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Abstract. We present our work on the representation and correctness
of program schemas, in the context of logic program synthesis. Whereas
most researchers represent schemas purely syntactically as higher-order
expressions, we shall express a schema as an open first-order theory that
axiomatises a problem domain, called a specification framework, con-
taining an open program that represents the template of the schema. We
will show that using our approach we can define a meaningful notion
of correctness for schemas, viz. that correct program schemas can be
expressed as parametric specification frameworks containing templates
that are steadfast, i.e. programs that are always correct provided their
open relations are computed correctly.

1 Introduction

A program schema is an abstraction of a class of actual programs, in the sense
that it represents their data-flow and control-flow, but does not contain (all) their
actual computations or (all) their actual data structures. Program schemas have
been shown to be useful in a variety of applications, such as proving proper-
ties of programs, teaching programming to novices, guiding both manual and
(semi-)automatic synthesis of programs, debugging programs, transforming pro-
grams, and so on, both within and without logic programming. An overview of
schemas and their applications can be found in [6].

In this paper, we present our work on two aspects of schemas: representation
and correctness, in the context of logic program synthesis. In logic programming,
most researchers represent their schemas as higher-order expressions, sometimes
augmented by extra-logical annotations and features, so that actual (first-order)
programs are obtained by applying higher-order substitutions to the schema. We
shall take a different approach and show that a schema S can also be expressed
as an open first-order theory F containing an open (first-order) program T , viz. a
program in which some of the relations are left undefined. One advantage of this
approach is that it simplifies the semantics of schemas and of their manipulations.
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We shall endow a schema S with a formal (model-theoretic) semantics by
defining F as a specification framework, i.e. an axiomatisation of the (possibly
open) problem domain, and call T the template of S. This allows us to define
a meaningful notion of correctness for schemas. Indeed, we show that correct
program schemas can be expressed as parametric specification frameworks con-
taining templates that are steadfast open programs, i.e. programs that are always
correct provided their open relations, i.e. their parameters, are computed cor-
rectly. Steadfastness is a priori correctness, and therefore correct schemas are a
priori correctly reusable.

We shall also briefly indicate how to use correct schemas in practice. Using
any kind of schemas requires suitable strategies, and we shall touch on some
ideas for such strategies for correct schemas.

2 Program Schemas as Open Frameworks

Our approach to schemas (and program synthesis) is set in the context of a
(fully) first-order axiomatisation F of the problem domain in question, which
we call a specification framework F . Specifications are given in F , i.e. written
in the language of F . This approach enables us to define program correctness
wrt specifications not only for closed programs but also for open programs, i.e.
programs with parameters (open relations), in both closed and open frameworks.
In this section, we briefly define specification frameworks, specifications, open
programs.

2.1 Specification Frameworks

A specification framework is a full first-order logical theory (with identity) with
an intended model:

Definition 1. (Specification Frameworks)
A specification framework F(Π) with parameters Π consists of:

• A (many-sorted) signature Σ of sort, function and relation symbols (together
with their declarations).
We distinguish between symbols of Σ that are closed (i.e. defined symbols)
and those that are open (i.e. parameters). The latter are indicated by Π .
• A set of first-order axioms for the (declared) closed and open function and

relation symbols of Σ.
Axioms for the closed symbols may contain first-order induction schemas.
Axioms for the open symbols, or parameters, are called p-axioms.

F(Π) is open if the set Π of parameters is not empty; it is closed otherwise.

A closed frameworkF axiomatises one problem domain, as an intended model
(unique up to isomorphism). In our approach, intended models are reachable
isoinitial models:
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Definition 2. (Reachable Isoinitial Models)
A reachable isoinitial model i of F is a model such that i is reachable (i.e. the
elements of its domain can be represented by ground terms) and, for any relation
r defined in F , ground instances r(t) or ¬r(t) are true in i iff they are true in
all models of F .

Example 1. (Closed Frameworks)
A typical closed framework is (first-order) Peano arithmetic NAT (we will omit
the most external ∀ quantifiers):

Specification Framework NAT ;
sorts: N at;
functions: 0 :→ N at;

s : N at→ N at;
+, ∗ : (N at,N at)→ N at;

axioms: c-axs(0, s);
x + 0 = x;
x + s(y) = s(x + y);
x ∗ 0 = 0;
x ∗ s(y) = x + x ∗ y;

c-axs(0, s) contains Clark’s Equality Theory (see [20]) for the constructors
0 and s, and the related (first-order) induction schema H(0) ∧ (∀i . H(i) →
H(s(i)) → ∀x . H(x), where H stands for any formula of the language, i.e. the
schema represents an infinite set of first-order axioms.

An isoinitial model of NAT is the term model generated by the constructors,
equipped with the usual sum (+) and product (∗).

The induction schema is useful for reasoning about properties of + and ∗ that
cannot be derived from the other axioms, e.g. associativity and commutativity.
This illustrates the fact that in a framework we may have more than just an
abstract data type definition, as we will see again later.

In general, a closed framework F is constructed incrementally from exist-
ing closed frameworks, and the new abstract data type axiomatised by F is
completely defined thus. For example, a new sort T (possibly) depending on
other pre-defined sorts is constructed from constructors declared as functions.
The freeness axioms for the pre-defined sorts are imported and new axioms are
added to define the (new) functions and relations on T .

