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1. In t roduct ion  

To ensure protection from dust: wind. rain and snow. reflector antennas are 
covered with spherical dielectric radomes. However. normally it is considered 
that the presence of the radome in the near zone of reflector is a negative factor 
in electromagnetic sense. Antenna performance suffers: main beam is typically 
distorted, sidelobe level get higher, and overall performance. first of all direc- 
tivity. is lost [l]. In part, this is due to  the fact t1ia.t such antenna systems 
are not designed in a self-consistent manner. by taking fully into account all 
the interactions between the elements. In this paper. we dem0nstrat.e that an 
accurate numerical optimization procedure can bring a different vision of this 
situation. By a clever play with the radome thickness, its radius. the reflector 
location inside the radome, and the position of the feed. one can improve an- 
tenna performance with respect to the free-space reflector. To reach this goal. 
the optimization code must be based on solving a rigorous integral equation b>- 
means of the regularization technique, guaranteeing a desired accuracy. 

2. Formula t ion  a n d  Solution 

Consider a 2-D model of cylindrical reflector antenna (Figure 1 ) arbitrarilj- 
located inside a circular cylindrical dielectric radome. The feed is assumed to  
be complex-point line source radiating a directive incident beam. The width of 
the latter is determined by the imaginary part of the source coordinate. xliich 
simula.tes the aperture width of a. real horn feed. 

lye start our analysis with an electric-field integral equation obtained from 
the PEC boundary condition on the contour JI of the reflector (H-polarization): 

where j ( r < )  is the current densit.? to  be found. E’” is the incident complex-point 
source field. li is the outer unit normal vector. and G is the Green‘s function of 
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Figure 1: Geometry of the reflector in the radome 

the circular dielectric shell. So, the latter function takes into account rigorously 
the geometry and material parameters of the radome including the cuivatuie 
effect, creeping waves and possible resonances. 

In the case of a circular radome, the function G has an analytical form 
obtained by using the addition theorems for the cylindrical functions: 

cn 

G(ri,G) = Go(ri,G) - ~ ~ < n J p - n ( k ~ ) J ~ - n ( k J ) J ~ ( ~ r * ) J ~ ( k r ~ ) e z ( ~ ~ l - ~ p ~ )  4 
n,p,l=-CC 

(2) 
where Go = 
the coefficients accounting for presence of the radome. 

Hjl'(klri - 4 I )  is the 2-D free-space Green's function, and li, are 

Further we follow [2] and solve (1) by the regularization method. To avoid 
the numerical integrations for filling in the matrix of the resulting equations, 
we simulate the geometry of a parabolic reflector by a circular one. This ap- 
proximation is known to be acceptable if the geometries are chosen such that 
the electrical error does not exceed 1/16-th of the wavelength 131. It enables us 
to convert (1) to  a discrete form through the so-called dual-series equations in 
terms of the surface current expansion coefficients z, as in [2]: 

03 m 

[ z ,~? ) ' ( ka )  - yn] JA(ka)etnp1 = - bnez"pl. , v1 E M (3) 
n=-m ,=-cc 

where 
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b, = J,(lcr,l)H~')'(ka)e-"nBI - ~ L ( k a )  Ji(kTsl)e-i'8*Lin 
l=-m 

Regularization of these equations is based on the analytical inversion of the 
static part. Solving the resulting matrix equation is remarkably stable and always 
convergent to  the exact solution with a greater number of equations. However, 
a special care should be taken for numerical summation of the Bessel function 
series (such as in (2)). 

3. Numerical Results and Conclusions 

A well-known recommendation based on the plane wave - flat slab analysis 
is to  take the radome thickness as 1/2 of the wavelength in the radome material 
A, = X O / ~ ? .  However, in reality neither the radome is flat nor the radiation 
field is a plane wave. The presence of a curved PEC strip inside the radome is 
an additional reason of a more complicated scattering. This is especially impor- 
tant for smaller radomes. Full-wave analysis by solving (1) shows that the actual 
optimum thickness yielding a maximum directivity is shifted to  the smaller value. 
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Figure 2: Directivity as a function of the feeder position for the reflector in free space 
(dotted curve), in the radome of the 'rule-of-thumb'parameters (dashed curve, t = O.5Xc, 
L = a cos(B,,) = 4.330A0, c = 6x0) and in the fully-optimized radome/reflector system 

referred to Figure 1 are a = 5x0,  B,, = 30" ( D  = 5X0), k b  = 2.6 (edge illuniiiiation 
(solld curve, t 0 341X,, L = 4.271X0, c = 5.984Xo). The other relevant parameters 

-lo&), t, = 2 .  

If the thickness has been optimized, then varying the radome radius and the 
reflector position has a smaller effect on the directivity. However, the feed po- 
sition should be corrected with respect to the free-space optimum after finding 
the best thickness (Figure 2). 

In Figure 3, we compare two free-space radiation patterns (for non-optimized 
in-GO-focus feed, and for the optimized one) with a pattern for the completely 
optimized reflector-in-radome antenna system. One may see that the improve- 
ment of the directivity is obtained at  the expense of the first sidelobe level. 
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Figure 3: Far-field patterns of the reflector in free space ( Y o  = 0.5a, dotted curve, and 
TO = 0.533a, dashed curve), and of the optimum radomelreflector system (solid curve). 
A set of 50 equations taken; CPU time is 3 seclcurve with SUNSPARC Station 20. 
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Figure 4: Directivity as a function of the radome (a) thickness and (b) shift in the 
optimum system (TO = 0.560a, solid curve) and in the 'rule-of-thumb' radome with 
feeder position To = 0.533a (dashed curve) and TO = 0 . 5 ~  (dotted curve). The other 
relevant parameters are the same as in Figure 2. 

Figure 4 gives a vision of the dependence of the directivity on the radome 
thickness and the reflector location. 

Summarizing, we state that the solution obtained can be efficiently used in 
the numerical antenna optimization code. 
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