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ABSTRACT 
Linear filter banks with critical subsampling 

and perfect reconstruction (PR) property have re- 
ceived much interest and found numerous appli- 
cations in signal and image processing. Recently, 
nonlinear filter bank structures with PR and crit- 
ical subsampling have been proposed and used in 
image coding. In this paper, it is shown that 
PR nonlinear subband decomposition can be per- 
formed using the Gallois Field (GF) arithmetic. 
The result of the decomposition of an n-ary (e.g. 
256-ary) input signal is still n-ary at different res- 
olutions. This decomposition structure can be uti- 
lized for binary and 2k (k is an integer) level signal 
decompositions. Simulation studies are presented. 

1. INTRODUCTION 

The subband decomposition is widely used in cod- 
ing and signal analysis. Traditionally, linear filters 
with PR property and critical subsampling are em- 
ployed for the decomposition. However nonlinear 
filters were not used for such purposes, mainly 
due to the lack of frequency domain tools read- 
ily available for linear systems. Recently, some 
nonlinear subband decomposition structures with 
PR and critical subsampling were proposed and 
used in image coding [l] - [4]. In these decompo- 
sitions, the key idea is to replace the linear filters 
in a classical subband decomposition scheme with 
nonlinear filters. 
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In this paper it is shown that PR nonlinear 
subband decomposition can be performed using 
the Gallois Field (GF) arithmetic. The result of 
the decomposition of an n-ary (e.g. 256-ary) input 
signal is still n-ary at different resolutions. With- 
out using the G F  arithmetic, after one level of sub- 
band decomposition an image with with 256 gray 
levels ( 0  to  255) produces subband images which 
have pixel values in the range [-255, 2551. The 
range increases as the number of levels increases. 

theory [5] - [SI. In [5] a framework for the wavelet 
transform of Finite Cyclic Groups was developed. 
In [6] this idea was specifically used for the binary 
decomposition of binary images. The generaliza- 
tion of wavelet decomposition and perfect recon- 
struction filter banks to finite fields were also dis- 
cussed in [7 ,  81. 

In Section 2 nonlinear subband decomposition 
in GF(N) arithmetic is introduced. In Section 3 
simulation examples are presented, and in Section 
4 image analysis using bit planes is discussed. 

The GF(N) arithmetic is also used in the wavelet 

2. NONLINEAR DECOMPOSITION IN 
. GF(N) ARITMETIC 

The nonlinear subband decomposition of signal 2 
is carried out using the structure shown in Figure 
1. In this structure 7-l and B are nonlinear opera- 
tors, and they produce ya (analysis) and yd (detail) 
signals from the input signals zI(n)  = z(2n - 1) 
and se(n) = $(an) [4]: 
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Figure 1: n-ary Subband Decomposition Structure 

where 

and N I ,  N2, N3,  AJ4 are positive integers. 
The PR property of this nonlinear decomposi- 

tion structure is preserved if the GF arithmetic is 
used. The results of the nonlinear operations have 
no effect on the PR property as long as they pro- 
duce outputs in GF(N) because these are cancelled 
out in the synthesis part. 

For the above analysis equations, the corre- 
sponding synthesis equations are: 

4(4 = Y a ( 4  - G ( Y d ( 4 )  (3) 
zL(4  = Y d ( 4  + 7-l(x1(n)) (4) 

The following set of equations straightforwardly 
shows that PR property is preserved in the GF 
arithmetic: 

where 8, @ represent the GF subtraction and ad- 
dition operations, respectively. Since z; (n) is equal 
to z* (n )  the nonlinear decomposition structure pro- 
vides PR in the GF(N) arithmetic, as well. 

3. BINARY AND N-ARY SUBBAND 
DECOMPOSITIONS 

The binary subband decomposition of binary im- 
ages such as bit-plane images or textual images 
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Figure 2: Binary Subband Decomposition of the 
letter ’a’: Morphological Subband Decomposition 

Figure 3: Binary Subband Decomposition of the 
letter ’a’: The Binary Wavelet Transform 

can be accomplished by utilizing the nonlinear sub- 
band decomposition structure with the GF(2) arith- 
metic. Figure 2 illustrates the binary decomposi- 
tion of the letter “a”; Figure 3 shows the binary 
wavelet decomposition (BWT) of the same image. 
The ringing effects present in the BWT disappear 
in the nonlinear subband decomposition. 