The syntax of a framework F is thus similar to that used in algebraic ab-
stract data types (e.g. [13,29,24]). However, whilst an algebraic abstract data
type is an initial model ([12,15]) of its specification, the intended model of F is
an isoinitial model. Of course, a framework may have no intended (i.e. reach-
able isoinitial) model. We will only ever use frameworks with such models, i.e.
adequate frameworks:

Definition 3. (Adequate Closed Frameworks)
A closed framework F is adequate if it has a reachable isoinitial model.
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Now a framework F may also contain other forms of formulas, such as:

• induction schemas (as we saw in Example 1);
• theorems, i.e. proven properties of the problem domain (we will not encounter

these in this paper);
• specifications, i.e. definitions of new symbols in terms of Σ symbols;
• (and even (steadfast)) programs.

However, such formulas are only admissible in F if their inclusion preserves F ’s
adequacy (we will return to this in Section 2.2).

An open framework F(Π) has a non-empty set Π of parameters, that can
be instantiated by closed frameworks as follows:

Definition 4. (Framework Instantiation)
Let F(Π) be an open framework with signature Σ, and G be a closed framework
with signature ∆. If Π is the intersection of Σ and ∆, and G proves the p-axioms
of F , then the G-instance of F , denoted by F [G], is the union of F and G.

Instantiation may be defined in a more general way, involving renamings.
Since renamings preserve adequacy and steadfastness, we can use this simpler
definition without loss of generality.

Now we can define adequate open frameworks:

Definition 5. (Adequate Open Frameworks)
An open framework F(Π) is adequate if, for every adequate closed framework
G, the instance F(Π)[G] is an adequate closed framework.

Adequacy means that parameter instantiation works properly, so we will also
refer to adequate open frameworks as parametric frameworks.

Example 2. (Open Frameworks)
The following open framework axiomatises the (kernel of the) theory of lists with
parametric element sort E lem and parametric total ordering relation � (we use
lower and upper case for elements and lists respectively):

Specification Framework LIST (E lem,�);
import: NAT ;
sorts: N at,E lem,List;
functions: nil :→ List;

· : (E lem,List)→ List;
nocc : (E lem,List)→ N at;

relations: elemi : (List,N at,E lem);
� : (E lem,E lem);
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axioms: c-axs(nil, ·);
elemi(L, i, a)↔ ∃h, T, j . L = h · T∧
(i = 0 ∧ a = h ∨ i = s(j) ∧ elemi(T, j, a));
nocc(x,nil) = 0;
a = b→ nocc(a, b · L) = nocc(a, L) + 1;
¬a = b→ nocc(a, b · L) = nocc(a, L);

p-axioms: x� y ∧ y � x↔ x = y;
x� y ∧ y � z → x� z;
x� y ∨ y � x.

where c-axs(nil, ·) contains Clark’s Equality Theory (see [20]) for the list con-
structors · and nil, and the first-order induction schema H(nil)∧(∀a, J . H(J)→
H(a · J))→ ∀L . H(L); the function nocc(a, L) gives the number of occurrences
of a in L, and elemi(L, i, a) means a occurs at position i in L. The p-axioms are
the parameter axioms for�. In this case, they state that�must be a (non-strict)
total ordering.

The parameters E lem and � can be instantiated (after a possible renaming)
by a closed framework proving the p-axioms. For example, suppose INT is
a closed framework axiomatising the set Int of integers with total ordering <.
Then LIST (Int, <)[INT ] becomes a closed framework with an isoinitial model
where Int is the set of integers, N at contains the natural numbers, and List finite
lists of integers. Note that LIST (Int, <)[INT ] contains the renaming of E lem
by Int and � by <. Note also that defined symbols can be renamed, when
convenient. For example, we could rename List by ListInt.

Whilst an adequate closed framework has one intended (isoinitial) model, an
adequate open framework has a class of intended models.

2.2 Specifications

A framework is the context where a specification must be written, where it
receives its proper meaning, and where we can reason about it and derive correct
programs from it.

More formally, a specification Sδ in a framework is an axiom that defines a
new relation δ in terms of the symbols Σ of the framework. Thus Sδ is a formula
containing symbols from Σ and the new relation symbols δ:

Definition 6. (Specifications)
In a specification framework F(Π), a specification Sδ is a set of sentences that
define new function or relation symbols δ in terms of the symbols Σ of F . If Sδ

contains symbols of Π , then it is called a p-specification.

Sδ can be interpreted as an expansion operator that associates with the
isoinitial model i of F one or more classes of (Σ + δ)-interpretations, that are
the expansions of i defined by Sδ.
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Definition 7. (Expansion)
Let j be a Σ-interpretation, and i be an expansion of j to Σ + δ. We say that i
is an expansion of j determined by a specification S (of δ) iff i |= S.

We say that Sδ is strict if it defines just one expansion; it is non-strict if it
defines more than one expansion. A more detailed discussion and classification
of specifications can be found in [17].

For uniformity, in this paper, we shall use only conditional specifications, that
is specifications of the form

∀x : X, ∀y : Y . Q(x)→ (r(x, y)↔ R(x, y))

where Q and R are formulas in the language of F , and x:X, y:Y are (possibly
empty) lists of sorted variables, with sorts in F . Q is called the input condition,
and R the output condition of the specification.

