
relationships between classes and objects, respectively.

Explicitly, N E C holds all class-to-class relationships along the class compo-
sition hierarchy, i.e., a relationship between two classes ci and cj is included in
N E C to show that class ci has an attribute the value of which is drawn from
Win~t~,~e~(Cj). When a relationship between two classes ci and cj is registered
in NEC, the relationships between their corresponding objects is reflected into
COR to show that object Oidj from class cj is contained in the state of object
Oid~ from class ci. The definitions in class 3 for N E C and COR classes are given
in Fig. 3. On the other hand, shown in Fig. 3 are the objects contained in N E C
and COR classes, as the example classes given in Fig. 2 and the corresponding
objects shown in Fig. 2 are concerned. This is achieved because in our query
model [3, 5] we allow the specification of the result of a recursive query to be a
subset of the transitive closure.

�9 Cp(NEC)=r �9 Cb(NEC)=$,
�9 L~tt~ib~,t,~(NEC)={LeftClass:C, RightClass:C} t
�9 Lb~ha~io~(NEC)={FindClassCompositionHierarchy(}}

�9 Cp(COR)=~, �9 Cb(COR)=~,
�9 Latt~ibu,es(COR)---{Le]tObject:OID, RightObject:OxD} w
�9 Lb~h~,io~(COR)={FindRe/erencingObjects(TargetClass)}

Fig. 4. Definitions of classes NEC and COR in class 3

oid~2<person, person>
oia~4 <student, course>
Oidl6 <COUrSe, course>

oia13 <student, department>
o~d15 <staff, department>
oidxr<department, staff>

Oidls<Oid2, Oidl>~ Oidl9<Oid2~ Oid4>~ Oid2o<Oids, Oids>~ Oid21<Oid4, Oidg>
Oid22<Oid4, Oidlo>, Oid23<Oids, Oidl>~ Oid24<Oids, Oid4>, Oid2s<Oid6, Oidll>
Oid26<Oid9~ Oids>~ Oid2v<Oidll, Oidg>, Oid28<Oidll~ Oidlo>

Fig. 5. Objects in NEC and COR classes

Objects in the two classes NEC and COR are utilized by the algorithms
given next in this section. According to Algorithm 3.2, related to a given view
~r which is a brother class of base class c, modification tuples in each class
along the class-composition subhierarchy rooted at class c are located by tracing
the hierarchy in the forward direction starting with class c and using objects in
NEC. After that, COR is utilized to trace in the backward direction every object
in the sets included within the located tuples to determine referencing objects

159

in Winsta,c~8(c). So, given view Vid, Algorithm 3�9 determines three sets of oid's
for objects to be utilized in Algorithm 3.3 which updates that view�9 These sets
Wo~ ~ , Wo~o~.,.d and Wo.p~o,.~ contain respectively objects which are locally
or globally inserted into, deleted from and updated within Wi,s,a,~e~(C) since
the last update of view ~d. To have every modified object located, Algorithm 3.1
is utilized to determine modifications along the inheritance subhierarchy rooted
at a particular class.

Algorithm 3.1 (I M T)
/ * This algorithm considers only classes along the inheritance subhierarchy rooted at
class c. The target is to determine modifications to objects in Winst (c), i.e., objects
inserted into, deleted]from or updated within Win~t (c) since the last update to view
Via which directly or indirectly depends on base class c.
Input: a class c and a view Vid.
Output: sets off Oid'S Coi ~.~, Co~.~.,~, Co~pa~.~

of modified objects in Wi~,t (c).
Steps:

Let Coi t~ =Coa.~r = C o . p ~ =r
Let C~,h~it =[c]

/ * Ci,merlta,ce is a list to include all classes]found along the inheritance subhierarchy
rooted at class c.

