
Correct-schema-guided Synthesis of Steadfast Programs

Pierre Flener Kung-Kiu Lau Mario Ornaghi
Dept of Computer Science Dept of Computer Science DSI

Bilkent University University of Manchester Univ. degli studi di Milano
06533 Bilkent, Ankara, Turkey Manchester M13 9PL, UK 2:O 135 Milano, Italy

pf @ cs.bilkent.edu.tr kung-kiu @ cs.man.ac.uk oirnaghi @dsi.unimi.it

Abstract

It can be argued that f o r (semi-)automated software de-
velopment, program schemas are indispensable, since they
capture not only structured program design principles, but
also domain knowledge, both of which are of crucial impor-
tance fo r hierarchical program synthesis. Most researchers
represent schemas purely syntactically (as higher-order ex-
pressions). This means that the knowledge captured by a
schema is not formalised. We take a semantic approach and
show that a schema can be formalised as an open (first-
order) logical theory that contains an open logic program.
By using a special kind of correctness f o r open programs,
called steadfastness, we can define and reason about the
correctness of schemas. We also show how to use correct
schemas to synthesise steadfast programs.

1. Introduction

It can be argued that any systematic approach to soft-
ware development must use some kind of schema-based
strategies. In (semi-)automated software development, pro-
gram schemas become indispensable, since they capture not
only structured program design principles, but also domain
knowledge, both of which are of crucial importance for hi-
erarchical program synthesis. This is amply borne out by
user-guided program development systems that have been
successfully applied in practice, e.g. KIDS [171.

Informally, a program schema is an abstraction (in a
given problem domain) of a class of actual programs, in the
sense that it represents their data-flow and control-flow, but
does not contain (all) their actual computations or (all) their
actual data structures. At a syntactic level, a schema is an
open program, or a template, which can be instantiated to
any concrete program of which it is an abstraction. Thus,
most researchers represent schemas as higher-order syntac-
tic expressions from which actual programs are obtained by
higher-order substitutions. However, in such a purely syn-

tactic approach, the knowledge that is captured by a schema
is not formalised.

We take a semantic approach and show that a schema S
consists of a syntactic component, viz. a template T, and
a semantic component. T is formalised as an open (first-
order) logic program in the context of the problem domain,
characterised as a first-order axiomatisation called a spec-
$cation framework F [IO , 1 I] . F endows the schema S
with a formal semantics, and enables us to define and reason
about its correctness. In particular, we define a special kind
of correctness for open programs such as templates, that we
call steadfastness. A steadfast (open) program is always cor-
rect (wrt its specification) as long as its parameters are cor-
rectly computed (wrt their specifications). This means that
a steadfast open program, though only partially defined, is
always a priori correct when (re-)used in program compo-
sition, in the sense that its defined part is aprioricorrect (wrt
its specification). A steadfast program is thus a priori cor-
rectly reusable, and such programs make ideal units in a li-
brary from which correct programs can be composed.

Thus we define a correct schema to be a specification
framework containing a steadfast open program. Moreover,
we show how to use correct schemas to synthesise stead-
fast open logic programs. The notion of correctness applied
to schemas and the use of correct schemas in synthesising
steadfast programs are the main novel themes ofthis paper.

Our general approach follows that of the pioneering work
of Smith in functional programming [16]. Although we fo-
cus on the logic programming paradigm (see [131 for basic
terminology), our ultimate goal is to extend it to a general
paradigm with suitable logic semantics.

2. Defining Correct Schemas

Our approach to logic program synthesis is set in the con-
text of a (fully) first-order axiomatisation of the problem do-
main in question, which we call a specification framework
F. Specifications and programs are given in the context of
F. This approach enables LIS to define program correctness

0-8186-7961-1/97 $10.00 0 1997 IEEE
153

http://cs.man.ac.uk

wrt specifications not only for closed programs but also for
open programs i.e. programs with parameters.

Our notion of correctness for open programs is a special
kind of correctness that we call steadfastness, and we define
a correct program schema as a specification framework con-
taining a steadfast (open) program. In this section, we dis-
cuss steadfastness and correct program schemas, but due to
lack of space we can only give a brief summary (a more de-
tailed account with examples can be found in [4]).