When Q is true, we drop it and speak of an iff specification. Iff specifications
are strict, while in general a conditional specification is not.

In our approach, we maintain a clear distinction between frameworks and
specifications. The latter introduce new symbols and assume their proper mean-
ing only in the context of the framework. To distinguish the specified symbols
from the signature of the framework, we will call them s-symbols. We also dis-
tinguish clearly between specifications and axioms.

Example 3. (Specifications)
In the open framework LIST (E lem,�), we can specify the following functions
and relations:

s-functions: l : List→ N at;
| : (List,List)→ List;

s-relations: mem : (E lem,List);
len : (List,N at);

append : (List,List,List);
perm : (List,List);
ord : (List);
sort : (List,List);

specs: mem(e, L)↔ ∃i . elemi(L, i, e);
len(L, n)↔ ∀i . i < n↔ ∃a . elemi(L, i, a);
n = l(L)↔ len(L, n);
append(A, B, L)↔ (∀i, a . i < l(A)→

(elemi(A, i, a)↔ elemi(L, i, a)))∧
(∀j, b . elemi(B, j, b)↔
elemi(L, j + l(A), b));

perm(A, B)↔ ∀e . nocc(e, A) = nocc(e, B);
C = A|B ↔ append(A, B, C);

p-specs: ord(L)↔ ∀i . elemi(L, i, e1) ∧ elemi(L, s(i), e2)→ e1 � e2;
sort(L, S)↔ perm(L, S) ∧ ord(S)
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As we will see in the next section, program predicates must be s-symbols.
However, the specification of a program predicate may be non-strict and, in this
case there may be many correct implementations, one for each expansion.

An s-symbol δ can be used also to expand the signature of the framework, in
order to get a more expressive specification language. In this case, the specifica-
tion Sδ is added to the axioms of the framework and δ is added to its signature.
This operation will be called framework expansion.

We must use adequate framework expansions, i.e. expansions that preserve
the adequacy of the framework. For example, the expansions of LIST (E lem,�)
by l , |, mem, append, perm, ord and sort in Example 3 can be shown to be
adequate. In the following we will consider F thus expanded.

2.3 Closed and Open Programs

Open programs arise in both closed and open frameworks.
An open program may contain open relations, or parameters. The parameters

of a program P are relations to be computed by other programs. They are not
defined by P .

A relation in P is defined (by P ) if and only if it occurs in the head of at
least one clause of P . It is open if it is not defined (by P ). An open relation in
P is also called a parameter of P .

A program is closed if it does not contain open relations. We consider closed
programs a special case of open ones.

Open programs are always given in the context of an (open or closed) frame-
work F(Π). In F(Π), we will distinguish program sorts, i.e. sorts that can be
used by programs. A closed program sort must have constructors (see axioms
c-axs(. . .)), and an open program sort may only be instantiated by program
sorts. In programs, constant and function symbols may only be constructors. A
program relation must be an s-symbol, i.e. it must have a specification.

Example 4. (Open Programs)
A possible open program for sort(L, S) in LIST (E lem,�) is the following:

sort(L, S)← L = nil, S = nil
sort(L, S)← L = h.T, part(T, h, TL1, TL2),

sort(TL1, TS1), sort(TL2, TS2), append(TS1, h.TS2, S)
part(L, p, S, B)← L = nil, S = nil, B = nil
part(L, p, S, B)← L = h.T, h� p, part(T, p, TS, TB),

S = h.TS ∧B = TB
part(L, p, S, B)← L = h.T,¬h� p, part(T, p, TS, TB),

S = TS ∧B = h.TB

The s-symbols sort and append are specified in Example 3. The conditional
specification of part can be found in Example 7.
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2.4 Program Schemas

For representing schemas [1,2,3,4,5,6,10,14,16,21,22,23,25,26,27,28], there are es-
sentially two approaches, depending on the intended schema manipulations.

First, most researchers represent their schemas as higher-order expressions,
sometimes augmented by extra-logical annotations and features, so that actual
programs are obtained by applying higher-order substitutions to the schema.
Such schemas could also be seen as first-order schemas, in the mathematical
sense, namely designating an infinite set of programs that have the form of the
schema. The reason why some declare them as higher-order is that they have
applications in mind, such as schema-guided program transformation [7,28,11],
where some form of higher-order matching between actual programs and schemas
is convenient to establish applicability of the starting schema of a schematic
transformation.

Second, Manna [21] advocates first-order schemas, where actual programs
are obtained via an interpretation of the (relations and functions of the) schema.
This is related to the approach we advocate here, namely that a schema S can
also be represented as a (first-order) framework F containing an open program
T , so that actual programs can be obtained by adding programs for some (but
not necessarily all) of T ’s open relations. So there is no need to invent a new (or
higher-order) schema language, at least in a first approximation (but see [6]).

Formally we define a program schema as follows:

Definition 8. (Program Schemas)
A (program) schema for a relation r is an open framework S(Π) containing a
program Pr for r.
Pr is called the template of S(Π).
The p-axioms and the p-specifications are called the constraints of S(Π). More-
over, relation symbols of Π used only in specifications and (possibly) in p-axioms
are called s-parameters.
A schema S covers a program P if (S and) its template can be instantiated to
P .

