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1 Introduction 

Recently, there has been tremendous progress in the development of fast solvers for 

the computational electromagnetics. A number of fast iterative solvers [l-7] have 

been developed as a result of this effort and applied to the solution of large prob- 

lems using limited computational resources. A drawback of the iterative solvers, 

which have remarkable performances in solving large problems, is their slow or lack 

of convergence for the solution of problems that involve resonant or near-resonant 

structures. For such cases, the number of iterations may become exceedingly large 

rendering the iterative solver useless. Direct solvers do not share this drawback, 

however, a straightforward direct solver, such as Gaussian elimination, requires 

O(N3) operations to solve an N-unknown problem. This high computational com- 

plexity prohibits the solution of large problems with limited resources. Therefore, 

at least for problems involving resonant or near-resonant structures, what is needed 

is a direct (noniterative) solver with reduced computational complexity. A family 

of such solvers will be introduced in this presentation. 

In addition to being alternatives to iterative solvers, fast direct solvers can 

also be used in the framework of iterative solvers as preconditioners and to obtain 

accurate initial guesses for parts of the geometry. In both cases, the objective is to 

utilize the direct solvers in a way to accelerate the iterative solvers by reducing the 

number of iterations required to reach the given convergence criteria. In the case 

of block-diagonal preconditioners, for instance, the reduced complexity of the fast 

direct solvers would allow for the solution of blocks with larger sizes, resulting in 

better preconditioning and thus faster convergence. Similarly, an initial guess that 

is required to start an iterative scheme can be improved by solving for the critical 

parts of the geometry using a fast direct solver, and thus reducing the number of 

iterations. 
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2 A Family of Fast Direct Solvers 

The fast direct solvers that will be presented in this paper are based on the recursive 

interaction matrix algorithm (RIMA) [8 lo] and exploit the aggregation concept 

of the recursive aggregate T-matrix algorithm (RATMA) [ll] to accelerate the 

solution. Due to the space considerations, only outlines of the algorithms will be 

given in this summary, saving the details for the presentation. 

Consider a matrix equation 

‘5.a=v (1) 

obtained by the method-of-moments (MOM) discretization of an integral-equation 

formulation of a scattering problem. In the above, S is an N x N matrix, usually re- 

ferred to as the impedance matrix, a is a vector of N unknown current coefficients, 

and v is an arbitrary right-hand-side (RHS) vector of length N. Equation (1) is 

also commonly expressed as A x = b and Z I = V using alternative notations, 

but obviously with the same meaning. 

RIMA [8 lo] gives an exact solution of Eq. (1) by computing the inverse matrix 

s-l in O(N3) operations for any arbitrary geometry. On the other hand, RATMA 

[ll] does not attempt to solve Eq. (1). Instead, RATMA expresses the scattered 

fields of individual subscatterers in terms of harmonics, aggregates the harmonics, 

and obtains the overall scattered field of N subscatterers in less than O(N3) oper- 

ations. However, some restrictions on the geometry exist. The direct solvers to be 

presented in this paper combine the advantages of RIMA and RATMA: they have 

less than O(Ns) computational complexity due to aggregation of the scattered 

fields, and they are applicable to arbitrary geometries. 

2.1 Direct Algorithm to Compute the Scattered Field 

This algorithm avoids the solution of Eq. (1) for the unknown vector of current 

coefficients a, but instead directly computes the scattered field in O(NP’) op- 

erations. This is accomplished by progressively adding new subscatterers to the 

problem and exactly computing their interactions with the existing ones, similar to 

the way RIMA works. However, in order to reduce the computational complexity, 

the geometry is divided into three regions, whose contents are changing at each 

recursion step, as depicted in Fig. 1. Assuming that the scattered fields of the 

subscatterers in the inner zone and the buffer region are already computed, the 

fields of the subscatterers in the inner zone are aggregated. In the next step, a new 

subscatterer from the outer zone is added to the problem geometry. The interac- 

tions of this new subscatterer with those in the buffer region are computed using 

RIMA. However, the interactions of the recently added subscatterer with those 

in the inner zone are computed using a faster method that resembles RATMA. 

Consequently, a fast technique with no geometry restrictions is obtained for the 

computation of the scattered field. 
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Figure 1: A buffer region is established to separate the inner zone from the outer 

none in such a way that the scatterers belonging to inner and outer zones do not 

overlap at all. 

2.2 Direct Algorithm to Invert the Impedance Matrix 

It is possible to compute the entries of the inverse of the impedance matrix ‘5 in 

Eq. (1). The computation of the entries of the inverse matrix within a band of 

width b around the diagonal requires O(NP’) operations, assuming that the band- 

width b is a constant independent of N. The computation of all the other entries 

outside of this band requires O(N’P) p o erations. Thus, the cost of computing 
the complete inverse scales as O(N’P + NP’). In addition, the multiplication 

a = ??I v requires O(N) operations if the inverse matrix ??I is banded, and 

O(N’) operations if s-l is full, for each distinct RHS vector v. 

The banded portion of the inverse matrix can be utilized in a number of appli- 

cations. The banded matrix (with the entries outside the band filled with zeros) 

is an approximation to the full inverse matrix. However, this is an excellent ap- 

proximation since the nonzero entries of the banded matrix are exactly equal to 

the corresponding entries of the full matrix. This high-quality approximate inverse 

can be used as a preconditioner in an iterative technique. 

2.3 Direct Algorithm to Compute the Current Coefficients 

It is also possible to compute directly the unknown vector of current coefficients 

a in Eq. (1) without first computing the inverse matrix s-l. Once the algorithm 

outlined in Section 2.1 is completed at a cost of O(NP’) operations, a can be com- 

puted in O(NP) operations for each distinct v. Thus, this is a two-step algorithm, 

where the first step is more expensive but needs to be performed only once, and 

the second step is less expensive and can be repeated for each distinct RHS vector 

that depends on the excitation. An analogy can be drawn between this two-step 

algorithm and the combination of the LU decomposition and the back substitution 

for the solution of matrix equations. 
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2.4 Computational Complexities 

In the above, computational complexities of the algorithms are expressed in terms 

of P, which is the number of harmonics required to express the scattered field of a 

larger scatterer made up of N subscatterers. Clearly then, P depends on N. The 

exact dependence of P on N is determined by the geometry. Table 1 summarizes 

this dependence for some interesting cases. 

Geometry Dependence of P O(NP’) becomes O(NP) b ecomes 

1D PocN’ O(N) O(N) 
Planar 2D P LX log N O(N log” N) O(N log N) 

2D Pocfi OW) O(N1.5) 

Planar 3D P LX fi log N O(N210g2 N) O(N1.5 log N) 

3D P LX N213 O(N713) O(N513) 

Table 1: Dependence of P on N, and consequently, the ultimate expressions for 

the computational complexities are determined by the geometry 
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