2.1. Specification Frameworks

Definition 2.1 A specijication framework F(n) with pa-
rameters II consists of a (many-sorted) signature C and a set
of first-order axioms for the symbols of E. The parameters
II belong to E. The axioms for the parameters are called p-
axioms. We say that a (specification) framework F (n) is
open if ll is not empty; otherwise, we say that it is closed
and we indicate i t by F.

A closed framework F axiomatizes one problem domain,
as an intended model (unique up to isomorphism). In our
approach, intended models are reachable isoinitial models.
A model i is reachable if its elements can be represented by
ground terms; a reachable model of F is isoinitial iff ground
quantifier-free formulas are true in it whenever they are true
in every model of F.

Following the tradition of algebraic ADTs [14, 181, initial
models have also been proposed for logic programs [5, 61.
We have preferred isoinitial models to properly deal with
negation (see also the primal models proposed in [7]).

In general, a framework may have no isoinitial model.
Hence the following adequacy condition:

Definition 2.2 A closed framework F is adequate if it has
a reachable isoinitial model.

A typical closed framework is (first-order) Peano arith-
metic N d l , using the well-known axiomatisation, includ-
ing the first-order induction schema. “A7 has the stan-
dard structure of natural numbers as an intended (reachable
isoinitial) model.

An open framework F(11) has a non-empty set n of pa-
rameters, which can be instantiated by a closed framework
s. The instance, denoted by F(II)[G], is the union of (the
signatures and the axioms of) F(n) and 6. It is defined only
if II is the intersection of the signatures of F (n) and G , and

proves the p-axioms.

Definition 2.3 An open framework F (n) is adequate if, for
every adequate closed framework 6, the instance F(II)[G]
is an adequate closed framework.

A more general notion of instance can be given, involv-
ing renamings (see also the pushout approach in algebraic

ADTs [IS]). However, it can be shown that F(II) is ade-
quate according to Definition 2.3 iff it is adequate consider-
ing the more general notion of instance. Therefore we can
use our simpler definition, without loss of generality.

Example 2.1 The following open framework axiomatises
the (kernel of the) theory of lists with parametric element
sort Elem and parametric total ordering relation U:

Specification Framework L Z S I (E l e m , a);
IMPORT: &27;
SORTS: N u t , E lem, List;
FUNS: nil : - Lis t ;

: (E lem, L is t) + Lis t ;
nocc : (E l e m , L is t) --i N a t ;

RELS: elemi : (L i s t , N a t , E lem);
a : (E l e m , E l e m) ;

AXS: C-AXS(n i l , .);
elemi(L, i, a) tj 3h, TI j . L = h . T A
(i = 0 A a = h V i = s (j) A elemi(T, j , a)) ;
nocc(x, n i l) = 0;

TZ = b --i nocc(a, b . L) = nocc(a, L) ;
a = b + nocc(a, b . L) = nocc(a, L) + 1;

P-AXS: . . .total ordering axioms for U . . .

where C-Axs(nil , .) contains Clark’s Equality Theory (see
[131) for the list constructors and nil , and the first-order in-
duction schema H (n i l) A (Va, J . H (J) + H (u . J)) +

V L . H (L) ; the function nocc(a , L) gives the number of oc-
currences of a in L , and elemi(L, i, a) means a occurs at
position i in L .

If ZiV7 is a closed framework axiomatking integers
Int with total ordering 5, then C Z S 7 (1 n t , <) [z N 7] is
a closed framework that axiomatises finite lists of integers.
Note the renaming of Elem by Int and U by 5.

2.2. Specifications

Definition 2.4 In a specification framework .F(II), a spec-
ification Sg is a set of sentences that define new function or
relation symbols 5 in terms of the symbols C of F. If Sa
contains symbols of II, then it is called a p-specifcation.

Sa can be interpreted as an expansion operator that asso-
ciates with every model of F a set of (E + 6)-expansions,
called S6-expansions (where C + 5 is the signature C en-
riched by &). An Sa-expansion of a model m of F is any
(E + &)-expansion m’ of m, such that in’ is a model of Sg .
A specification Sg is strict, if, for every model m of F, there
is one Sg -expansion. It is non-strict otherwise.