We distinguish s-parameters from other parameters because in an instantia-
tion by a closed framework G they can be replaced by formulas of the language of
G.1 This does not hold for other parameters, since they must be instantiated by
symbols of G, in order to get a closed instance of the framework with a reachable
isoinitial model.

Most definitions of schemas, with the laudable exception of the one by Smith
[25,26], reduce this concept to what we here call the template. Such definitions
are thus merely syntactic, providing only a pattern of place-holders, with no
concern about the semantics of the template, the semantics of the programs it
covers, or the interactions between these place-holders. So a template by itself
has no guiding power for teaching, programming, or synthesis, and the additional
knowledge (corresponding to our constraints) somehow has to be hardwired into

1 Of course, after the replacement, the p-axioms must be satisfied.
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the system or person using the template. Despite the similarity, our definition
is an enhancement of even Smith’s definition, because we consider relational
schemas (rather than “just” functional ones), open schemas (rather than just
closed ones), and set up everything in the explicit, user-definable background
theory of a framework (rather than in an implicit, predefined theory). The notion
of constraint even follows naturally from, or fits naturally into, our view of
correct schemas as (adequate) frameworks containing steadfast programs (see
later), rather than as entities different from programs.

Example 5. (Program Schemas)
The schema in Figure 1 is our way of defining the divide-and-conquer schema.
Note that the schema contains only p-axioms, and that Ir, Or, . . . are s-parame-
ters, i.e. they can be replaced by formulas in framework instantiations.

Schema DC(X, Y, H,≺, Ir, Or, Idec, Odec);

sorts: X, Y, H;

relations: Ir, Idec : (X);
Or : (X, Y);
Odec : (X, H, X, X);

p-axioms: Idec(x) ∧Odec(x, hx, tx1, tx2)→ Ir(tx1) ∧ tx1 ≺ x
∧Ir(tx2) ∧ tx2 ≺ x;

Idec(x)→ ∃h, x1, x2 . Odec(x, h, x1, x2);

(c1)

(c2)

p-specs: Ir(x, y)→ (r(x, y)↔ Or(x, y))
Ir(x)→ (primitive(x)↔ ¬Idec(x))
Idec(x)→ (decompose(x, hx, tx1, tx2)↔

Odec(x, hx, tx1, tx2))
Ir(x) ∧ ¬Idec(x)→ (solve(x, y)↔ Or(x, y))
Odec(x, hx, tx1, tx2) ∧Or(tx1, ty1) ∧Or(tx2, ty2)→

(compose(hx, ty1, ty2, y)↔ Or(x, y))

(Sr)
(Sprim)
(Sdec)

(Ssolve)
(Scomp)

template: r(x, y)← primitive(x), solve(x, y)
r(x, y)← ¬primitive(x),decompose(x, hx, tx1, tx2),

r(tx1, ty1), r(tx2, ty2), compose(hx, ty1, ty2, y)
(Tr)

Fig. 1. A divide-and-conquer schema.

3 Correct Schemas

A model-theoretic definition of correctness of open programs in a framework,
called steadfastness, is given in [19]. Here, we give a less abstract, but more
conventional definition. In this paper, for simplicity, we only give definitions
and results that work for definite programs. Nevertheless they extend to normal
programs, under suitable termination assumptions.

For closed programs in closed frameworks, we have the classical notion of
(total) correctness:
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Definition 9. (Total Correctness)
In a closed framework F with isoinitial model i, a closed program Pr for relation
r is totally correct wrt its specification Sr

∀x : X, ∀y : Y . Ir(x)→ (r(x, y)↔ Or(x, y)) (Sr)

iff for all t : X and u : Y such that i |= Ir(t) we have:

i |= Or(t, u) iff Pr ` r(t, u) (1)

If Pr satisfies the if-part of (1), it is partially correct (wrt Sr). If it satisfies the
only-if part, then it is total.

Total correctness as defined here is unsatisfactory for logic programs, since
it cannot deal with different cases of termination. In particular, we consider the
following two cases:

(i) Pr is totally correct wrt to Sr, and terminates with either success or finite
failure, for every ground goal ← r(t, u) such that i |= Ir(t).
In this case, Pr correctly decides r, and we say that Pr is correct wrt
TC(r, Sr).

(ii) Pr is partially correct wrt Sr, and, for every ground t : X such that i |= Ir(t),
the computation with open goal← r(t, y) terminates with at least one answer
y = u.
In this case, Pr correctly computes a selector of r (i.e. a function or relation
that, for every input x such that Ir(x), selects at least one output y such
that Or(x, y)), and we say that Pr is correct wrt PC(r, Sr).

TC(r, Sr) and PC(r, Sr) are called termination requirements.
It is easy to see that total correctness is too weak for case (i), since a to-

tally correct Pr could fail to terminate for a false r(t, u), and too strong for
case (ii), since for computing a selector, we do not need success for every true
r(t, u)). Therefore, a specification of a program relation r will be of the form
(Sr, S1, . . . , Sn, Tr ⇐ T1, . . . , Tn), i.e. it will include a termination requirement.
Moreover, in the definition of steadfastness, we will consider correctness wrt
(Si, Ti) and (Sr, Tr), instead of total correctness.

