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Abstract 
A real-time database system (RTDBS} can be de

fined as a database system where transactions are as
sociated with real-time constraints. In this paper, we· 
investigate various performance issues in a RTDBS 
constructed on a client-server system architecture. In 
a client-server database management system the whole 
database is stored on the server disks, and copies of 
database items can be cached in the client memories. 
We provide a detailed simulation model of a client
server RTDBS, and present the initial results of a 
performance work that evaluates the effects of vari
ous workload parameters and design alternatives. 
Index Terms - Real-time database systems, client
server architecture, transaction scheduling, timing 
constraints. 

1 Introduction 
Real-time database systems (RTDBSs) are de

signed to provide timely response to the transactions 
of data-intensive applications. Many properties from 
both real-time systems and database systems have 
been inherited by RTDBSs. Similar to a conventional 
real-time system, transactions processed in a RTDBS 
are associated with timing constraints, usually in the 
form of deadlines. Access requests of transactions to 
data or other system resources are scheduled on the 
basis of the timing constraints. What makes a RTDBS 
different from a real-time system is the requirement of 
preserving the logical consistency of data in addition 
to considering the timing constraints of transaCtions. 
The requirement to maintain data consistency is the 
essential feature of a conventional database system. 
However, the techniques used to preserve data con
sistencv in database svstems are all based on trans
action ·blocking and transaction restart, which makes 
it virtually impossible to predict computation times 
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and hence to provide schedules that guarantee dead
lines in a RTDBS. As a result, it becomes necessary to 
extend traditional database management techniques 
with time-critical scheduling methods. While the ba
sic scheduling goal in a conventional database system 
is to minimize the response time of transactions and 
to maximize throughput, a RTDBS scheduler primar
ily aims to maximize the number of transactions that 
satisfy their deadlines. A priority is assigned to each 
RTDBS transaction based on its timing constraint to 
be used in ordering resource and data access requests 
of transactions. An extensive exploration of the issues 
in concurrency control and other priority-cognizant 
scheduling concepts, such as buffer management, I/0 
scheduling, commitment, etc., is provided in [10]. 

The research on distributed RTDBSs has focused 
on development and evaluation of new time-cognizant 
scheduling techniques that can provide good perfor
mance in terms of the fraction of satisfied timing con
straints (e.g., f6, 7, 8, 9]). However, all those perfor
mance works have assumed a database system com
pletely distributed over individual data sites. In this 
paper, we study a RTDBS that executes on a client
server architecture. In a client-server database sys
tem, the whole database is stored on the disks con
nected to the servers. Data access requests received 
from the clients are handled by the servers. Part 
of the main memory of each client can be used to 
cache a small portion of the database. Caching the 
copies of database items provide faster access for the 
clients; however, it leads to a requirement of using 
some mechanisms to provide the consistency of multi
ple copies of the cached data. The mechanisms used 
for that purpose are called the "cache consistency algo
rithms". Among various cache consistency algorithms 
proposed for client-server database systems, the "Call
back Locking" algorithm is the most popular one (4]. 
In this algorithm, a client requires to obtain a lock 
from the server before accessing a data item. If the 
requested lock conflicts with one or more locks cur
rently held by various clients, the server sends a "call
back" message to each of those clients. The lock can 
be granted to the requesting client when all the con
flicting locks are released. 

We describe a detailed simulation model designed 
for studying various performance issues in client-server 
RTDBSs. Performance of different priority-cognizant 
concurrency control protocols is studied under a range 
of workloads using the simulation model. The per-

-89-



formance results are compared against the results 
obtained by implementing the protocols on a com
pletely distributed database system. We also investi
gate various performance characteristics of the client
server RTDBS under different system configurations 
and workloads. 

The remainder of the paper is organized as follows. 
The next section summarizes the recent work in RT
DBSs and client-server database systems. Section 3 
describes our client-server RTDBS simulation model. 
The results of the performance evaluation experiments 
are provided in Section 4. The last section summarizes 
the conclusions of our work. 

2 A Client-Server RTDBS Model 
The client-server RTDBS model simulates a data

shipping page server; i.e., the unit of interaction be
tween the server and the clients is a page, and the 
copies of the pages are transmitted to the clients to be 
processed by transactions. Clients generate transac
tions and request pages for the execution of the trans
actions. Their workload is derived from these transac
tions. Server's workload is generated by the requests 
coming from the clients. 

