
An Evaluation of a Client-Server Real-Time Database System*

Ozgiir Ulusoy
Department of Computer Engineering and Information Science

Bilkent University
Bilkent, Ankara 06533, TURKEY

Abstract
A real-time database system (RTDBS} can be de

fined as a database system where transactions are as
sociated with real-time constraints. In this paper, we·
investigate various performance issues in a RTDBS
constructed on a client-server system architecture. In
a client-server database management system the whole
database is stored on the server disks, and copies of
database items can be cached in the client memories.
We provide a detailed simulation model of a client
server RTDBS, and present the initial results of a
performance work that evaluates the effects of vari
ous workload parameters and design alternatives.
Index Terms - Real-time database systems, client
server architecture, transaction scheduling, timing
constraints.

1 Introduction
Real-time database systems (RTDBSs) are de

signed to provide timely response to the transactions
of data-intensive applications. Many properties from
both real-time systems and database systems have
been inherited by RTDBSs. Similar to a conventional
real-time system, transactions processed in a RTDBS
are associated with timing constraints, usually in the
form of deadlines. Access requests of transactions to
data or other system resources are scheduled on the
basis of the timing constraints. What makes a RTDBS
different from a real-time system is the requirement of
preserving the logical consistency of data in addition
to considering the timing constraints of transaCtions.
The requirement to maintain data consistency is the
essential feature of a conventional database system.
However, the techniques used to preserve data con
sistencv in database svstems are all based on trans
action ·blocking and transaction restart, which makes
it virtually impossible to predict computation times

"This work was supported by the Research Council of Turkey
ITUBiTAK) under grant number EEEAG-137.

Pennission to make digital/hard copies of all or part of this material for
personal or classf?O'!' use is granted without fee provided that the copies
a.re not ~de or ~astributed for profit or commercial advantage, the copy
n~ht notice, the .title .of the pub!ication and its date appear, and notice is
gaven tha~ copynght as by penrussion of the ACM, Inc. To copy otherwise
to re~u~laah, to post on servers or to redistribute to lists, requires specific '
penrussaon and/or fee.
esc '96, Philadelphia PA USA

0 1996 ACM 0-89791-828-2/96/02 .. $3.50

and hence to provide schedules that guarantee dead
lines in a RTDBS. As a result, it becomes necessary to
extend traditional database management techniques
with time-critical scheduling methods. While the ba
sic scheduling goal in a conventional database system
is to minimize the response time of transactions and
to maximize throughput, a RTDBS scheduler primar
ily aims to maximize the number of transactions that
satisfy their deadlines. A priority is assigned to each
RTDBS transaction based on its timing constraint to
be used in ordering resource and data access requests
of transactions. An extensive exploration of the issues
in concurrency control and other priority-cognizant
scheduling concepts, such as buffer management, I/0
scheduling, commitment, etc., is provided in [10].

The research on distributed RTDBSs has focused
on development and evaluation of new time-cognizant
scheduling techniques that can provide good perfor
mance in terms of the fraction of satisfied timing con
straints (e.g., f6, 7, 8, 9]). However, all those perfor
mance works have assumed a database system com
pletely distributed over individual data sites. In this
paper, we study a RTDBS that executes on a client
server architecture. In a client-server database sys
tem, the whole database is stored on the disks con
nected to the servers. Data access requests received
from the clients are handled by the servers. Part
of the main memory of each client can be used to
cache a small portion of the database. Caching the
copies of database items provide faster access for the
clients; however, it leads to a requirement of using
some mechanisms to provide the consistency of multi
ple copies of the cached data. The mechanisms used
for that purpose are called the "cache consistency algo
rithms". Among various cache consistency algorithms
proposed for client-server database systems, the "Call
back Locking" algorithm is the most popular one (4].
In this algorithm, a client requires to obtain a lock
from the server before accessing a data item. If the
requested lock conflicts with one or more locks cur
rently held by various clients, the server sends a "call
back" message to each of those clients. The lock can
be granted to the requesting client when all the con
flicting locks are released.

We describe a detailed simulation model designed
for studying various performance issues in client-server
RTDBSs. Performance of different priority-cognizant
concurrency control protocols is studied under a range
of workloads using the simulation model. The per-

-89-

formance results are compared against the results
obtained by implementing the protocols on a com
pletely distributed database system. We also investi
gate various performance characteristics of the client
server RTDBS under different system configurations
and workloads.