Termination and termination requirements are an important issue. For lack
of space, however, we will not further deal with them here.

The definition of correctness wrt (Sr, Tr) is still unsatisfactory. First, it de-
fines the correctness of Pr in terms of the programs for the relations other than
r, rather than in terms of their specifications. Second, all the programs for these
relations need to be included in Pr (this follows from Pr being closed), even
though it might be desirable to discuss the correctness of Pr without having to
fully solve it (i.e. we may want to have an open Pr). So, the abstraction achieved
through the introduction (and specification) of the new relations is wasted.

This leads us to the following notion of steadfastness of an open program in
a closed framework.
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Definition 10. (Steadfastness in a Closed Framework)
In a closed framework F , let Pr be an open program for r, with parameters p1,
. . . , pn, specifications Sr, S1, . . . , Sn, and termination requirements Tr, T1, . . . ,
Tn.
Pr is steadfast in F if, for any closed programs P1, . . . , Pn that compute p1, . . . , pn

such that Pi is correct wrt (Si, Ti), the (closed) program Pr ∪ P1 ∪ . . . ∪ Pn is
correct wrt (Sr, Tr).

Now we can define steadfastness in an open framework:

Definition 11. (Steadfastness in an Open Framework)
In an open framework F(Π), let Pr be an open program for r, with parameters
p1, . . . , pn, specifications Sr, S1, . . . , Sn, and termination requirements Tr, T1,
. . . , Tn.
Pr is steadfast in F(Π) if it is steadfast in every instance F [G] for a closed
framework G.

This is similar to Deville’s notion of ‘correctness in a set of specifications’ [5,
p.76], except that his specifications and programs are not set within frameworks.
Moreover, we also (but not in this paper, hence the simplified definition above)
consider other cases of steadfastness, namely where several (but not necessarily
all) defined relations of a program are known by their specifications, the other
defined relations being known by their clauses only.

Now we can formally define correctness for program schemas:

Definition 12. (Correct Program Schemas)
A (program) schema for a relation r, i.e. an (adequate) open framework S(Π)
containing a template Pr for r, is correct iff Pr is steadfast in S(Π).

Example 6. (Correct Program Schemas)
We will now show that the schema S in Example 5 is correct because (S is

an adequate framework and) its template Tr:

r(x, y)← primitive(x), solve(x, y)
r(x, y)← ¬primitive(x), decompose(x, hx, tx1, tx2),

r(tx1, ty1), r(tx2, ty2), compose(hx, ty1, ty2, y)
(Tr)

is steadfast, if we add to it the following termination requirement:

t-reqs: PC(r, Sr)⇐ TC(primitive, Sprimitive),PC(solve, Ssolve),
PC(decompose, Sdecompose),PC(compose, Scompose)

In fact we can derive the whole schema (including these termination require-
ments) from our attempt to prove that Tr is steadfast. Thus this example also
serves to illustrate how we might derive correct schemas.

In the absence of constraints, an open program such as Tr has no fixed
meaning, since it covers every program, which is obviously nonsensical. Indeed,
it would suffice to instantiate primitive by true, and solve by the given program!



On Correct Program Schemas 139

However, we can give this template an informal intended semantics, as follows.
For an arbitrary relation r over formal parameters x and y, the program is to
determine the value(s) of y corresponding to a given value of x. Two cases arise:
either x has a value (when primitive(x) holds) for which y can be easily directly
computed (through solve), or x has a value (when ¬primitive(x) holds) for
which y cannot be so easily directly computed; the divide-and-conquer principle
is then applied by:

1. dividing (through decompose) x into a term hx and two terms tx1 and tx2

that are both of the same sort as x but smaller than x according to some
well-founded order,

2. conquering (through r) to determine values of ty1 and ty2 corresponding to
tx1 and tx2, respectively,

3. combining (through compose) terms hx, ty1, ty2 to build y.

Just as the semantics of open programs is defined parametrically, we can do
the same for this template, and whilst so doing, we can enforce the informal
semantics and supply the corresponding axioms of the open relations (i.e. the
constraints of the schema). We can do so by introducing an open framework
S(Ir , Or, . . .) with a signature containing the sorts of the template and the open
relation symbols Ir, Or, . . . We can abduce the constraints of the schema by
proving at an abstract level that Tr is steadfast in S, wrt the specifications of
r and the unknown axioms of the open relations the template introduces, and
enforcing the informal semantics of the template during this proof. The proof
itself must of course fail due to the lack of knowledge about r and the intro-
duced open relations, but the reasons of this failure can be used to abduce the
necessary relationships between r and these open relations. These relationships
are of course the constraints on the open relations of the template!

Program Tr is steadfast in S if it is steadfast in every instance of S. So
let F be a generic instance S[G], where G is a closed framework. Suppose the
specification of r in F is:

∀x : X, ∀y : Y . Ir(x)→ (r(x, y)↔ Or(x, y)) (Sr)

We have to find (at least) the p-specifications (in F) Sprim, Ssolve, Sdec, Scomp of
primitive, solve, decompose, compose, respectively, such that Tr is a steadfast
program for r in F . For each Si, let the input and output conditions be Ii and
Oi respectively.