Let i=O
While not end off Cinheritance do

Let c'=Ci,~h~it [i]

Find Mt=pl~(Via) within Mti, t(c ') .
While not end off Mli~t(c') do

�9 C o ~ ,o~=Coi , . , [3 0 ~ ~ , d

�9 Co~ez~,l =Co,~l=~a D Odeleted
�9 Co,,pa~,~ea =Co,,pa=~a U Oupdated

End While
I f there exists an immediate predecessor

of M,=r~o(~a) in M.~t(c') then
�9 Merge Mt=pte(Viu) with its

immediate predecessor
Else

�9 Delete Mtupte(Vid)
EndI]f
Append (V~d, r r r at the rear of Mt,st(c')
i=i+l

End While
EndAlgorithm []

Algorithm 3.2 (I D U)
/ * To determine since the last update to view Vid, the sets off objects inserted into,
deleted from or updated within Wi,~t (c), where c is the base class c of which view
Yid iS a brother class.
Input: V~d of a view which is a brother class of

base class c.
Output: Sets of objects Woi ~ , W o ~ ,

160

Wo~pd.t.d to be utilized in Algorithm 3.3 for
incremental update of view Vid

Steps:
Let Woi t.d =Wodozo~d =Wo~pd~o~ =r
Find Mt.pt.(Vid) within Mu,t(c).
If Mt~pte(Vid) is not found then

/ * derive view Vid from scratch; it is a new view
W o , ,o, = w ~ . , t (c)

Wod.z~ =Wo.pd~.d =~b
Else

Perform IMT(Via, c)

WOinser~ed =COiBser~ed
WOdelcted ~COde|eted
Woupda~ed ---- Coupda~d
Cr162 = FindClassCompositionHierarchy(c) / * Cr162 is a list to include classes

within the class-composition subhierarchy rooted at class c.
Let G=4

/ * G is a set to include all modified objects along the class-composition subhierarchy
rooted at class c.

For every class ci in Cc,h do
�9 Perform IMT(Vid, ci)
�9 G =G U Co, ,.d U Cod.,.,~ [.J Co . , , . , . , EndFor

For every object o~a in G do
�9 Wo~pd.tod =Wo.~d.~.d 4"

FindRe f erencingObjects(oia, c)
EndFor

Woinserted =Woi ted -- WOdeleted
Wonpd~d ----Wo~pa.~ed -- Wo i ~.d
Woupdated ----Wo~pda~ed -- Wodel,~ed

EndIf
EndAlgorithm []

Algorithm 3.3 (ViewUpdate)
/ * To utilize modified objects within Winst (c) in deriving (updating) view Via which
is a brother class of base class c.
Input: Via of a view which is a brother class of

base class c.
Output: Wi,~st (t~a)
Steps:

Perform 1DU(Vid)
W ~ 8 , (v~d) = W ~ . , , (V id) - W o , o , o , o ,
W,.s, (v ,d) = w , . , , (v ,d) - W o . , ~

WOi ted--~Woi~,arfed U WOupdated
For every object Old in Woi ,~d do

I f Oid satisfies P~.p io,~(Via) then
w , . , , o . . , (~) = w , ,(v,~) U { o , . }

Endlf
Endfor

EndAlgorithm []

161

Mu~t(person) = [(StaffBrothersOfSusan, r r 0), (Females, r r r
Mu,t(student) = [(Females, r r r
Must(staff) = [(StaffBrothersOfSusan, r r r (Females, r r r
Mu~t(res-ass)=[(StaffBrothersOfSusanr162 {Oids}), (Females, r r r
Mtist(department) = [(Sta f f BrothersO f Susan, r r r
Mtist(eourse) = [(BasicCourses, r {Oidg}, {Oidlo})]

Fig. 6. Modification fists of the base classes given in Figure 1 after the update of
Females view

M l i s t (p e r s o n) -: [(Females, r r r (StaffBrothersOfSusan, 0, r r
M.d,(student) = [(Females, r {o~. }, r
Mu~t(staff) = [(Females, r r {oias }), (StaffBrothersOfSusan, r r r
Mu~t(res-ass) = [(Females, r r {oiae}), (StaffBrothersOfSusan, r r r
Mti~t(department) = [(StaffBrothersOfSusan, r r r
M . . (c o ~ s e) = [(BasieCo~ses, r { o ~ } , {o~o})]

(a) Before the update of Females view

Mlist(person) -= [(Females, r r r (StaffBrothersOfSusan, r r r
M . ~ d s t ~ d e ~ t) = [(Females, r r r
M~t (s ta f f) = [(Females, r r r (StaffBrothersOfSusan, r r r
Mu~t(res-ass) = [(Females, r r r (StaffBrothersOfSusan, r r r
Mllst(department) = [(Sta f f BrothersO f Susan, r r r
Mtist(eourse) = [(BasicCourses, r {oia9 }, {oid~6 })]