The remainder of the paper is organized as follows.
The next section summarizes the recent work in RT
DBSs and client-server database systems. Section 3
describes our client-server RTDBS simulation model.
The results of the performance evaluation experiments
are provided in Section 4. The last section summarizes
the conclusions of our work.

2 A Client-Server RTDBS Model
The client-server RTDBS model simulates a data

shipping page server; i.e., the unit of interaction be
tween the server and the clients is a page, and the
copies of the pages are transmitted to the clients to be
processed by transactions. Clients generate transac
tions and request pages for the execution of the trans
actions. Their workload is derived from these transac
tions. Server's workload is generated by the requests
coming from the clients.

The global memory hierarchy of the system con
sists of the client memory, the server memory, and
the server disk (where the database resides). Clients
obtain page locks from the server. All concurrency
control and cache consistency maintenance is imple
mented at a page granularity. Database pages with
corresponding locks are cached in clients' memories.
Cache consistency is provided through the use of the
callback locking scheme. To reduce disk accesses, we
use the forwarding technique proposed by Franklin [3]
which works as follows: When a transaction execut
ing at a client needs to access a data page, the client
first searches through its local cache. If the data page
does not reside in the local cache, the client requests
the page from the server. The server checks to see if
the page is in its memory. If the page does not ex
ist in the server's cache, the page request message is
forwarded to a client (if any) that has a local copy
of the page. The server keeps track of the informa
tion that where the copies of each data page reside
in the system. Upon receipt of a forwarded request,
the client sends the copy of the page to the request
ing client. Therefore, the forwarded request message
prevents the disk 1/0 at the server. It was shown in
(3] that the forwarding technique can provide signif
icant performance gains considering that in today's
systems, disk access delay, rather than network delay,
is the performance bottleneck.

Each client in the system contains a transaction
generator, a client manager, a scheduler, a memory
manager, and a resource manager. The transaction
generator is responsible for generating the transac
tion workload for each client. The arrivals at a client
arc assumed to be independent of the arrivals at the
other clients. Each transaction in the system is distin
guished by a globally unique transaction id. The id of
a transaction is made up of two parts: a transaction
number which is unique at the originating client of the
transaction and t.he id of the originating client which

-90-

is unique in the system. Each transaction is assigned
a real-time constraint in the form of a deadline. The
transaction deadlines are soft; i.e., each transaction is
executed to completion even if it misses its deadline.
Data pages to be accessed by each transaction are also
determined by the transaction generator.

The client manager at the originating client of a
transaction assigns a real-time priority to the transac
tion based on the earliest deadline first priority assign
ment policy; i.e., a transaction with an earlier dead
line has higher priority than a transaction with a later
deadline. The client manager processes the page ac
cess requests of the transactions. If a data page needed
by a transaction does not reside in the local cache, the
client manager requests the page from the server. At
the commit time of a transaction, the client manager
generates a commit message to the server along the
list of pages updated by the transaction. Updates of a
committed transaction are stored in the server's disk.

The scheduler of each client provides the cache con
sistency and concurrency control at that site. The
buffer manager is responsible for the management of
the client's memory. It makes use of the Least Re
cently Used (LRU) algorithm for the replacement of
pages in the memory. Finally, the resource manager
provides CPU service for processing data pages and
communication messages.

The server has the same components as the clients
except that it does not contain a transaction generator
since we assume that the transaction workload of the
system is generated at the clients. The server man
ager processes and responds to the messages received
from the clients. The scheduler processes the page ac
cess requests coming from the clients, and responds to
those requests on the basis of the concurrency control
protocol executed. The responsibilities of the buffer
manager are similar to those of the buffer manager at
each client. The resource manager of the server pro
vides 1/0 service as well as CPU service. Both CPU
and 10 queues are organized on the basis of real-time
priorities, and preemptive-resume priority scheduling
is used by the CPU.

A network manager is also included in the model
to simulate a local area network connecting the clients
and the server. Reliability and recovery issues are not
addressed in this paper. We assume a reliable system,
in which no site failures or communication network
failures occur.

For the detection of deadlocks a wait-for graph is
maintained at the server. Periodic detection of dead
locks is the server's responsibility. A deadlock is recov
ered from by selecting the lowest priority transaction
in the deadlock cycle as a victim to be aborted.

The list of parameters described in Table 1 was
used in specifying the configuration and workload of
the client-server RTDBS. The parameters were basiclv
adapted from the client-server database managemeri't
system model used in Franklin's experiments [3].