The global memory hierarchy of the system con
sists of the client memory, the server memory, and 
the server disk (where the database resides). Clients 
obtain page locks from the server. All concurrency 
control and cache consistency maintenance is imple
mented at a page granularity. Database pages with 
corresponding locks are cached in clients' memories. 
Cache consistency is provided through the use of the 
callback locking scheme. To reduce disk accesses, we 
use the forwarding technique proposed by Franklin [3] 
which works as follows: When a transaction execut
ing at a client needs to access a data page, the client 
first searches through its local cache. If the data page 
does not reside in the local cache, the client requests 
the page from the server. The server checks to see if 
the page is in its memory. If the page does not ex
ist in the server's cache, the page request message is 
forwarded to a client (if any) that has a local copy 
of the page. The server keeps track of the informa
tion that where the copies of each data page reside 
in the system. Upon receipt of a forwarded request, 
the client sends the copy of the page to the request
ing client. Therefore, the forwarded request message 
prevents the disk 1/0 at the server. It was shown in 
(3] that the forwarding technique can provide signif
icant performance gains considering that in today's 
systems, disk access delay, rather than network delay, 
is the performance bottleneck. 

Each client in the system contains a transaction 
generator, a client manager, a scheduler, a memory 
manager, and a resource manager. The transaction 
generator is responsible for generating the transac
tion workload for each client. The arrivals at a client 
arc assumed to be independent of the arrivals at the 
other clients. Each transaction in the system is distin
guished by a globally unique transaction id. The id of 
a transaction is made up of two parts: a transaction 
number which is unique at the originating client of the 
transaction and t.he id of the originating client which 
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is unique in the system. Each transaction is assigned 
a real-time constraint in the form of a deadline. The 
transaction deadlines are soft; i.e., each transaction is 
executed to completion even if it misses its deadline. 
Data pages to be accessed by each transaction are also 
determined by the transaction generator. 

The client manager at the originating client of a 
transaction assigns a real-time priority to the transac
tion based on the earliest deadline first priority assign
ment policy; i.e., a transaction with an earlier dead
line has higher priority than a transaction with a later 
deadline. The client manager processes the page ac
cess requests of the transactions. If a data page needed 
by a transaction does not reside in the local cache, the 
client manager requests the page from the server. At 
the commit time of a transaction, the client manager 
generates a commit message to the server along the 
list of pages updated by the transaction. Updates of a 
committed transaction are stored in the server's disk. 

The scheduler of each client provides the cache con
sistency and concurrency control at that site. The 
buffer manager is responsible for the management of 
the client's memory. It makes use of the Least Re
cently Used (LRU) algorithm for the replacement of 
pages in the memory. Finally, the resource manager 
provides CPU service for processing data pages and 
communication messages. 

The server has the same components as the clients 
except that it does not contain a transaction generator 
since we assume that the transaction workload of the 
system is generated at the clients. The server man
ager processes and responds to the messages received 
from the clients. The scheduler processes the page ac
cess requests coming from the clients, and responds to 
those requests on the basis of the concurrency control 
protocol executed. The responsibilities of the buffer 
manager are similar to those of the buffer manager at 
each client. The resource manager of the server pro
vides 1/0 service as well as CPU service. Both CPU 
and 10 queues are organized on the basis of real-time 
priorities, and preemptive-resume priority scheduling 
is used by the CPU. 

A network manager is also included in the model 
to simulate a local area network connecting the clients 
and the server. Reliability and recovery issues are not 
addressed in this paper. We assume a reliable system, 
in which no site failures or communication network 
failures occur. 

For the detection of deadlocks a wait-for graph is 
maintained at the server. Periodic detection of dead
locks is the server's responsibility. A deadlock is recov
ered from by selecting the lowest priority transaction 
in the deadlock cycle as a victim to be aborted. 

The list of parameters described in Table 1 was 
used in specifying the configuration and workload of 
the client-server RTDBS. The parameters were basiclv 
adapted from the client-server database managemeri't 
system model used in Franklin's experiments [3]. 