It is possible to  develop lossless binary coding 
methods based on binary decomposition structure. 
In one such method, subband images are encoded 
using embedded zero-tree coding and entropy cod- 
ing [9]. 

Figure 4 shows the subband decomposition of 
512x512 Lena image which has 256 gray levels. 
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The decomposition is obtained using the nonlin- 
ear structure depicted in Figure 1 and by taking 
7-l(xl(n)) = median(xl(n)) and B(yd(n)) = 0. 
This case corresponds to the nonlinear decompo- 
sition structure developed by Egger and Kunt [l] 
performed in the GF(N = 256) arithmetic. The 
low-low subband image is obtained by directly down- 
sampling the image. Ringing effects present in 
linear-filter decompositions do not appear in the 
low-high, high-low, and high-high subimages. This 
may especially be useful for pattern matching ap- 
plications in subbands. 

Another application is lossless image compres- 
sion. For instance, the most signilkant bit plane 
of the 256x256 Lena image could be Iosslessly com- 
pressed 3.01 times after nonlinear subband decom- 
position whereas the Lempel-Ziv coding resulted 
in a compression ratio of 2.44 [9]. This finite field 
decomposition structure can also be extended to 
coding k (e.g. 256) level images provided that the 
GF(k) arithmetic can be performed. 

4. BIT PLANE SUBBAND 
DECOMPOSITION 

A 2k level signal decomposition can be parallely 
implemented in bit planes, which can be utilized 
in some VLSI implementations. In this section 
conditions for the parallel implementation are de- 
scribed. 

Nonlinear subband decomposition in bit planes 
is achieved by first dividing the 2k level signal into 
k bit planes and then decomposing each bit plane 
separately in parallel. Finally, the outputs of the 
decompositions are combined together to obtain 
the 2k level decomposition. 

The sub-signal obtained by combining the bit 
planes is not always equivalent to the sub-signal 
obtained by direct subband decomposition. The 
necessary conditions for the equivalence can be 
developed as follows. Consider the nonlinear sub- 
band decomposition procedure of Section 2. If we 
repeat the procedure for each bit plane then we 
get: 

where zli represents the i-th bit plane of the signal 
21, etc. 

The bit planes are added together to get the 
subband decomposed signal. 

N 

i=l 
N 

= x2(n)  e 'H(x&)) x 2i (12) 
i=l 

where N is the number of bit planes. If 
N N 

and 
N N 

then the direct subband decomposition and sub- 
band decomposition in bit planes will yield the 
same decomposed signals. This condition is sat- 
isfied for some filters such as median filters. One 
additional advantage of using median type filters 
is that the output of such filters can be efficiently 
computed if the input signal is binary. This can be 
accomplished by first summing the signal values of 
the input to the median filter and then comparing 
the sum with a threshold which is set at  half the 
input signal length. If the sum is greater than the 
threshold the output is one, otherwise it is zero. 

The decomposition structure can be extended 
to two-dimensions for the rectangular and quin- 
cunx sampling cases. For this purpose separable 
filters can be used and the input signal is filtered 
horizontally and vertically by these filters. An- 
other possibility is to  use two dimensional filters. 
Figure 5 shows an example region of support for 
such filtering. 
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Figure 4: 256-ary Subband Decomposition of Lena 
Image 

5. CONCLUSION 

In this paper we present a nonlinear subband de- 
composition structure employing the GF( N )  arith- 
metic. The subband images in this structure pre- 
serve the gray-scale level of the original image. 
The decomposition structure results in binary (256 
gray level) subband images for binary (256 gray 
level) images. It is possible to parallelize the de- 
composition structure in the GF(N) arithmetic for 
certain types of nonlinear filters in bit planes. This 
results in an efficient realization of the nonlinear 
subband decomposition. 
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Figure 5: Region of Support for two dimensional 
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