Access time to the server disk is uniformly dis
tributed within the range MinDiskTime through
MaxDiskTime. The server CPU spends DiskOver
headlnst instructions for each 1/0 operation. A con
trol message is a non-data message like commit, abort,

CONFIGURATION PARAMETERS
NoOfClients Number of clients 1 to 25
DatabaseSize Size of the database in pages 1250 pages
Page Size Page size in bytes 4,096 bytes
Server1VfemSize Number of pages that can be held in the server's memory 25% of the DatabaseSize
Server MIPS Instruction rate of CPU at the server 100 MIPS
ClientM em Size Number of pages that can be cached in each client's memory 10% of the DatabaseSize
ClientMIPS Instruction rate of CPU at each client 50 MIPS
MinDiskTime Minimum disk access time 10 milliseconds
JllaxDiskTime Maximum disk access time 30 milliseconds
NetworkBandwidth Network Bandwidth 8 or 80 Mbits/sec
FixedMsg/nst Fixed number of instructions to process a message 20,000 instructions
PerByteMsg/nst Additional number of instructions per message byte 10,000 inst. per 4Kb
ControlMsgSize Control message size in bytes 256 bytes
Deadlock/nterval Deadlock detection frequency 1 second
DiskOverheadfnst CPU overhead for performing disk 1/0 5000 instructions
System Overhead Number of instructions for certain system operations 300 instructions

TRANSACTION PARAMETERS
Think Time Think time between client transactions 0
TransactionSize Number of pages accessed per transaction 20 pages
Start Trans!nst Number of instructions to initialize a transaction 30,000 instructions
EndTranslnst Number of instructions to terminate a transaction 40,000 instructions
ReadPagelnst Number of CPU instructions per page read 30,000 instructions
WritePage/nst Number of CPU instructions per page write 60,000 instructions
HotBounds Page bounds in the hot region for client n,

p to p+49
where, p=50(n-1)+ 1

ColdBounds Page bounds in the cold region rest of the database
H otAccessProb Probability of access to a page in the hot region 0.8
w,·iteProb Probability of writing to a page 0.2
Slack Rate Average rate of slack time of a transaction to its processing time 5

Table 1: Client-Server RTDBS Model Parameters

lock-request, lock-grant messages etc., and the size of
such messages is specified by ControlMsgSize. The pa
rameter System Overhead is used to simulate the CPU
overhead of various operations performed. These op
erations include locking/unlocking, conflict check, lo
cating a data page, etc.

The workload model specifies a "hot region" in the
database for each client, where most of the references
are made. The rest of the database is specified as the
"cold region". With a probability of HotAccessProb,
a page to access is chosen from the hot region of the
database.

The slack time of a RTDB transaction specifies the
maximum length of time the transaction can be de
layed and still satisfy its deadline. In our system,
t.he transaction generator at each client chooses the
slack time of a transaction randomly from an expo
nential distribution with a mean of SlackRate times
the estimated minimum processing time of the trans
action. Although the transaction generator uses the
estimation of transaction processing times in assigning
deadlines, we assume that t.he system itself lacks the
knowledge of processing time information.

-91-

3 Performance Experiments
The simulation program was written in CSIM [5],

which is a process-oriented simulation language based
on the C programming language. The simulation re
sults were evaluated as averages over 10 independent
runs. Each run was continued until 10,000 transac
tions were processed in the system. 90% confidence
intervals were obtained for the performance results.
The width of the confidence interval of each statisti
cal data point is less than 4% of the point estimate. In
displayed graphs, only the mean values of the results
are plotted.

The values of configuration and transaction param
eters common to all simulation experiments are pre
sented in Table 1. The parameter values were cho
sen so as to be comparable to the related simulation
studies such as [3]. NetworkBandwidth values speci
fied (i.e., 8 Mbps and 80 Mbps) roughly correspond
to Ethernet and FDDI networks, respectively [2]. All
the clients are assumed identical and operating under
the same parameter values.

The performance metric used in the evaluations
is success_ratio: i.e .. the fraction of transactions that
satisfy their deadlines. The workload model used in

our experiments simulates an environment in which
there exist some amount of data contention among
the clients and locality of data accesses at each client.
Such a workload is expected to be common in client
server RTDBSs. In this workload, each client has a 50
page hot region where their 80% of the page accesses
are directed. The hot region of each client is distinct
from the hot regions of the other clients; however, the
sharing of pages is provided by overlapping the hot
region of each client with the cold regions of the other
clients.

