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ABSTRACT 
Subband decomposition is widely used in signal processing 
applications including image and speech compression. In 
most practical cases, the goal is to obtain subband signals 
that are suitable for data compression. In this paper, we 
present Perfect Reconstruction (PR) polyphase filter bank 
structures in which the filters adapt to the changing input 
conditions. This leads to higher compression results for 
images containing sharp edges, text, and subtitles. 

1. ADAPTIVE PREDICTION FILTERS IN 
POLYPHASE FORM 

Consider the simple two band PR polyphase decomposition 
structure shown in Figure 1 in which the filter Pi can be 

Figure 1: Polyphase analysis and synthesis structure 

either linear or nonlinear [1],[2]. This structure has a simple 

(1) 
transform matrix: -P1(.) 

p = [ :  1 ] 
A good PI filter would be the one that can predict the sam- 
ples of z z ( n )  as close as possible. In binary image coding, 
successful coding results are obtained by selecting PI as a 
median filter [3]. In [4], the PI is chosen as a FIR low-pass 
and a median filter pair which are interchanged according 
to characteristics of the input signal. In this paper, the 
adaptive FIR filters and adaptive order statistics filters are 
used in the filter bank and image coding algorithms are de- 
veloped based on the resulting structure. In all cases, the 
inverse of the P matrix in Eq. (1)  is given as: 

1 Pl(.) 
. - I = [  0 1 ] 

A predictor should be adaptive for image and video sig- 
This reasoning nals as they are unstationary in nature. 
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Figure 2: Adaptive s t r u c t u r e a l y s i s  stage 

Figure 3 :  Adaptive structure synthesis stage 

leads t,o the polyphase structure shown in Fig. 2 in which 
the prediction filter adapts itself to minimize the highband 
signal zh(12). In this way, unnecessary information in zz (n)  
is removed and an uncorrelated signal is transmitted to the 
receiver. This is especially useful when there are sharp 
transition regions in an image such as subtitles, text and 
graphics. 

The polyphase adaptive filter bank structure is shown 
in Figures 2, 3 .  In this figure, the signal ~ 2 ( n )  is predicted 
from z1(n)  (or from the even samples of z ( n ) )  as follows: 

N M 

h ( n )  = a m ( n -  k )  = a 4 2 n  - 2 k )  ( 3 )  
k = - N  k = - N  

where the filter coefficients ak’s  are updated using an LMS- 
type algorithm [5],[6], and the subsignal x h  is given by 

z h ( n )  = .Z(.) - Pl(z1) = zZ(n) - 22(n). (4) 
Since z h ( n )  corresponds to the error signal in the adapta- 
tion algorithm, the decoder can also update the filter coeffi- 

that the PR property is preserved as long as the same adap- 
tation strategy is used in both encoding and decoding. 

Another choice for PI is the adaptive Order Statistics 
(OS) filter [7]-[lo]. Similar to the adaptive FIR case, the 
OS filters can be adapted by minimizing the subsignal Z h  
using an adaptation strategy. 

cients without any side information. It  can easily be shown 
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2. MULTICHANNEL EXTENSIONS OF THE 
BASIC ADAPTIVE FILTER BANK 

The structure in Fig. 1 and 2 can be extended to contain 
cascaded PR blocks as follows: 

where the filters PI ,  G I ,  P2, .. . can be linear, nonlinear or 
adaptive. In this way, the upper and lower branch subsig- 
nals can be filtered a number of times. The inverse matrix 
is given as 

Multichannel and multidimensional extensions are also 
possible in a straightforward manner. An example of the 
PR multichannel extension is illustrated in Fig. 4. In this 

Yp) 

Figure 4: Multi-band analysis structure 

figure, an M band decomposition with two cascaded PR 
building blocks is illustrated. The PR property of this struc- 
ture can be proved easily. In the analysis stage, 

z1 = 2 1  

zi = x i  - P i - i ( ~ i - i ) ,  i = 2 , 3  ,..., M 
~i = Z ,  + G;(z;+i), i = 1 , 2  ,..., M - 1 
Y M  = ZM 

(7) 

The corresponding P matrix for this example can be given 
as : 

The outputs, xi, of the synthesis filters are the same as 
the polyphase components, x i ,  of the analysis filter bank. 
Notice that there are no restrictions on the filters Pi and 
G, for perfect reconstruction. 