Suppose also that we only require that instances of the template Tr be par-
tially correct and terminating (i.e. PC(r, Sr) holds for each instance). Let t be
a ground term such that Ir(t), and consider the open goal ← r(t, Y ). We have
to prove that Tr terminates with some answer Y = u. We have the following
possibilities:

1. The next goal is← primitive(t), solve(t, Y ), and primitive(t) succeeds. We
are blocked, but we can unblock the situation by abducing that PC(solve,
Ssolve) holds and that:

Ir(t) ∧Oprim(t)→ Isolve(t) (2)
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2. The next goal is ← primitive(t), . . . or← ¬primitive(t), . . ., and the call to
primitive(t) does not terminate. We have to exclude this case, so we assume
TC(primitive, Sprimitive) and:

Ir(t)→ Iprim(t) (3)

3. The next goal is ← ¬primitive(t), . . . and primitive(t) finitely fails. Then
we get the goal← decompose(t, HX, TX1, TX2), r(TX1, TY1), r(TX2, TY2),
compose(HX, TY1, TY2, Y ). Again, we are blocked, but we can unblock the
situation by assuming:

Idec(t) ∧Odec(t, HX, TX1, TX2)→ Ir(TX1) ∧ TX1 ≺ t∧
Ir(TX2) ∧ TX2 ≺ t

(4)

where ≺ is a well-founded relation.2 By structural induction, we can see that,
if PC(decompose, Sdecompose), PC(compose, Scompose), and

Ir(t) ∧ ¬Oprim(t)→ Idec(t) (5)

Idec(t) ∧Odec(t, HX, TX1, TX2) ∧Or(TX1, TY1) ∧Or(TX2, TY2)
→ Icomp(HX, TY1, TY2, Y ) (6)

then the computation terminates with an answer for Y . Indeed, by the in-
duction hypothesis, we can assume that, for TX1 ≺ t and TX2 ≺ t, program
Tr computes TY1 and TY2 such that Or(TX1, TY1) ∧Or(TX2, TY2) holds.

Thus, we have abduced:

PC(r, Sr)⇐ TC(primitive, Sprimitive),PC(solve, Ssolve),
PC(decompose, Sdecompose),PC(compose, Scompose)

(7)

PC(solve, Ssolve), PC(decompose, Sdecompose), and PC(compose, Scompose) ad-
mit correct programs only if their specifications Ssolve, Sdec, and Scomp are such
that

Idec(t) → ∃HX, TX1, TX2 . Odec(t, HX, TX1, TX2)
Icomp(HX, TY1, TY2)→ ∃Y . Ocomp(HX, TY1, TY2, Y )
Isolve(t) → ∃Y . Osolve(t, Y )

(8)

Now we have to prove that Tr is partially correct. For this, we assume:3

r(x, y) ↔ ¬Ir(x) ∨Or(x, y)
primitive(x) ↔ ¬Iprim(x) ∨Oprim(x)
solve(x, y) ↔ ¬Isolve(x) ∨Osolve(x, y)
decompose(x, hx, tx1, tx2)↔ ¬Idec(x) ∨Odec(x, hx, tx1, tx2)
compose(hx, ty1, ty2, y) ↔ ¬Icomp(hx, ty1, ty2, y)∨

Ocomp(hx, ty1, ty2, y)

(9)

2 In the isoinitial model and, hence, in the Herbrand base of the closed version T ′
r of

Tr.
3 Here we make use of the fact that if F∪{∀x : X,∀y : Y . r(x, y)↔ ¬Ir(x)∨Or(x, y)} `

Tr, then Tr is partially correct wrt Sr. See [19].
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We have to prove that F∪(9) ` Tr. Let us try to prove the first clause. We
abduce:

¬Ir(x) ∨Or(x, y)← (¬Iprim(x) ∨Oprim(x)) ∧ (¬Isolve(x) ∨Osolve(x, y))

This is logically equivalent to

Or(x, y)← Ir(x) ∧ (¬Iprim(x) ∨Oprim(x)) ∧ (¬Isolve(x) ∨Osolve(x, y))

Since any instance F must prove the p-axioms of S and since we have already
abduced (2) and (3), we can simplify this to:

Or(x, y)← Ir(x) ∧Oprim(x) ∧Osolve(x, y) (10)

By an analogous reasoning, from the attempt of proving the second clause, we
obtain the simplified p-axiom:

Or(x, y)← Ir(x) ∧ ¬Oprim(x) ∧Odec(x, hx, tx1, tx2)∧
Or(tx1, ty1) ∧Or(tx2, ty2) ∧Ocomp(hx, ty1, ty2, y) (11)

As before, the simplification of the input conditions is due to the p-axioms al-
ready abduced.

By the above proof, we have abduced a schema containing a suitable signa-
ture, our template, the termination requirements (7), and the p-axioms (2) . . .
(11).

This schema is correct, but it contains redundancies, due to constraints that
make some parameters depend on others. We can try to simplify it as follows:

1. When we use the schema, we know the actual specification, which specifies
in F a program P ′

r such that PC(r, Sr) holds, so we can instantiate Ir, Or,
X, and Y.