3.1 Evaluation of Some Concurrency
Control Protocols

In [8], we evaluated the performance of a number of
RTDBS concurrency control protocols in a distributed
database system environment. The same experiment
is repeated here to see how the results obtained are af
fected when the protocols are implemented in a client
server database system. In this section, we first pro
vide a brief description of the protocols selected for
evaluation, and then discuss the performance results
obtained using our client-server RTDBS model. We do
not intend to provide a detailed evaluation of concur
rency control protocols proposed for RTDBSs; rather,
we try to observe how the selected protocols behave
on a client-server architecture.

The Base Protocol: The base protocol is the pure
implementation of the two-phase locking (2PL) algo
rithm. Real-time priorities of the transactions are not
considered by the server in processing their page access
requests. 2PL serves as the base protocol to enable us
to measure the performance benefits of the priority
based protocols.

Priority Inheritance Protocol (PI): The prior
ity inheritance method, proposed in [6], ensures that
when a transaction blocks higher priority transactions,
it is executed at the highest priority of the blocked
transactions; in other words, it inherits the highest
priority. The aim is to reduce the blocking times of
high priority transactions.

Priority Abort Protocol (PA): This protocol
resolves data conflicts always in favor of high-priority
transactions [1]. At the time of a data lock conflict, if
the lock-holding transaction has higher priority than
the priority of the transaction that is requesting the
lock, the latter transaction is blocked. Otherwise,
the lock-holding transaction is aborted and the lock
is granted to the high priority lock-requesting trans
action. Assuming that no two transactions have the
same priority, this protocol is deadlock-free since a
high priority transaction is never blocked by a lower
priority transaction.

Figure 1 displays the success_ratio results for the
concurrency control protocols as a function of the
number of clients. The results have been obtained
by setting NetworkBandwidth to 8 Mbits/sec. An in
crease in the number of clients leads to an increased
global memory size (which is composed of the server's
and the clients' memories), and thus the amount of
!he database that can be kept in the global memory
mcreases. Due to the forwarding technique used in
our model. an increased size of global memory results

-92-

1.0...-----------------.

0.9

s 0.8
u
c
c
e 0.7
s
s

~ 0.6
t
1
0 0.5

0.4

0.3 +--..-----,.---r----r--.....----.,..----.---l
1 4 7 10 13 16 19 22 25

Number of Clients

Figure 1: Performance of the concurrency control pro
tocols.

in less amount of 1/0 at the server, and thus the per
formance becomes better for all three protocols. How
ever, the improvement in the performance is possi
ble upto a certain number of clients, and beyond that
point, an increase in the number of clients results in
a performance degradation. The reason for that re
sult is the fact that increasing the number of clients
also leads to an increase in data contention among
transactions. And, after a certain number of clients,
the performance advantage gained due to the larger
global memory is outweighed by the overhead of data
contention.

If we compare the results obtained by the concur
rency control protocols, we can see that the base pro
tocol 2PL exhibits the worst performance under vary
ing numbers of clients. This result is not surprising,
as 2PL does not include real-time priorities of trans
actions in data access scheduling decisions. Protocols
PI and PA both provide a considerable improvement
in real-time performance over 2PL. Between PI and
PA, the performance of PA is consistently better than
that of PI for all experimented values of NoOJCiients.
Remember that PA never blocks higher priority trans
actions, but instead aborts low priority transactions
when necessary. PA also eliminates the possibility and
cost of deadlocks. It can be concluded that aborting
a low priority transaction is preferable in RTDBSs to
blocking a high priority one, even though aborts lead
to a waste of resources.

In [8], we evaluated the performance of the con
currency control protocols in a RTDBS where the
database is completely distributed over the sites. In
that work, each transaction was modeled as a mas
ter process that executes at the originating site of the
transaction and a number of cohort processes that ex-

1.0

0.9

s 0.8
u
c
c
e 0.7 s
s
r 0.6 a
t
I
0 0.5

0.4

1

-*- -----~
.............................