Figure 5: Multfband analysis structure - 2 

Another multichannel extension structure is illustrated 
in Fig. 5. The previous structure was considering the near- 
est polyphase component value of the input data stream. 
However, the structure in Fig. 5 is using increasing amount 
of polyphase component values for prediction as you go from 
up to  down in the figure. The analysis and synthesis equa- 
tions for this structure can be given as follows. 
Analysis: 

21 = 2 1  

2, = xt - I't-1,e-l (-Pe-~,e-2(-P1-3,1-3(. * * (-PI,])))) 
- ~t-l,1-2(-P1-3,1-3(.. -(-P1,1))) 

. .  . .  . .  
- Pe.-l,l, i = 2 , 3  ,..., M 

xe - P , - I ( Z I , Z Z ,  ..., 21-1) - - 

Y M  = ZM 

y1 = zI + G ~ ( Y M  ,..., y e t i ) ,  i = 1,2,  ..., M - 1 
(10) 

Synthesis: 

21, 

ZM 

2 1  

i = 1 , 2  ,..., M - 1 zl = yI - G 2 ( y ~ ,  ..., y 1 + i )  = 
- - = Y M  - - :f = 21 X I  = z1 + P , - ~ ( Z I , Z ~  ,..., z,-I = x 2 ,  i = 2 , 3  ,..., M 

(11) 
This later structure also yields analysis matrices which 

can be composed to upper and lower triangular matrices _. - 
1 -Pi 0 0 ... 1 0 0 0 . . .  with elements containing Pi's and Gi's only. In this struc- 

ture, for predicting zi 's, the number of data used is in- 
creased with increasing index i. Conversely, more zi sam- 
ples are used for predicting v i ' s  when the index z is small. 

. .  . The computational and analysis complexity of this struc- 
ture is high as compared to the structure in Fig. 4. Fur- 
thermore, no coding gain Over the structure in ~ i ~ .  5 has 
been observed for the structure in Fig. 4. 

0 0 0 1 -Pz 1 -P3 0 -jx[? ... 
!z ; ;::I [ . . .  . .  . .  . .  . .  

( 8 )  
The PR can be achieved with any choice of the nonlinear 
operators as the P matrix can be inverted regardless of the 
filters Pi's and Gi's. This leads to the following synthesis 
equations: 

3. CODING GAIN ANALYSIS 
Z h  = Z M  

z; = Y i  - Gi(zl+i) = za, i = M - 1, ..., 1 The structure in Fig. 2 can be considered as a transforma- 
x: = 21 - - 2 1  tion on the input signals x1 and xz. For an appropriate 
.: = z; + Pi-](2;- l )  = zi + P i - I ( Z i - 1 )  = xi transform, the goal is to minimize the total variance of the 

transform coefficients. It has been shown in [12] that if the 
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coefficients before transformation are quantized at an av- 
erage bit rate R, the PCM quantization variance can be 
stated as 

where c2 is a scaling factor proportional to the quantizer 
performance factor [ la] ,  and 02 is the variance of the in- 
put signal. Similarly, if the transform coefficients are also 
quantized at the same rate, R, then the minimum transform 
domain quantization variance becomes 

(12) 
2 -2R 2 

&CM = 2 

45 

40 

m 35 

c z 
L30- 

25 

20 

(13) 
2 -2R 

U:,TC = 6 2 ( u l U 2 )  

The ratio of a: ,pcM to u;,TC gives the coding gain: 

- 

- 

- 

- 

- 

The maximization of the gain term is equivalent to min- 
imization of the variances of the transform domain coeffi- 
cients. The transform matrix in Eq. (1) shows that trans- 
form domain output xi corresponding to the input x1 is 
identically equal to the input signal. In this case, we can 
maximize the coding gain only by minimizing the variance 
Of Xh. 

The adaptive LMS algorithm minimizes the mean squared 
error at the output, hence it minimizes the variance u,”. 
This minimization, therefore, maximizes the coding gain at 
each sample point. Since our OS adaptive algorithm also 
uses LMS type adaptation, the same variance minimization 
arguments hold. 