For uniformity, in this paper, we shall only use condi-
tional specifications, that is specifications of the form

Vx : XI ‘dy : Y . Q (x) - (~(x, y) ++ R (z , y))

154

where Q and R are formulas in the language of 3, and x:X,
y:Yare (possibly empty) lists of sorted variables, with sorts
in F. Q is called the input condition, whereas R is called
the output condition of the specification.

When Q is true, then we drop it and speak of an iff spec-
$cation. Iff specifications are strict, while in general a con-
ditional specification is not.

In our approach, there is a clear distinction between
frameworks and specifications. The latter introduce new
symbols and assume their proper meaning only in the con-
text of the framework.

Example 2.2 In L Z S I (E l e m , a), we can specify the
usual length and concatenation functions 1 and 1, and the
usual ‘membership’, ‘concatenation’, ‘permutation’, ‘or-
dered’ and ‘sort’ relations m e r n , a p p e n d , p e r m , o rd and
sort as follows (we drop the universal quantifications at the
beginning of specifications):

SPECS:
m e m (e , L) ++ 3. e l e m i (L , i , e) ;
n = 1(L) - V i . i < n - 3 a . e l e m i (L , i , a) ;
a p p e n d (A , B , L) 4 V i , a .

(e l e m i (A , i , a) - e l e m i (L , i , a) A i < ~ (A)) A
(e l e m i (B , i , a) - e l e m i (L , i + l (A) , U));

perm(A, B) * V e . nocc(e, A) = nocc(e, B) ;
C = AIB - append(,4 , B , C) ;

P-SPECS:
ord(L) -
V i . e l e m i (L , i , e l) A e l e m i (L , s (i) > e p) - e l a e p ;

sor t (L , S) - per?n(L , S) A o r d (S) .

To distinguish the specified symbols from the signature
of the framework, we will call them s-symbols. Also, spec-
ifications and axioms are clearly distinguished.

An s-symbol 6 with specification Sg can be used to ex-
pand the signature of the framework by 5 and its axioms by
Sg. An expansion is adequute iff framework adequacy is
preserved.

The expansions of L Z S 7 (E l e m , a) by 1 , 1, m e m ,
a p p e n d , p e r m , o r d and sort can be shown to be adequate.
In the following, we will consider C I S 7 thus expanded.
Note that in the expanded framework these symbols can be
used both as s-symbols and as symbols of the language.

2.3. Correctness of Open Programs

An open program may contain open relations, or parame-
ters. The parameters of a program P are relations to be com-
puted by other programs. They are not defined by P .

A relation in P is de$ned (by P) if and only if it occurs
in the head of at least one clause of P. It is open if it is not

defined (by P). An open relation in P is also called a pa-
rameter of P.

A program is closed if it does not contain open relations.
We consider closed programs a special case of open ones.

Open programs are always given in the context of an
(open or closed) framework .F(II). In 3(n), we will distin-
guish program sorts, i.e. sorts that can be used by programs.
A closed program sort must have constructors (see axioms
C-Axs(. . .)), and an open program sort may only be instan-
tiated by program sorts. I n programs, constant and function
symbols may only be constructors. A program relation must
be an s-symbol, i.e. it must have a specification.

A model-theoretic definition of correctness of open pro-
grams in a framework, called steadfastness, is given in [111.
Here, we give a less abstract, but more conventional defini-
tion (for a comparison, see [1, 121). In this paper, for sim-
plicity, we only give defnitions and results that work for
definite programs. Nevertheless they extend to normal pro-
grams, under suitable tenmination assumptions.

For closed programs in closed frameworks, we have the
classical notion of (total) correctness:

Definition 2.5 In a closed framework F with isoinitial
model i, a closed program P, for relation r is totally correct
wrt its specification S,

t/z : X , V y : Y . I,(.)i - (r (z , y) - O,(z,y)) (S,)

iff for all t : X and U : Y such that i I ,(t) we have:

i /= O,(t, U) iff P, F r (t , U) (1)

If P, satisfies the if-part of (l) , it is partially correct (wrt
S,). If it satisfies the only-if part, then i t is total.

Total correctness as defined here is unsatisfactory for
logic programs, since it cannot deal with different cases of
termination. In particular, we consider the following two
cases:

P, is totally correct wrt to S,, and terminates either
with success or finite failure, for every ground goal +

r (t , U) such that i /= I , (t) .
In this case, P, correctly decides r , and we say that P,
is correct wrt (S,., ?‘C,(r)).