2. Then we instantiate ≺ by a well-founded relation on X.
3. Now the two constraints (10) and (11) contain four unknown output condi-

tions. If we fix some of them, we can hope to deduce the other ones, and to
simplify some constraints. In a divide-and-conquer strategy, it is reasonable
to assume that we first choose the decomposition, i.e. Idec and Odec. We
now have to infer Iprim and Oprim such that they satisfy the constraints (3)
and (5). A possible reduction is based on the observation that (5) is logi-
cally equivalent to Ir(x) → (Oprim(x) ← ¬Idec(x)). We replace ← by ↔.
By identifying Iprim and Ir, we satisfy (3) and can thus reduce Sprim to:

Ir(x)→ (primitive(x)↔ ¬Idec(X))

hence setting Oprim to ¬Idec.
4. Now, by substitution and a simple logical manipulation, we transform (10)

and (11) into:

Ir(x) ∧ ¬Idec(x)→ (Or(x, y)← Osolve(x, y))
Ir(x) ∧ Idec(x) ∧Odec(x, hx, tx1, tx2) ∧Or(tx1, ty1) ∧Or(tx2, ty2)→
(Or(x, y)← Ocomp(hx, ty1, ty2, y))
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where the unknown predicates Ocomp and Osolve are defined, on the right-
hand side of →, by ← instead of ↔. We can assume stronger4 constraints,
by replacing ← by ↔. We get a conditional definition of Osolve and Ocomp.
Moreover, Ssolve and Scomp can be reduced to:

Ir(x) ∧ ¬Idec(x)→ (solve(x, y)↔Or(x, y))
Odec(x, hx, tx1, tx2) ∧Or(tx1, ty1) ∧Or(tx2, ty2)→ (compose(hx, ty1, ty2, y)

↔ Or(x, y))

Using the reduced specifications, we see that the constraints (2), (6), and
the second and third constraints of (8) become proved.

Therefore we obtain the schema DC as defined in Example 5.
The above abduction process proves the following theorem:

Theorem 1. (Correctness of the divide-and-conquer schema)
The schema DC in Example 5, with the addition of the termination requirement
(7), is correct, i.e. it contains a steadfast template.

This theorem is related to the one given by Smith [25] for a divide-and-
conquer schema in functional programming. The innovations here are that we
use specification frameworks and that we can thus also consider open programs.
Moreover, we could also prove total correctness (and not just partial correctness
as we have done here), because we are in a relational setting. Finally, we elim-
inated Smith’s Strong Problem Reduction Principle by endeavouring to achieve
these objectives.

Finally, we can specialise a schema to a data type. For example, we can
incorporate the data type of lists with generic elements, by incorporating in S
the framework LIST (X,�), or part of it. All the properties of S are inherited,
and we can add further properties. For example, we can already know at the
schema level that the relation defined by A ≺ B ↔ l(A) < l(B) is a well-
founded relation in every instance of the schema, and therefore that it is one of
the candidates to be used when instantiating the template.

4 Using Correct Schemas in Practice

Our characterisation of correct program schemas allows us to synthesise stead-
fast open programs. This is a significant step forwards in the field of synthesis,
because the synthesised programs are then not only correct, but also a priori
correctly reusable. This is achieved by means of steadfast templates together
with their constraints. However, since we have identified correct templates with
steadfast programs, there seems to be some circularity in our argument: how
can we guide the synthesis of steadfast programs by steadfast programs? The
answer is that some open programs are “more open” than others, and that such
4 This reduces the search space, but, in general, it could cut some solutions. We do

not discuss this issue here.
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“more open” programs thus have more “guiding power,” especially considering
the specifications for their open relations. In [9], we discuss the synthesis of
steadfast programs guided by correct schemas. To conclude this paper, in this
section we briefly outline the main ideas.

Much of the program synthesis process can be pre-computed at the level
of “completely open” schemas. The key to pre-computation is such a schema,
especially its constraints. These specifications can be seen as an “overdetermined
system of equations (in a number of unknowns)”, which may be unsolvable as
it stands (for instance, this is the case for the divide-and-conquer schema in
Example 5). An arbitrary instantiation (through program extension), according
to the informal semantics of the template, of one (or several) of its open relations
may then provide a “jump-start”, as the set of equations may then become
solvable.

This leads us to the notion of synthesis strategy (cf. Smith’s work [25]),
as a pre-computed (finite) sequence of synthesis steps, for a given schema. A
strategy has two phases, stating (i) which parameter(s) to arbitrarily instantiate
first (by re-use), and (ii) which specifications to “set up” next, based on a pre-
computed propagation of these instantiation(s). Once correct programs have
been synthesised from these new specifications (using the synthesiser all over
again, of course), they can be composed into a correct program for the original
specified relation, according to the template. There can be several strategies for
a given schema (e.g., Smith [25] gives three strategies for a divide-and-conquer
schema), depending on which parameter(s) are instantiated first (e.g., decompose
first, or compose first, or both at the same time).

Synthesis is thus a recursive problem reduction process followed by a recur-
sive solution composition process, where the problems are specifications and the
solutions are programs. Problem reduction stops when a “sufficiently simple”
problem is reached, i.e. a specification that “reduces to” another specification
for which a program is known and can thus be re-used. This is thus the “base
case” of synthesis, and requires a formalisation of the process of re-use (see [9]
for details).