Access time to the server disk is uniformly dis
tributed within the range MinDiskTime through 
MaxDiskTime. The server CPU spends DiskOver
headlnst instructions for each 1/0 operation. A con
trol message is a non-data message like commit, abort, 



CONFIGURATION PARAMETERS 
NoOfClients Number of clients 1 to 25 
DatabaseSize Size of the database in pages 1250 pages 
Page Size Page size in bytes 4,096 bytes 
Server1VfemSize Number of pages that can be held in the server's memory 25% of the DatabaseSize 
Server MIPS Instruction rate of CPU at the server 100 MIPS 
ClientM em Size Number of pages that can be cached in each client's memory 10% of the DatabaseSize 
ClientMIPS Instruction rate of CPU at each client 50 MIPS 
MinDiskTime Minimum disk access time 10 milliseconds 
JllaxDiskTime Maximum disk access time 30 milliseconds 
NetworkBandwidth Network Bandwidth 8 or 80 Mbits/sec 
FixedMsg/nst Fixed number of instructions to process a message 20,000 instructions 
PerByteMsg/nst Additional number of instructions per message byte 10,000 inst. per 4Kb 
ControlMsgSize Control message size in bytes 256 bytes 
Deadlock/nterval Deadlock detection frequency 1 second 
DiskOverheadfnst CPU overhead for performing disk 1/0 5000 instructions 
System Overhead Number of instructions for certain system operations 300 instructions 

TRANSACTION PARAMETERS 
Think Time Think time between client transactions 0 
TransactionSize Number of pages accessed per transaction 20 pages 
Start Trans!nst Number of instructions to initialize a transaction 30,000 instructions 
EndTranslnst Number of instructions to terminate a transaction 40,000 instructions 
ReadPagelnst Number of CPU instructions per page read 30,000 instructions 
WritePage/nst Number of CPU instructions per page write 60,000 instructions 
HotBounds Page bounds in the hot region for client n, 

p to p+49 
where, p=50( n-1 )+ 1 

ColdBounds Page bounds in the cold region rest of the database 
H otAccessProb Probability of access to a page in the hot region 0.8 
w,·iteProb Probability of writing to a page 0.2 
Slack Rate Average rate of slack time of a transaction to its processing time 5 

Table 1: Client-Server RTDBS Model Parameters 

lock-request, lock-grant messages etc., and the size of 
such messages is specified by ControlMsgSize. The pa
rameter System Overhead is used to simulate the CPU 
overhead of various operations performed. These op
erations include locking/unlocking, conflict check, lo
cating a data page, etc. 

The workload model specifies a "hot region" in the 
database for each client, where most of the references 
are made. The rest of the database is specified as the 
"cold region". With a probability of HotAccessProb, 
a page to access is chosen from the hot region of the 
database. 

The slack time of a RTDB transaction specifies the 
maximum length of time the transaction can be de
layed and still satisfy its deadline. In our system, 
t.he transaction generator at each client chooses the 
slack time of a transaction randomly from an expo
nential distribution with a mean of SlackRate times 
the estimated minimum processing time of the trans
action. Although the transaction generator uses the 
estimation of transaction processing times in assigning 
deadlines, we assume that t.he system itself lacks the 
knowledge of processing time information. 
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3 Performance Experiments 
The simulation program was written in CSIM [5], 

which is a process-oriented simulation language based 
on the C programming language. The simulation re
sults were evaluated as averages over 10 independent 
runs. Each run was continued until 10,000 transac
tions were processed in the system. 90% confidence 
intervals were obtained for the performance results. 
The width of the confidence interval of each statisti
cal data point is less than 4% of the point estimate. In 
displayed graphs, only the mean values of the results 
are plotted. 

The values of configuration and transaction param
eters common to all simulation experiments are pre
sented in Table 1. The parameter values were cho
sen so as to be comparable to the related simulation 
studies such as [3]. NetworkBandwidth values speci
fied (i.e., 8 Mbps and 80 Mbps) roughly correspond 
to Ethernet and FDDI networks, respectively [2]. All 
the clients are assumed identical and operating under 
the same parameter values. 

The performance metric used in the evaluations 
is success_ratio: i.e .. the fraction of transactions that 
satisfy their deadlines. The workload model used in 



our experiments simulates an environment in which 
there exist some amount of data contention among 
the clients and locality of data accesses at each client. 
Such a workload is expected to be common in client
server RTDBSs. In this workload, each client has a 50 
page hot region where their 80% of the page accesses 
are directed. The hot region of each client is distinct 
from the hot regions of the other clients; however, the 
sharing of pages is provided by overlapping the hot 
region of each client with the cold regions of the other 
clients. 

3.1 Evaluation of Some Concurrency 
Control Protocols 

In [8], we evaluated the performance of a number of 
RTDBS concurrency control protocols in a distributed 
database system environment. The same experiment 
is repeated here to see how the results obtained are af
fected when the protocols are implemented in a client
server database system. In this section, we first pro
vide a brief description of the protocols selected for 
evaluation, and then discuss the performance results 
obtained using our client-server RTDBS model. We do 
not intend to provide a detailed evaluation of concur
rency control protocols proposed for RTDBSs; rather, 
we try to observe how the selected protocols behave 
on a client-server architecture. 