P, is partially correct wrt S,, and, for every ground t :
X such that i I , (t) , the computation with open goal
- r (t , y) terminates with at least one answer y = U .

In this case, P, correctly computes a selector of T, and
we say that P, is coiwct wrt (S,, PCt(r (z + y))).

TCt (r) and PCt (r (x - y)) will be called termination re-
quirements.

It is easy to see that total correctness is too weak for
case (i) , since a totally correct P, could not terminate for a

155

false r (t , U) , and too strong for case (i i) , since for comput-
ing a selector, we do not need success for every true (t , U)) .

Therefore, a specification of a program relation r will be of
the form (S, , T,), where T, is a termination requirement;
we will consider correctness wrt (S,. , T,).

Termination and termination requirements are an impor-
tant issue. For lack of space, however, we will not further
deal with them here.

The definition of correctness wrt (S,., T,) is still unsatis-
factory. First, it defines the correctness of P,. in terms of the
programs for the relations other than T , rather than in terms
of their specifications. Second, all the programs for these re-
lations need to be included in P, (this follows from p,. be-
ing closed), even though i t might be desirable to discuss the
correctness of P, without having to fully solve it (i.e. we
may want to have an open P,). So, the abstraction achieved
through the introduction (and specification) of the new rela-
tions is wasted.

This leads us to the following notion of steadfastness of
an open program in a closed framework.

Definition26 In a closed framework 3, let P,. be an
open program for T , with parameters p l , . . . , p,, spec-
ifications s,] SI, . . . , s,, and termination requirements
T, TI, . . . T,. P, is steadfast in 3 if, for any closed pro-
grams P I , . . . P, that compute p ~ , . . . , p , such that P, is
correct wrt (Sz, x), the (closed) program P, U PI U. . .UP,
is correct wrt (S,, T,).

Now we can define steadfastness in an open framework:

Definition 2.7 P, is steadfast in an open framework 3(rI)
if it is steadfast in every instance F[G].

2.4. Correct Schemas

Now we define a schema as an open framework contain-
ing a steadfast (open) program.

In order to also consider a notion of correctness of a
schema, we have to add to a schema the specifications of its
open relations. This leads to the following definition (it is
worth recalling that programs are E-programs, and specifi-
cations are E-formulas, where E is the signature of F(n)):
Definition 2.8 A correct (program) schema for a relation r
is an open framework S(n) containing a steadfast program
P,. for T . P,. is called the template of S(rI), whereas thep-
axioms and the p-specifications are called the constraints of
S(n). A schema S covers a program P if (S and) its tem-
plate can be instantiated into P.

Most researchers, with the laudable exception of
Smith [16, 171, define a schema to be just a template. Such
definitions are thus merely syntactic, providing only a pat-
tern of place-holders, but not the semantics of the template,

the semantics of the programs i t covers, or the interactions
between these place-holders. So a template by itself has no
guiding power for synthesis, and the additional knowledge
(corresponding to our constraints) somehow has to be hard-
wired into the system or person using the template. Despite
the similarity, our definition is an enhancement of even
Smith’s definition, because we consider relational schemas
(rather than functional ones), uninstantiated schemas (rather
than instantiated ones), and we set everything up in the
explicit, user-definable background theory of a framework
(rather than in an implicit, predefined theory). The notion
of constraint even follows naturally from, or fits naturally
into, our view of schemas as open frameworks.

Example 2.3 Figure 1 gives a divide-and-conquer schema
DC, for which one can prove the following theorem [4].

Theorem 2.1 The schema DC is correct, i.e. it
contains a steadfast template.

This theorem is related to the one given by Smith [161 for
a divide-and-conquer schema in functional programming.
The innovations here are that we use specification frame-
works and that we can thus also consider open programs.
Also, we could eliminate Smith’s Strong Problem Reduction
Principle by endeavouring to achieve these objectives.

3. Synthesis of Steadfast Programs

In the rest of the paper, we show how we can use correct
schemas to guide the synthesis of steadfast programs.