(b) After the update of Females view

Fig. 7. Modification fists of the base classes given in Figure 1 after the update of
StaffBrothersOfSusan view

To illustrate the already introduced algorithms, assume that it is desired to
access the Females view. However, accessing a view results in updating its objects
because we employ deferred update. Consequently, Algorithm 3.3 is executed and
hence Algorithms 3.2 and 3.1, since Algorithm 3.3 calls Algorithm 3.2 which, in
its turn, calls Algorithm 3.1. So, on executing ViewUpdate(Females), the re-
lated modification lists shown in Fig. 3(c) are traced by Algorithms 3.2 and 3.1
to locate modified objects in Winstances(person); because person is the base class
of which Females is a brother class. The following modification sets are returned
by Algorithms 3.2:
Wo, , ~ = r Wo~,,o~={oia4}, Wo~,,~ Oid6}. Algorithms 3.3 utilizes
these modification sets to return Winsta,~8(Females) = {Oid2}. To mark the
starting point of the forthcoming update of the Females view, Algorithm 3.1
updates the utilized modification lists from Fig. 3(c) into the lists shown in
Fig. 3. To realize the change in the lists more explicitly, consider the execu-
tion of ViewUpdate(SlaffBrothersOfSusan) b y utilizing the lists in Fig. 3(c)
and Fig. 3, i.e., without executing ViewUpdate(FemaleQ and after executing
ViewUpdate(Females), respectively. Modification lists of the base classes after

162

such executions are shown in Fig. 3(a) and (b), respectively. Notice how in Fig.
3(a), oi~6 moved within M t i s t (r e s e a r c h - a s s i s l a n l) .

4 C o n c l u s i o n s

In this paper, we presented a model that facilitates incremental view mainte-
nance within object-oriented databases. Instant reflection of class updates into
dependent views is not only time consuming, but also proved to be useless and
hence time wasting. View maintenance within the object-oriented context is
more challenging than that within the relational model. Thus, our algorithms
serve more than the requirements of the relational model. Explicitly speaking,
Algorithms 3.1, 3.2 and 3.3 are applicable for both the nested relational model
and the relational model as well.

R e f e r e n c e s

1. Abiteboul, S., Bonner, A.: Objects and Views. Proceedings of the ACM-SIGMOD
International Conference on Management of Data (1991)

2. Alashqur, A., Su, S.Y., Lam, H.: OQL: A Query Language for Manipulating
Object-Oriented Databases. Proceedings of the 15 th International Conference on
Very Large Databases. Amsterdam (August 1989)

3. Alhajj, R., Arkun, M.E.: A Query Model for Object-Oriented Database Systems.
Proceedings of the 9 th IEEE International Conference on Data Engineering. Vienna
(April 1993)

4. Alhajj, R., Polar, F.: An Object-Oriented Query Model Enforcing Closure and
Reusability. Journal of Mahtematical Modeling and Computing 6 (April 1996)

5. Alhajj, R., Polat, F.: Closure Maintenance in an Object-Oriented Query Model.
Proceedings of the ACM International Conference on Information and Knowledge
Management. Maryland (November 1994)

6. Dayal, U.: Queries and Views in an Object-Oriented Data Model. Proceedings of
the 2 nd International Workshop on Database Programming Languages (June 1989)

7. Gupta, A., Mumick, I., Subrahmanian, V.: Maintaining Views Incrementally. Pro-
ceedings of the ACM-SIGMOD International Conference on Management of Data.
Washington D.C. (1993)

8. Hanson, E.N.: A Performance Analysis of View Materialization Strategies. Pro-
ceedings of the ACM-SIGMOD International Conference on Management of Data
(1987)

9. Heiler, S., Zdonik, S.B.: Object Views: Extending the vision. Proceedings of the
6 *h IEEE International Conference on Data Engineering. Los Algeles (February
1990)

10. Kifer, M., Kim, W., Sagiv, Y.: Querying Object-Oriented Databases. Proceedings
of ACM-SIGMOD International Conference on Management of Data. San Diego
CA (June 1992)

11. Rundensteiner, E.A.: A Methodology for Supporting Multiple Views in Object-
Oriented Databases. Proceedings of the 18 th International Conference on Very
Large Databases. Vancouver BC (August 1992)