The Base Protocol: The base protocol is the pure 
implementation of the two-phase locking (2PL) algo
rithm. Real-time priorities of the transactions are not 
considered by the server in processing their page access 
requests. 2PL serves as the base protocol to enable us 
to measure the performance benefits of the priority
based protocols. 

Priority Inheritance Protocol (PI): The prior
ity inheritance method, proposed in [6], ensures that 
when a transaction blocks higher priority transactions, 
it is executed at the highest priority of the blocked 
transactions; in other words, it inherits the highest 
priority. The aim is to reduce the blocking times of 
high priority transactions. 

Priority Abort Protocol (PA): This protocol 
resolves data conflicts always in favor of high-priority 
transactions [1]. At the time of a data lock conflict, if 
the lock-holding transaction has higher priority than 
the priority of the transaction that is requesting the 
lock, the latter transaction is blocked. Otherwise, 
the lock-holding transaction is aborted and the lock 
is granted to the high priority lock-requesting trans
action. Assuming that no two transactions have the 
same priority, this protocol is deadlock-free since a 
high priority transaction is never blocked by a lower 
priority transaction. 

Figure 1 displays the success_ratio results for the 
concurrency control protocols as a function of the 
number of clients. The results have been obtained 
by setting NetworkBandwidth to 8 Mbits/sec. An in
crease in the number of clients leads to an increased 
global memory size (which is composed of the server's 
and the clients' memories), and thus the amount of 
!he database that can be kept in the global memory 
mcreases. Due to the forwarding technique used in 
our model. an increased size of global memory results 
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Figure 1: Performance of the concurrency control pro
tocols. 

in less amount of 1/0 at the server, and thus the per
formance becomes better for all three protocols. How
ever, the improvement in the performance is possi
ble upto a certain number of clients, and beyond that 
point, an increase in the number of clients results in 
a performance degradation. The reason for that re
sult is the fact that increasing the number of clients 
also leads to an increase in data contention among 
transactions. And, after a certain number of clients, 
the performance advantage gained due to the larger 
global memory is outweighed by the overhead of data 
contention. 

If we compare the results obtained by the concur
rency control protocols, we can see that the base pro
tocol 2PL exhibits the worst performance under vary
ing numbers of clients. This result is not surprising, 
as 2PL does not include real-time priorities of trans
actions in data access scheduling decisions. Protocols 
PI and PA both provide a considerable improvement 
in real-time performance over 2PL. Between PI and 
PA, the performance of PA is consistently better than 
that of PI for all experimented values of NoOJCiients. 
Remember that PA never blocks higher priority trans
actions, but instead aborts low priority transactions 
when necessary. PA also eliminates the possibility and 
cost of deadlocks. It can be concluded that aborting 
a low priority transaction is preferable in RTDBSs to 
blocking a high priority one, even though aborts lead 
to a waste of resources. 

In [8], we evaluated the performance of the con
currency control protocols in a RTDBS where the 
database is completely distributed over the sites. In 
that work, each transaction was modeled as a mas
ter process that executes at the originating site of the 
transaction and a number of cohort processes that ex-
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Figure 2: Performance with different client memory 
sizes (NetworkBandwidth = 8 Mbps). 

ecute at various sites where the the copies of required 
data items reside. The results obtained in that work 
for the comparative performance of the concurrency 
control protocols also showed that protocol PA can 
provide better performance than Pl. However, the im
provement in that case was quite marginal (much less 
than the improvement observed with the client-server 
RTDBS model). We think that this result is due to 
the fact that the overhead of transaction aborts expe
rienced with PA becomes less if the protocol is imple
mented on a client-server architecture, since the abort 
of a transaction is handled completely at the originat
ing client of the transaction. The other clients are not 
involved in that process, and thus the communication 
overhead between the clients is avoided. 

3.2 Impact of Memory Size and Network 
Speed 

In this section, the performance results obtained 
in terms of the success_ratio are presented for differ
ent values of ClientMemSize (i.e., number of pages 
that can be cached in each client's memory), Server
MemSi::e (i.e., number of pages that can be held in 
the server's memory), and NetworkBandwidth. The 
ranges of ClientMemSize and ServerMemSize experi
mented are [5%, 25% of DatabaseSi::e] and [10%, 100% 
of DatabaseSi::e], respectively. The concurrency con
trol protocol PA is employed in these experiments. 