Schemas have been successfully used to guide the syn-
thesis of programs [16, 17, 21. The benefit of such guid-
ance is a reduced search space, because the synthesiser, at
a given moment, only tries to construct a program that fits
a given schema. This is feasible because a schema fixes the
data-flow and restricts the relationships between its open re-
lations. In our approach, we use correct schemas, and estab-
lish the synthesisability of open programs, rather than only
of closed ones, and even of steadfast open programs. This is
a significant step forwards in the field of synthesis, because
the synthesised programs are then not only correct, but also
a priori correctly reusable.

We investigate how much of the synthesis process can
be pre-computed at the level of “completely open” schemas.
The key to pre-computation lies in the constraints. These
can be seen as an “overdetermined system of equations (in
a number of unknowns),” which may be unsolvable as it
stands (as is the case for the divide-and-conquer schema
above). An arbitrary instantiation, according to the informal
semantics of the template, of one (or several) of its open re-
lations may then provide a “jump-start,” as the set of equa-
tions may then become solvable.

156

SORTS:

RELS:

P-AXS:

P-SPECS:

T-REQS:

TEMPL:

Figure 1. A correct divide-and-conquer schema.

This leads to the notion of synthesis strategy (cf. Smith’s
work [16]), as a pre-computed (finite) sequence of synthesis
steps, for a given schema. A strategy has two phases, stating
first which parameter(s) to arbitrarily instantiate, and next
which specifications to “set up”, based on a pre-computed
propagation of these instantiation(s). Once correct pro-
grams have been synthesised from these new specifications
(using the synthesiser all over again), they can be composed
into a correct program for the originally specified relation,
according to the schema. There can be several strategies for
a given schema (e.g., Smith [161 gives three strategies for a
divide-and-conquer schema), depending on which parame-
ter(s) are instantiated first.

Synthesis is thus a recursive problem reduction process
followed by arecursive solution composition process, where
the problems are specifications and the solutions are pro-
grams [16]. Problem reduction (which is the “step case”
of synthesis) stops when a “sufficiently simple’’ problem is
reached, i.e. a specification that “reduces to” another spec-
ification for which a program is known and can thus be re-
used (this is the “base case” of synthesis).

3.1. Re-use in Synthesis

To formalise the process of re-use, we need to capture
what it means for a specification to reduce to another one.

Definition 3.1 In a framework 3 (n) with isoinitial model
i, the specification

VZ : X,Vy: Y . I r (2) + (~ (2 , y) ++ O,(Z,~)) (Sr)

reduces to the specification

vx : x , v y : Y . I k (Z) - (r (x , y) - Ok(x,Y)) (Sk)

under conditions F and G iff the following hold:

(i) F (n) t Vx : x . F (c) A I T (z) - I k (: (2)

(i i) 3(n) t V ’ z : X , t l y : Y . G (z) A O k (x , ~) - 0 , (2 , y)

Since nothing prevents F from being f a l s e , i t is clear
that, for practical purposes, one should look for the weak-
est possible F.

Now we can propose a theorem stating when and how
it is possible to re-use a known program P that is correct
wrt specification s k for cclrrectly implementing some other
specification S,.

Theorem 3.1 In a closed framework 3 with isoinitial
model i, given specifications Sk and S, (as above), if a pro-
gram P is correct wrt Sk and termination requirement T , and
if Sr reduces to Sk under conditions F and G, then P is also
correct wrt the specification

I,(.) A F (z) A G (2) - (7*(2, Y) * O,(2, Y)) (si)
and the same termination requirement T.

ProoJ: Let T be TCt(r) . In 3, let P be a program that is
totally correct wrt Sk, i.e., for all 2 : X and y : Y such that
I k (z), we have:

i O k (z , BI) iff P r (x , y) (2)

157

Let S, reduce to s k under conditions F and G. For an arbi-
trary a: : X, assume

I r (x) A F (x) A G (x) (3)

p /- r (x , Y) (4)

for some y : Y. From (3) and (i) , we infer that Ik (x) neces-
sarily holds. From (4) and (2), we infer that i O k (x , y)
necessarily and sufficiently holds. From (3) and (ii), we
infer that i b O,(x, y) necessarily and sufficiently holds.
Since T C t (r) holds (the input condition is stronger), P is
correct wrt (SL, TCt (r)) .
The proof for T = P C t (y (x + y)) goes similarly, consid-

0 ering partial instead of total correctness.