'X
',

- ClientM emSize = 10%
>E---~ClientMemSize = 25%

' 'x
' ' ' ' ' ' '

~ ~-- -~---<r--- ---
/

4 7 10 13 16 19 22 25

Number of Clients

Figure 2: Performance with different client memory
sizes (NetworkBandwidth = 8 Mbps).

ecute at various sites where the the copies of required
data items reside. The results obtained in that work
for the comparative performance of the concurrency
control protocols also showed that protocol PA can
provide better performance than Pl. However, the im
provement in that case was quite marginal (much less
than the improvement observed with the client-server
RTDBS model). We think that this result is due to
the fact that the overhead of transaction aborts expe
rienced with PA becomes less if the protocol is imple
mented on a client-server architecture, since the abort
of a transaction is handled completely at the originat
ing client of the transaction. The other clients are not
involved in that process, and thus the communication
overhead between the clients is avoided.

3.2 Impact of Memory Size and Network
Speed

In this section, the performance results obtained
in terms of the success_ratio are presented for differ
ent values of ClientMemSize (i.e., number of pages
that can be cached in each client's memory), Server
MemSi::e (i.e., number of pages that can be held in
the server's memory), and NetworkBandwidth. The
ranges of ClientMemSize and ServerMemSize experi
mented are [5%, 25% of DatabaseSi::e] and [10%, 100%
of DatabaseSi::e], respectively. The concurrency con
trol protocol PA is employed in these experiments.

Figure 2 presents the performance results obtained
with different values of ClientMemSize. For a small
client memory size (i.e., 5% of DatabaseSize), it is pos
sible to improve the performance with each additional
client connected to the system. As the global memory
size of the system increases, more data pages can be
cached. and more page access requests can be satisfied

1.0 -*"-
---~

.....
0.9

....
.....

s 0.8
u
c
c
e 0.7 s <r - - -<r- - - -
s <r-- -<r----
r /

a 0.6 __.<Y"
t
I
0 0.5

<r- - ~ ClientMemSize = 5%
0.4 - ClientM emSize = 10%

>E---~ ClientM emSize = 25%
0.3

1 4 7 10 13 16 19 22 25

Number of Clients

Figure 3: Performance with different client memory
sizes (NetworkBandwidth = 80 Mbps).

without disk access. However, for larger client mem
ory sizes experimented (i.e., 10% and 25% of Databas
eSize), increasing the number of clients beyond a cer
tain point leads to a degradation in the performance.
For those values of ClientM emSize, the peak values
obtained for success_ratio corresponds to the points at
which most of the data pages are cached in the global
memory. Increasing the global memory by adding
more clients beyond that point does not lead to much
decrease in disk 1/0; rather, the increasing contention
among the larger number of concurrent transactions
becomes the determining factor for the performance.

Besides disk 1/0 and data contention, another fac
tor that has a significant impact on the performance
is the network speed. The results obtained with a
fast network (i.e., NetworkBandwidth = 80 Mbps) are
displayed in Figure 3. Since the message delay expe
rienced by the transactions becomes much less, a con
siderable performance improvement is observed for all
values of ClientMemSize and NoOfClients. Also, com
pared to the results obtained with the slow network,
the peak performance value with any ClientMemSize
is obtained for larger number of clients and the drop
after the peak value is not that steep. As expected,
employing a fast network reduces the adverse effects
of high transaction loads on the performance.

The performance impact of the server memory size
is presented for three different values of ServerMem
Size. The client memory size in these experiments is
fixed at 10% of the database size. The results obtained
using the slow network are shown in Figure 4. As the
size of the server memory increases, the server hit ra
tio also increases; i.e., a larger number of page access
requests of the clients can be satisfied by the server
without requiring disk 1/0 or forwarding the requests

-93-

1.0 '.i:"::--:-:----------------.
-"*-"*

-----~

0.9

s 0.8
u
c
c
e 0.7
s
s
r
a 0.6
t
I

............................

'x..
................ 'x.

' ' ' ' ' '

0 0.5 ;<r - - -<r - - -<r - - -<r - - -
I¥

/ <r - ~ ServerMemSize = 10%

0.4 - ServerMemSize = 25%

*--~ ServerMemSize = 100%

1 4 7 10 13 16 19 22 25

Number of Clients

~igure 4: Performance with different server memory
sizes (NetworkBandwidth = 8 Mbps).

of a client to the other clients. Remember that, if the
~erv.er has a copy of the requested page in its memory,
1t duectly sends the page to the requesting client. If,
however, its memory does not contain that page but
any of the clients has a cached copy of the page, then
the page access request is forwarded to that client.