Figure 2 presents the performance results obtained 
with different values of ClientMemSize. For a small 
client memory size (i.e., 5% of DatabaseSize), it is pos
sible to improve the performance with each additional 
client connected to the system. As the global memory 
size of the system increases, more data pages can be 
cached. and more page access requests can be satisfied 
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Figure 3: Performance with different client memory 
sizes (NetworkBandwidth = 80 Mbps). 

without disk access. However, for larger client mem
ory sizes experimented (i.e., 10% and 25% of Databas
eSize), increasing the number of clients beyond a cer
tain point leads to a degradation in the performance. 
For those values of ClientM emSize, the peak values 
obtained for success_ratio corresponds to the points at 
which most of the data pages are cached in the global 
memory. Increasing the global memory by adding 
more clients beyond that point does not lead to much 
decrease in disk 1/0; rather, the increasing contention 
among the larger number of concurrent transactions 
becomes the determining factor for the performance. 

Besides disk 1/0 and data contention, another fac
tor that has a significant impact on the performance 
is the network speed. The results obtained with a 
fast network (i.e., NetworkBandwidth = 80 Mbps) are 
displayed in Figure 3. Since the message delay expe
rienced by the transactions becomes much less, a con
siderable performance improvement is observed for all 
values of ClientMemSize and NoOfClients. Also, com
pared to the results obtained with the slow network, 
the peak performance value with any ClientMemSize 
is obtained for larger number of clients and the drop 
after the peak value is not that steep. As expected, 
employing a fast network reduces the adverse effects 
of high transaction loads on the performance. 

The performance impact of the server memory size 
is presented for three different values of ServerMem
Size. The client memory size in these experiments is 
fixed at 10% of the database size. The results obtained 
using the slow network are shown in Figure 4. As the 
size of the server memory increases, the server hit ra
tio also increases; i.e., a larger number of page access 
requests of the clients can be satisfied by the server 
without requiring disk 1/0 or forwarding the requests 
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~igure 4: Performance with different server memory 
sizes (NetworkBandwidth = 8 Mbps). 

of a client to the other clients. Remember that, if the 
~erv.er has a copy of the requested page in its memory, 
1t duectly sends the page to the requesting client. If, 
however, its memory does not contain that page but 
any of the clients has a cached copy of the page, then 
the page access request is forwarded to that client. 

. F~r the extreme case where the server memory 
s1ze IS equal to the database size, all the page ac
ce~s requ~sts are satisfied from the server memory. 
D1sk 1/0 IS required only to store the updates in the 
databa~e. Having larger global memory size by adding 
more chents to the system does not have an effect on 
the ~mou~t of disk 1/0. Thus, increasing the number 
of chents JUSt leads to an increase in the contention 
among the transactions, and the performance becomes 
worse .. For smaller server memory sizes (e.g., Server
MemSz:e = 25% of DatabaseSize), it is possible to im
prove the performance by adding more clients if the 
~umber of clients is small. For such cases, an increase 
m the global memory size (as a result of increasing 
the number of clients) prevents some of disk 1/0s. As 
can be seen from the figure. the system benefits the 
most from having more client.s when the server mem
ory size small (i.e., 10% of the database size in our 
experiments). 

. Whan the underlying network is fast. the compara
tive performance results obtained with different server 
memory sizes do not change much (see Figure 5). 
H,o_wever. si~nilar to the results o~tained by varying 
C~zent.Mem::.t::r, t.he steep decrease m the performance 
~v1th l<_trge numlwrs of clients is prevented by employ
mg a fast network. 
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Figure 5: Performance with different server memory 
sizes (NetworkBandwidth = 80 Mbps). 

4 Conclusions 
In this paper, we have investigated various perfor

mance issues in a client-server RTDBS. We have pro
vided a detailed simulation model of a client-server 
RTDBS, and presented the initial results of a perfor
mance work that evaluates the effects of various work
load parameters and design alternatives. The perfor
mance metric used in the evaluations is the fraction of 
transactions that satisfy their timing constraints. 

In the first part of the evaluations, we have stud
ied performance of different priority-cognizant concur
rency control protocols. Comparing the results to 
those obtained by implementing the protocols on a 
completely distributed database system, we have ob
served that the protocols that resolve data conflicts by 
aborting low priority transactions are more appropri
ate for client-server RTDBSs. The overhead of trans
action aborts is less with the client-server architecture, 
since the abort of a transaction is handled completely 
at the originating client of the transaction. Our other 
evaluations have investigated the impact of various 
configuration parameters on the performance of the 
client-server RTDBS. Those evaluations have helped 
us identify the ranges of workloads for which each set
ting of the parameters provides improvements in the 
performance. 
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