This theorem is more general than the combination of
Hoare’s two consequence rules, since conditions F and G
need not be t rue (as inspired by Smith [16]), and since we
cover total correctness (rather than just partial correctness,
as Hoare and Smith do). This will turn out crucial for syn-
thesis, namely when the input condition of a specification
is incompletely known. Finding G such that (i i) holds may
be quite difficult (if not impossible); the following theorem
may then come in handy. It says that some conjuncts (de-
noted I/) of the input condition of a specification S may be
“promoted” to its output condition, so as to form a new spec-
ification s’, with the effect that any call to a program that is
correct wrt S can be replaced by a call to a program that is
correct wrt S‘, provided V holds in the context of that call.

Theorem 3.2 In a closed framework F with isoinitial
model i, any call to a program that is correct wrt the spec-
ification

b’x : x,b’’y : Y . I (x) A V (x) + (r(.c, y) o(z, y)) (S)

and the termination requirement T can be replaced by a call
to a program that is correct wrt

Vx : X, Vy : Y . I (x) + (r (x , y) ++ O (x , y) A V(Z)) (5”)

and the same requirement T , provided V (z) holds in the
context of that call.

Proo$ Let T be TCt(r) . In F, let P be a program that is
totally correct wrt S’, i.e., for all II: : X and y : Y such that
I (z) , we have:

i k O (x , y) A V(x) iff P t- r (x , y) (5)

For an arbitrary z : X, assume

I(z) A V(z) (6)

p t- r (x , Y) (7)

for some y : Y. From (6), we infer that I (x) necessar-
ily holds. From (7) and (5), we infer that F k O (x , y) A
V (x) necessarily and sufficiently holds. Using (6), we infer
that i O (e , y) necessarily and suficiently holds. Since
T C t (r) holds (the input condition is stronger), P is correct
wrt (S, T C t (r)) .
The proof for T = PC (r (z --f y)) is similar. 0

Theorems 3.1 and 3.2 can also be used in an open frame-
work F(II), to repIace a specification with a better one,
while preserving steadfastness (indeed, the proofs of (i) and
(ii) in F(n) are inherited by every instance). They can also
be used in the single instances, allowing redefinition of pro-
gram components.

3.2. A Divide-and-Conquer Synthesis Strategy

We illustrate all these ideas on the divide-and-conquer
schema. Some reductions can be done directly at the level
of the schema, which already contains, as a built-in, the fol-
lowing divide-and-conquer strategy. After the instantiation
of I,, O,, x : X, y : Y, proceed as follows:
1. Select (or construct) a well-founded order (wfo) over
the input sort X.
2. Select (or construct) a decomposition operator
decompose, such that it satisfies (c1) and (Q). Suppose the
following specification is obtained:

3. Set up the specifications of the operators primit ive ,
solve and compose.

We can set up the specifications of the last step, because
all their place-holders are known. In this way, four specifi-
cations (Siec, SLrZm, S:olue, SZomp) are set up, so four aux-
iliary syntheses can be started from them, using the same
overall synthesis approach again, but not necessarily the
(same) strategy for the (same) divide-and-conquer schema.
The programs Pdec, Pprim, Psolue, Pcomp resulting from
these auxiliary syntheses are added to the template P, of the
schema, yielding a steadfast program, by Theorem 2.1.

The specifications Ssolue and Seomp (and afortiori the
specifications Siolue and SLomp) deserve some special com-
ments. Indeed, their output conditions are the same as those
of S,, so there seems to be no real problem reduction. More-
over, their input conditions are quite complex, but the syn-
thesis strategy described here does not make much use of in-
put conditions and even tends to build “lengthy” ones. So
if the same divide-and-conquer strategy were used to syn-
thesise programs from these specifications (and this is not
unusual, especially for compose), then all conditions would
eventually disappear into input conditions and no problem

158

reduction would ever occur in most output conditions! For-
tunately, Theorem 3.2 provides an elegant solution to this (at
first sight disturbing) phenomenon: since the input condi-
tions of Ssolve and Stomp are only made of the output con-
ditions of (some of) their preceding computations (i.e. are
guaranteed to hold in the calling context), one can promote
these entire input conditions, then simplify the resulting out-
put conditions, and call programs implementing these new
specifications rather than the old ones.

