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Abstract—We present two memory reduction methods for the
parallel multilevel fast multipole algorithm. One of these methods
uses data structures out of core, and the other parallelizes the
data structures related to input geometry. With these methods,
large-scale electromagnetic scattering problems can be solved on
modest parallel computers.

I. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) is effi-
cient for iterative solutions of electromagnetics scattering and
radiation problems [1]. Its low complexity allows us to solve
large-scale problems and the required computation time can
be reduced further by parallelization [2].

Scattering and radiation problems of arbitrary geometries
can be formulated with surface integral equations. Then, the
problem is discretized using the method of moments to obtain
the matrix equation

Z · x = b, (1)

where Z is the known impedance matrix, b is the known
excitation vector, and x is the unknown coefficient vector of
basis functions. When iterative methods are used for solution,
matrix-vector multiplications (MVMs) must be performed.
For N unknowns, a naive MVM has a computational com-
plexity of O(N2), whereas MLFMA reduces the complexity
to O(N logN). MLFMA uses pre-calculated ZNF directly,
while calculating ZFF using a multilevel scheme within a tree
structure, where ZNF and ZFF represent near-field and far-
field interactions, respectively:

Z · x = ZNF · x+ZFF · x. (2)

The size of the problem is limited to the memory capacity of
the computer on which the algorithm runs. To solve large-scale
problems, the memory bottleneck can be overcome by efficient
parallelization, memory recycling, and out-of-core methods.
In this paper, we introduce an out-of-core method and data
structure parallelization related to the input geometry.

II. OUT-OF-CORE METHOD

The main idea of an out-of-core method is to use disk drives,
such as hard disk or solid-state drives, as data storage devices.
Disk drives are slower compared to random access memories.
Therefore, their intensive usage is not efficient. An efficient
way to use disk drives is to store only specifically chosen data
structures in them.

As shown in Fig. 1, data structures of near-field interactions
and radiation/receiving patterns are calculated and stored on
the disk during setup. In the iterative solution, out-of-core data
is fetched and is used in MVMs along with in-core data.

Required time for fetching the out-of-core data from the disk
scales with O(N/p) for each MVM, where p is the number of
processes. Then, the solution time is increased by O(IN/p),
where I is the number of iterations. One can further decrease
the I/O time by using solid-state drives because they are faster
than hard disk drives in general and by writing out-of-core data
in binary form.

Fig. 1. Out-of-core method for MLFMA.

III. PARALLELIZATION OF DATA STRUCTURES

Parallelization of MLFMA reduces both the required time
and memory by distributing the computation among processes.
Efficient parallelization of MLFMA is achieved with the
hierarchical partitioning strategy [3], which parallelizes the
iterative-solution part with great success. However, leaving
the pre-processing (i.e., processing the input geometry before
the setup stage) sequential can cause important bottlenecks
for very large problems. As a remedy, in this work, the
pre-processing stage is parallelized by distributing both the
computation and data among processes. This way, the memory
consumptions of both the pre-processing and setup stages are
decreased.

Components of the input geometry, such as nodes and
triangles, are distributed among processes in a load-balanced
manner. To process the geometry data, each process needs
all geometry components, therefore intense communication
among processes is performed in a cyclic manner.

Figure 2 shows the communication scheme among four
processes. Each process passes its data to its neighbour process
in every iteration. This allows every process to have a chance
to obtain any fraction of the geometry data. After p iterations,
each process has their initial portion of data.
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Fig. 2. Cyclic communications among processes.

IV. NUMERICAL RESULTS

To demonstrate the memory reduction of MLFMA, we
consider a set of solutions for a conducting sphere, discretized
with various numbers of unknowns. The sphere has a radius
of 0.3 m and the mesh size is chosen as 0.1λ, where λ is the
wavelength in free-space.

A sample problem involving a conducting sphere with
radius of 400λ and 670,138,368 unknowns is solved using Bi-
CGSTAB solver in 31 iterations to satisfy 1% residual error.
CPU time of the solution is 45 hours using 128 processes.
Allocated memory spaces, as well as disk usage are recorded
at certain checkpoints to observe the memory consumptions
of MLFMA and reduced-memory MLFMA (RM-MLFMA).

Figure 3 shows the recorded memory usage of the programs:
pre-processing is performed between checkpoints 1 and 15,
setup is performed between checkpoints 15 and 47, and MVMs
begin after memory checkpoint 47. We consider only the first
60 memory checkpoints beacause memory usage does not
increase after the iterative solution has begun. In MLFMA,
pre-processing is performed by a single processor, whereas it
is distributed among multiple processors in RM-MLFMA.

Fig. 3. (a) Per-process memory requirements of a problem involving
53 million unknowns using 128 processes. (b) Total memory requirements
of problems involving 540 and 670 million unknowns using 64 and 128
processes, respectively.

Figure 3(a) shows the memory consumption of the solution
of a scattering problem of a sphere involving 53 million
unknowns. Peak per-process memory is observed as 2.47 GB
and 1.37 GB and the average CPU times of an MVM are
43.10 and 43.13 seconds for MLFMA and RM-MLFMA, re-
spectively. In this problem, RM-MLFMA reduces the required

memory consumption by 44.53% without a significant CPU
time increase.

We also solved spheres with 540 million and 670 million
unknowns using MLFMA and RM-MLFMA, respectively.
Fig. 3(b) shows the memory consumptions of those solutions.
Using the out-of-core method, MVM memory consumption is
reduced and the solution of the problem involving 670 million
unknowns is made possible with RM-MLFMA using 2 TB of
memory, while the largest problem we can solve with the same
amount of memory using MLFMA is limited to 540 million
unknowns. Fig. 4 presents the radar cross section (RCS) of the
solution. Computational results obtained with RM-MLFMA
agree well with the analytical Mie-series solutions.

Fig. 4. RCS of a sphere with 670 million unknowns.

V. CONCLUSIONS

MLFMA memory is reduced by using an out-of-core storage
strategy and by parallelizing the pre-processing data structures.
The out-of-core method and pre-processing parallelization
are used to reduce the memory consumptions of MVM and
setup stages, respectively. With the reduced-memory MLFMA,
large-scale electromagnetic scattering problems are solved
involving as many as 670 million unknowns with less than
2 TB memory.
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[2] Ö. Ergül and L. Gürel, “Accurate solutions of extremely large integral-
equation problems in computational electromagnetics,” Proc. IEEE,
vol. 101, no. 2, pp. 342–349, Feb. 2013.
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