
Generalised Logic Program Transformation

Schemas

Halime Büyükyıldız and Pierre Flener

Department of Computer Engineering and Information Science
Faculty of Engineering, Bilkent University, 06533, Bilkent, Ankara, Turkey

pf@cs.bilkent.edu.tr

Abstract. Schema-based logic program transformation has proven to
be an effective technique for the optimisation of programs. This paper
results from the research that began by investigating the suggestions in
[11] to construct a more general database of transformation schemas for
optimising logic programs at the declarative level. The proposed trans-
formation schemas fully automate accumulator introduction (also known
as descending computational generalisation), tupling generalisation (a
special case of structural generalisation), and duality laws (which are
extensions to relational programming of the first duality law of the fold
operators in functional programming). The schemas are proven correct.
A prototype schema-based transformation system is evaluated.

1 Introduction

Schema-based program construction and synthesis were studied in logic pro-
gramming [9,10,16,14,23] and in functional programming [20,21]. Using schemas
for logic program transformation was first studied in [13] and then extended in
[25,18]. Schema-based logic program transformation was also studied in [11,15].
This paper results from the research that began by investigating the suggestions
in [11] and extending the ideas in [1] to construct a database of more general
transformation schemas for optimising logic programs at the declarative level.
For full details of this research, the reader is invited to consult [5].

Throughout this paper, the word program (resp. procedure) is used to mean
typed definite program (resp. procedure). An open program is a program where
some of the relations appearing in the clause bodies are not appearing in any
heads of clauses, and these relations are called undefined (or open) relations. If
all the relations appearing in the program are defined, then the program is a
closed program. The format of a specification Sr of a relation r is:

∀X : X . ∀Y : Y. Ir(X) ⇒ [r(X, Y) ⇔ Or(X, Y)]

where Ir(X) denotes the input condition that must be fulfilled before the exe-
cution of the procedure, and Or(X, Y) denotes the output condition that will be
fulfilled after the execution.

We now give the definitions of the notions that will be used throughout the
paper. All the definitions are given for programs in closed frameworks [12]. A

Norbert E. Fuchs (Ed.): LOPSTR’97, LNCS 1463, pp. 49–68, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

50 Halime Büyükyıldız and Pierre Flener

framework can be defined simply as a full first-order theory (with identity) with
intended model. A closed framework has no parameters and open symbols. Thus,
it completely defines an abstract data type (ADT).

Correctness and Equivalence Criteria. We first give correctness and equiv-
alence criteria for programs.

Definition 1 ((Correctness of a Closed Program)).
Let P be a closed program for a relation r in a closed framework F . We say
that P is (totally) correct wrt its specification Sr iff, for any ground term t of
X such that Ir(t) holds, we have P ` r(t, u) iff F |= Or(t, u), for every ground
term u of Y. If we replace ‘iff’ by ‘implies’ in the condition above, then P is said
to be partially correct wrt Sr, and if we replace ‘iff’ by ‘if’, then P is said to be
complete wrt Sr.

This kind of correctness is not entirely satisfactory, for two reasons. First,
it defines the correctness of P in terms of the procedures for the relations in
its clause bodies, rather than in terms of their specifications. Second, P must
be a closed program, even though it might be desirable to discuss the correct-
ness of P without having to fully implement it. So, the abstraction achieved
through the introduction (and specification) of the relations in its clause bodies
is wasted. This leads us to the notion of steadfastness (also known as parametric
correctness) [12,9].

Definition 2 ((Steadfastness of an Open Program)).
In a closed framework F , let:

– P be an open program for a relation r
– q1, . . . , qm be all the undefined relation names appearing in P
– S1, . . . , Sm be the specifications of q1, . . . , qm.

We say that P is steadfast wrt its specification Sr in {S1, . . . , Sm} iff the (closed)
program P ∪ PS is correct wrt Sr, where PS is any closed program such that:

– PS is correct wrt each specification Sj (1 ≤ j ≤ m)
– PS contains no occurrences of the relations defined in P .

For program equivalence, now, we do not require the two programs to have
the same models, because this would not make much sense in some program
transformation settings, where the transformed program features relations that
are not in the initially given program. That is why our program equivalence cri-
terion establishes equivalence wrt the specification of a common relation (usually
the root of their call-hierarchies).