3.3. A Sample Synthesis

We now show how all these considerations can be put to-
gether in order to synthesise a program from the sort spec-
ification of Example 2.2. See [3] for more details.

We are in CZS’T(E l e m , a) and we want a steadfast sort-
ing program with termination requirement PCt (sor t (L -
S)) . Note that, since s o d is functional, this entails total
correctness. We instantiate I , (L) by tr’ue, O,(L, S) by
p e r m (L , S) A ord(S) , 2 : X by L : List , and y : Y by
5’ : Lis t .

At Step 1 , since L is of sort List, suppose we select << as
wfo, where .4 << B means that A has fewer elements than
B, i.e. VA, B : List . A << B - [(A) < [(B) .

At Step 2, suppose we select the following specifica-
tion of a decomposition operator, partitioning list L into its
first element h , the list A of its remaining elements that are
smaller (according to a) than l i , and the list B of its remain-
ing elements that are not smaller (according to a) than h:

1 L = ni l -+ (p a r t (L , h , A, B) -
L = h .T A ptrm(iZIB, T) A A C h A B 7 h)

CS,a,t)
whcre the following axioms:

are added to L I S T (Eleni. a).

solve and compose. For prirriitive we get:
At Step 3, we set up the specifications of pr imi t iue ,

t r u e - (pr imi t i ve (L) ++ L = nil) (S e m p t y)

For solve, after promoting the entire input condition of
Sso~tre. we get:

which simplifies into

solve(L, S) +- S = nil (Sempty 2)

Finally, we set up the specification of the composition oper-
ator compose. We promote the entire input condition:

compose(h, C, D , 5’) H 3L , T , A , B : Lis t .
L = h.T A p e r m (A I B , T) A A C h A B 7 h
Atrue A true A A << L A B << L A perm(A, C) A ord(C)
A p e r m (B , D) A ord(D) A p e r m (L , s) A ord(s)

which simplifies into

compose(h, C , D , S> H S = CJ(h.D) (Seatcons)

We leave open how these simplifications can be done (but
see [4]). Our objective here is just to show the feasibility of
schema-guided synthesis of steadfast (open) programs, not
the details of how to actually do it.

Four specifications (SJlart , Sempty, Semptyz, Scatcons)
having been set up, four auxiliary syntheses are started from
them. The latter three syntheses are trivial, whereas the first
one can be guided by the divide-and-conquer schema and
strategy. We omit them here, but after adding their result
programs to the template, one could get the classical Quick-
sort program, which is steadfast, by Theorem 2.1.

Other choices at Step 3 would lead to other sorting pro-
grams, such as insertion-sort, merge-sort, etc (as shown
in [9] for instance).

4. Conclusion

We have defined a notion of correctness for program
schemas, and we have shown how we can use such schemas
to guide the synthesis of steadfast, i.e. correct and a priori
correctly reusable (divide-and-conquer) programs, from for-
mal specifications expressed in the first-order language of
a framework. In both these aspects, our work extends pre-
vious work in schema-guided synthesis. The synthesis of
steadfast open programs is important from the point of view
of constructing a library of correctly reusable program units
for a chosen problem domain. However, here we have only
laid the theoretical foundations; much more needs to be done
in order to apply the results to the implementation of a prac-
tical system for (semi-)automated software development.

At the schema-guided !synthesis level, our work is very
strongly influenced by Smith’s pioneering work [161 in
functional programming in the early 1980s. Our work is
however not limited to simply transposing this to the logic
programming paradigm: indeed, we have also enhanced the
theoretical foundations by adding frameworks, enlarged the
scope of synthesis by allclwing the synthesis of open pro-
grams, and simplified (the formulation and proof of) the the-
orem on the divide-and-conquer schema (Theorem 2.1).

Future work includes thie development of a proof system
for deriving antecedents and for obtaining simplifications
of output conditions. To be efficient, this requires the pre-
existence of a considerable set of theorems of the axiomatic

159

theory in a framework, which theorems state the combined
effects of the functions and relations of the framework. Such
theorems could be either hand-crafted (and mechanically
verified), or generated by forward reasoning. The work of
Smith [15, 161 shows that deriving an antecedent A of a for-
mula F (i.e., such that A -+ F is valid) is a generalisation
both of formula simplification (find a weakest antecedent of
“minimal syntactic complexity”) and of “conventional” the-
orem proving (find true as antecedent). In-between these
(known) extremes lie other usages of antecedent derivation
that are crucial to schema-guided synthesis.