. F~r the extreme case where the server memory
s1ze IS equal to the database size, all the page ac
ce~s requ~sts are satisfied from the server memory.
D1sk 1/0 IS required only to store the updates in the
databa~e. Having larger global memory size by adding
more chents to the system does not have an effect on
the ~mou~t of disk 1/0. Thus, increasing the number
of chents JUSt leads to an increase in the contention
among the transactions, and the performance becomes
worse .. For smaller server memory sizes (e.g., Server
MemSz:e = 25% of DatabaseSize), it is possible to im
prove the performance by adding more clients if the
~umber of clients is small. For such cases, an increase
m the global memory size (as a result of increasing
the number of clients) prevents some of disk 1/0s. As
can be seen from the figure. the system benefits the
most from having more client.s when the server mem
ory size small (i.e., 10% of the database size in our
experiments).

. Whan the underlying network is fast. the compara
tive performance results obtained with different server
memory sizes do not change much (see Figure 5).
H,o_wever. si~nilar to the results o~tained by varying
C~zent.Mem::.t::r, t.he steep decrease m the performance
~v1th l<_trge numlwrs of clients is prevented by employ
mg a fast network.

-94-

1.0 -¥-~c::::---'*---_-_-_-_-*------------.
-----*"'--

0.9
---'""'- ----

s 0.8
u
c <r - - -<r - - -<r - - -c <r-- --e 0.7 /
s ,.<¥ s
r

0.6 a
t
I
0 0.5

<r-~ ServerMemSize = 10%

0.4 - ServerMemSize = 25%

*--~ ServerMemSize = 100%

0.3
1 4 7 10 13 16 19 22 25

Number of Clients

Figure 5: Performance with different server memory
sizes (NetworkBandwidth = 80 Mbps).

4 Conclusions
In this paper, we have investigated various perfor

mance issues in a client-server RTDBS. We have pro
vided a detailed simulation model of a client-server
RTDBS, and presented the initial results of a perfor
mance work that evaluates the effects of various work
load parameters and design alternatives. The perfor
mance metric used in the evaluations is the fraction of
transactions that satisfy their timing constraints.

In the first part of the evaluations, we have stud
ied performance of different priority-cognizant concur
rency control protocols. Comparing the results to
those obtained by implementing the protocols on a
completely distributed database system, we have ob
served that the protocols that resolve data conflicts by
aborting low priority transactions are more appropri
ate for client-server RTDBSs. The overhead of trans
action aborts is less with the client-server architecture,
since the abort of a transaction is handled completely
at the originating client of the transaction. Our other
evaluations have investigated the impact of various
configuration parameters on the performance of the
client-server RTDBS. Those evaluations have helped
us identify the ranges of workloads for which each set
ting of the parameters provides improvements in the
performance.

References
[1] R. Abbott, H. Garcia-Molina, 'Scheduling Real

Time Transactions: A Performance Evaluation',
ACM Transactions on Database Systems, vol.17,
no.3, pp.513-560, 1992.

[2] M.J: Franklin, M.J. Carey, Client-Server Caching
Revzszted, Computer Sciences Technical Report

no. 1089, University of Wisconsin-Madison, 1992.

[3) M.J. Franklin, Caching and Memory Manage
ment in Client-Server Database Systems, Com
puter Sciences Technical Report no. 1168, Uni
versity of Wisconsin-Madison, 1993.

[4) J. H. Howard et a!., 'Scale and Performance in a
Distributed File System', ACM Transactions on
Computer Systems, vol.6, no.1, pp.51-81, 1988.

[5) H.Schwetman, 'CSIM: A C-Based, Process
Oriented Simulation Language', Proceedings of
the Winter Simulation Conference, pp.387-396,
1986.

[6) L.Sha, R.Rajkumar, S.H.Son, C.H.Chang, 'A
Real-Time Locking Protocol', IEEE Transactions
on Computers, vol.40, no.7, pp.793-800, 1991.

[7) S.H.Son, C.H.Chang, 'Performance Evaluation
of Real-Time Locking Protocols Using a Dis
tributed Software Prototyping Environment', In
ternational Conference on Distributed Computing
Systems, pp.l24-131, 1990.

(8] 6. Ulusoy, G.G. Belford, 'Real-Time Lock Based
Concurrency Control in a Distributed Database
System', International Conference on Distributed
Computing Systems, pp.136-143, 1992.

[9) 6. Ulusoy, 'Processing Real-Time Transactions in
a Replicated Database System', Distributed and
Parallel Databases, vol.2, no.4, pp.405-436, 1994.

[10) 0. Ulusoy, 'Research Issues in Real-'"'ime
Database Systems', to appear in Informatioll .,'ci
ences, 1995.

-95-