Let us illustrate these ideas on the divide-and-conquer schema. In [8], we
design the following strategy for it:

1. Select an induction parameter among x and y (such that it is of an
inductively defined sort). Suppose, without loss of generality, that x is se-
lected.

2. Select (or construct) a well-founded order over the sort of the induction
parameter. Suppose that ≺ is selected (from a “knowledge base”).

3. Select (or construct) a decomposition operator decompose. Suppose
that the following specification is selected (from a “knowledge base”):

∀x, t1, t2 : X, ∀h : H .
Idec(x)→ (decompose(x, h, t1, t2)↔ Dec(x, h, t1, t2)).

(S′
dec)
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4. Set up the specification of the discriminating operator primitive.
This amounts to first deriving a formula G such that

F |= ∀x, tx1, tx2 : X, ∀hx : H . G(x)∧
Dec(x, hx, tx1, tx2)↔ Ir(tx1) ∧ Ir(tx2) ∧ tx1 ≺ x ∧ tx2 ≺ x,

and then setting up the following specification:

∀x : X . primitive(x)↔ ¬(Idec(x) ∧G(x)). (S′
prim)

5. Set up the specification of the solving operator solve. All place-holders
of Ssolve are known now, so we can set up a specification S′

solve by instanti-
ating inside Ssolve.

6. Set up the specification of the composition operator compose. Sim-
ilarly, all place-holders of Scomp are known now, so we can set up a specifi-
cation S′

comp by instantiating inside Scomp.

Four specifications (S′
dec, S′

prim, S′
solve, and S′

comp) have been set up now, so four
auxiliary syntheses can be started from them, using the same overall synthesiser
again, but not necessarily the (same) strategy for the (same) divide-and-conquer
schema. The programs Pdec, Pprim, Psolve, and Pcomp resulting from these aux-
iliary syntheses are then added to the open program Pr of the schema, which
extension of Pr is guaranteed, by Theorem 1, to be steadfast.

Example 7. (A Sample Synthesis)
Suppose in LIST (E lem,�) we want a steadfast sorting program with termina-
tion requirement PC(sort, Ssort).

First, we select the specification of a decomposition operator part, partition-
ing a list L into its first element h, the list A of its remaining elements that are
smaller (according to �) than h, and the list B of its remaining elements that
are not smaller (according to �) than h:

¬L = nil→ (part(L, h, A, B)↔
L = h.T ∧ perm(A|B, T ) ∧A < h ∧B = h) (Spart)

where the following axioms:

L < e↔ ∀x . mem(x, L)→ x� e
L = e↔ ∀x . mem(x, L)→ ¬x� e

are added to LIST (E lem,�).
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In [9], we synthesise the following extension of the divide-and-conquer tem-
plate by using the strategy outlined above:

sort(L, S)← primitive(L), solve(L, S)
sort(L, S)← ¬primitive(L), part(L, h, A, B),

sort(A, C), sort(B, D), compose(h, C, D, S)
primitive(L)← L = nil

solve(L, S)← S = nil
part(L, h, A, B)← L = h.T, part(T, h, A, B)
part(L, p, A, B)← L = nil, A = nil, B = nil
part(L, p, A, B)← L = h.T, h� p, part(T, p, TA, TB), A=h.TA, B=TB
part(L, p, A, B)← L = h.T,¬h� p, part(T, p, TA, TB), A=TA, B=h.TB

compose(e, C, D, S)← append(C, e.D, S)

This is the classical Quicksort program. After a series of unfolding steps, this
program can easily be transformed into the program of Example 4. Note that
this is an open program, as there are no clauses yet for append, nor for �.

5 Conclusion

We have shown that program schemas can be expressed as open (first-order)
specification frameworks containing steadfast open programs, and we have out-
lined how correct and a priori correctly reusable (divide-and-conquer) programs
can be synthesised, in a schema-guided way, from formal specifications expressed
in the first-order language of a framework. These aspects of schema-guided syn-
thesis are our new contribution.

Our work is very strongly influenced by Smith’s pioneering work [25] in func-
tional programming in the early 1980s. This is, in our opinion, inevitable, as this
approach seems to be the only structured approach to synthesis. Our work is
however not limited to simply transposing Smith’s achievements to the logic pro-
gramming paradigm: indeed, we have also enhanced the theoretical foundations
by adding frameworks, enlarged the scope of synthesis by allowing the synthesis
of a larger class of non-deterministic programs, and simplified (the formulation
and proof of) the theorem on the correctness of the divide-and-conquer schema
(Theorem 1).

Future work includes redoing the constraint abduction process for a more
general (divide-and-conquer) template, namely where nonPrimitive(x) is not
necessarily ¬primitive(x), and developing the corresponding strategies, in order
to allow the synthesis of a larger class of non-deterministic programs.

Other strategies for the divide-and-conquer schema need to be elaborated,
and other design methodologies need to be captured in program schemas and
strategies.

Another important objective is the development of a proof system for deriv-
ing antecedents (as needed at Step 4 of the given strategy) and for obtaining
simplifications of output conditions (the specifications S′

solve and S′
comp are often

amenable to considerable simplifications). Eventually, a proof-of-concept imple-
mentation of the outlined synthesiser (and the adjunct proof system) is planned.
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