We also need to abduce the constraints for a more gen-
eral template (namely where nonPrimitiue(c) replaces
-y-imitive(z)), and to develop the corresponding strate-
gies, in order to allow the synthesis of larger classes of non-
deterministic programs.

Another important objective is to identify templates and
constraints for other design methodologies than divide-and-
conquer, and to develop corresponding strategies. Once
again, Smith [17] has shown the way, namely by captur-
ing a vast class of search methodologies in a global-search
schema and seven corresponding strategies. At the same
time, other strategies for the divide-and-conquer schema
also need to be developed.

Eventually, we plan a proof-of-concept implementation
of the outlined synthesiser (and the adjunct proof system).
Since schema-guided synthesis involves a fair amount of
theorem-proving-like tasks, the notion of proof plans [81 and
their use in directing synthesis will be worth investigating.

Acknowledgements

This work was partially supported by the European
Union HCM Project on Logic Program Synthesis and Trans-
formation, contract no. 93/414, and by the British Council,
Ankara, Turkey. We wish to thank Doug Smith for his pio-
neering work that inspired us.

References

Y. Deville. Logic Programming: Systematic Program
Development. Addison-Wesley, 1990.
P. Flener and Y. Deville. Logic program synthesis from
incomplete specifications. J. Symbolic Computation
15(5-6):775-805, May/June 1993.
P. Flener and K.-K. Lau. Program Schemas as Stead-
fast Programs and their Usage in Deductive Synthesis.
Tech Rep BU-CEIS-9705, Bilkent University, 1997.
P. Flener, K.-K. Lau, and M. Ornaghi. On correct
program schemas. In N.E. Fuchs, editor, Proc. LOP-
STR’97, Springer-Verlag, forthcoming.
J.A. Goguen and J. Meseguer. Unifying functional,
object-oriented and relational programming with logi-

cal semantics. In B. Shriver and P. Wegner, editors, Re-
search Directions in Object-Oriented Programming,
pages 417-477. MIT Press, 1987.
W. Hodges. Logical features of Horn clauses. In
D.M. Gabbay, C.J. Hogger, and J.A. Robinson,editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume I : Logical Foundations, pages
449-503, Oxford University Press, 1993.
G. Jager. Annotations on the consistency of the Closed
World Assumption. J. Logic Programming 8(3):229-
248, 1990.
I. Kraan, D. Basin, and A. Bundy. Logic program syn-
thesis via proof planning. In K.-K. Lau and T. Clement,
editors, Proc. LOPSTR’92, pages 1-14. Springer-
Verlag, 1993.
K.-K. Lau and S. D. Prestwich. Synthesis of a fam-
ily of recursive sorting procedures. In V. Saraswat and
K. Ueda, editors, Proc. ILPS’91, pages 641-658. MIT
Press, 1991.
K.-K. Lau and M. Ornaghi. On specification frame-
works and deductive synthesis of logic programs.
In L. Fribourg and F. Turini, editors, Proc. LOP-
STWMETA’94, pages 104-121. LNCS 883, Springer-
Verlag, 1994.
K.-K. Lau and M. Ornaghi. The relationship between
logic programs and specifications: The subset example
revisited. J. Logic Programming 30(3):239-257,1997.
K.-K. Lau, M. Ornaghi, and S.-A. Tarnlund. Steadfast
logic programs. J. Logic Programming, submitted.
J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 2nd edition, 1987.
D. Sannella and A. Tarlecki. Essential concepts of al-
gebraic specification and program development. For-
mal Aspects of Computer Science, forthcoming.
D.R. Smith. Derived preconditions and their use in
program synthesis. In D.W. Loveland, editor, Proc.
CADE’82, pages 172-193.
D.R. Smith. Top-down synthesis of divide-and-
conquer algorithms. Artijcial Intelligence 27(1):43-
96, 1985.
D.R. Smith. KIDS: A semiautomatic program devel-
opment system. IEEE Trans. Software Engineering

M. Wirsing. Algebraic specification. In J. Van
Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 675-788. Elsevier, 1990.

16(9): 1024-1043, 1990.

160