In our simulations, the normalized LMS algorithm is 
used with normalization factor 11x1 11’. With different choices 
of the norms (L1, L 2 ,  and L”), different convergence per- 
formances are observed [13]. The L1 and L2 norms proved 
to perform good for most images. 

4. SIMULATION STUDIES 

The two dimensional extension of the proposed scheme is 
obtained by separately applying the one dimensional adap- 
tive filter bank to the image data in a separable manner. 
The filter support, however, is chosen to exploit two dimen- 
sional characteristics better. The filter support is illustrated 
in Fig. 6. 

At compression ratios from 1:l to 30:1, the adaptive al- 
gorithm produces acceptable outputs at the synthesis stage. 
Especially for the images with sharp variations, this algo- 
rithm gives better PSNRs at CR from 1: to 15:l. Due to 
corrupting the synthesis filter adaptation at lower bit rates, 
the reconstructed image starts getting deteriorated more 
than the conventional wavelet quantization after compres- 
sion ratios of 15:l. The synthesis stage starts to diverge 
after the CRs around 30:l. The CR/PSNR plot for the 
adaptive algorithm applied to the first image in Table 1 is 
shown in Fig 7. A quick remedy to avoid the divergence of 
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Figure 7: EZW versus adaptive method at  different CR’s 

the the synthesis stage at very low bit rates is to substitute 
a fixed filter in the place of the adaptive filter whenever the 
bit rate is too low. 

The 672x560 “barbara” image was compressed to 1 
bits/pixel at a PSNR of 35.88dB with the adaptive OS 
type prediction filter. This PSNR is also comparable to 
the conventional EZW compression scheme which produces 
35.90dB PSNR. Furthermore, our algorithm produces per- 
ceprtually better images with eliminated ringing effects at 
the edges. 

A set of various images have been compressed using the 
adaptive algorithm. Some of these images are presented in 
Table 1. 

The coding results of these images in Table 1 at lbpp 
are presented in table 2. 

On the average, our algorithm outperforms the EZW 
for images with sharp variations. More robust adaptation 
algorithms for lower bit rates will be studied M a future 
work. 

Figure 6: Two dimensional separable prediction. 

In all of the simulations, we used the Embedded Ze- 
roTree (EZT) coder to encode the transform coefficients [14]. 
Due to the characteristics of this coder, the best coding re- 
sults were obtained by tree-structured two-band decompo- 
sitions. 
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Table 1: Test images. 

Call-for-papers(*) I 36.96 I 36.87 
I Imaae DescriDtion I EZW I AdaDtive FIR I AdaDtive OS I 

36.99 
\ I  

Sci_Tech2( *) 
Tourism1 

Tourisma( *) 
Tourism3 

T R m a d * )  

3 1.6 1 31.60 31.65 
30.18 30.12 30.19 
28.02 27.92 28.07 
32.23 32.18 32.31 
31.86 31.70 31.92 

News0 I 34.14 I 34.15 

@-stable random processes,” IEEE- ISCAS’97, Hong 
Kong, June 1997. 

[7] Gonzalo. R. Arce and M. Tian, “Order-statistic filter 
banks,” IEEE Transactions on Image Processing, 5, 
June 1996. 

[8] I. Pitas and A. Venetsanopoulos, “Adaptive filters 
based on order statistics,” IEEE Trans. Signal Pro- 
cessing, vol. 39, Feb. 1991. 

[9] P. Salembier, “Adaptive rank order based filters,” 
EURASIP Signal Processing, 27( 1):l-25, April 1992. 

[lo] P. Salembier and L. Jaquenoud, “Adaptive morpho- 
logical multiresolution decomposition,” In  Dougherty 
Gader, editor, Image Algebra and Mathematical Mor- 
phology, volume 1568, pages 26-37, San Diego, USA, 
July 1991. 

[ll] S-M. Phoong, C. W. Kim, P.P Vaidyanathan, R. 
Ansari, “A new class of two channel biorthogonal filter 
banks and wavelet bases,” IEEE Trans. Signal Proc., 
vo1.43, No.3, pp. 649-665, March 1995. 

34.16 

Table 2: Experiment results (PSNR)  of test images at  1 bpp. 

News1 I 32.19 I 32.05 
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