Definition 3 ((Equivalence of Two Open Programs)).
In a closed framework F , let P and Q be two open programs for a relation
r. Let S1, . . . , Sm be the specifications of p1,. . . , pm, which are all the unde-
fined relation names appearing in P , and let S′

1, . . . , S
′
t be the specifications of

Generalised Logic Program Transformation Schemas 51

q1,. . . , qt, which are all the undefined relation names appearing in Q. We say
that 〈P, {S1, . . . , Sm}〉 is equivalent to 〈Q, {S′

1, . . . , S
′
t}〉 wrt the specification Sr

(or simply that P is equivalent to Q wrt Sr) when P is steadfast wrt Sr in
{S1, . . . , Sm} and Q is steadfast wrt Sr in {S′

1, . . . , S
′
t}. Since the ‘is equivalent

to’ relation is symmetric, we also say that P and Q are equivalent wrt Sr.

In program transformation settings, there sometimes are conditions that have
to be satisfied by some parts of the initial and/or transformed program in order
to have a transformed program that is equivalent to the initially given program
wrt the specification of the top-level relation. Hence the following definition.

Definition 4 ((Conditional Equivalence of Two Open Programs)).

In a closed framework F , let P and Q be two open programs for a relation
r. We say that P is equivalent to Q wrt the specification Sr under conditions C
iff P is equivalent to Q wrt Sr whenever C holds.

Program Schemas and Schema Patterns. The notion of program schema
was also used in [9,10,11,13,16,14,15,6,25], but here we have an additional com-
ponent, which makes our definition [12] of program schemas different.

Definition 5 ((Program Schemas)).
In a closed framework F , a program schema for a relation r is a pair 〈T, C〉,
where T is an open program for r, called the template, and C is a set of speci-
fications of the open relations of T , in terms of each other and in terms of the
input/output conditions of the closed relations of T . The specifications in C,
called the steadfastness constraints, are such that, in F , T is steadfast wrt its
specification Sr in C.

Sometimes, a series of schemas are quite similar, in the sense that they only
differ in the number of arguments of some relation, or in the number of calls to
some relation, etc. For this purpose, rather than having a proliferation of similar
schemas, we introduce the notion of schema pattern (compare with [6]).

Definition 6 ((Schema Patterns)).
A schema pattern is a program schema where term, conjunct, and disjunct el-
lipses are allowed in the template and in the steadfastness constraints.

For instance, TX1, . . . , TXt is a term ellipsis, and
∧t

i=1 r(TXi, TYi) is a con-
junct ellipsis. Our schemas are more general than those in [11] in the sense that
we now allow such ellipses.

Schema-based Program Transformation. In schema-based transformation,
transformation techniques are pre-compiled at the schema-level.

Definition 7 ((Transformation Schemas)).
A transformation schema is a 5-tuple 〈S1, S2, A, O12, O21〉, where S1 and S2 are
program schemas (or schema patterns), A is a set of applicability conditions,

52 Halime Büyükyıldız and Pierre Flener

which ensure the equivalence of the templates of S1 and S2 wrt the specification
of the top-level relation, and O12 (resp. O21) is a set of optimisability conditions,
which ensure further optimisability of the output program schema (or schema
pattern) S2 (resp. S1).

If a transformation schema embodies some generalisation technique, then it
is called a generalisation schema. The problem generalisation techniques that
are used in this paper are explained in detail in [9]. Using these techniques for
synthesising and/or transforming a program in a schema-based fashion was first
proposed in [9,10], and then extended in [11]. The generalisation methods that
we pre-compile in our transformation schemas are tupling generalisation, which
is a special case of structural generalisation where the structure of some pa-
rameter is generalised, and descending generalisation, which is a special case of
computational generalisation where the general state of computation is gener-
alised in terms of what remains to be done. If a transformation schema embodies
a duality law, then it is called a duality schema.

In the remainder of this paper, we first give two divide-and-conquer schema
patterns in Section 2. We then explain in detail how automation of program
transformation is achieved by tupling and descending generalisation, in Sec-
tions 3 and 4. In Section 5, we explain the duality schemas. In Section 6, we
discuss, by using the results of performance tests, the effects of the optimisabil-
ity conditions in the transformation schemas. Before we conclude, the prototype
transformation system, which was developed to test the practicality of the ideas
explained in this paper, is presented in Section 7.

2 Divide-and-Conquer Programs

The schema patterns in this section abstract sub-families of divide-and-conquer
(DC) programs. They are here restricted to binary relations with X as the induc-
tion parameter and Y as the result parameter, to reflect the schema patterns that
can be handled by the prototype transformation system explained in Section 7.
Another restriction in the schema patterns is that when X is non-minimal, then
X is decomposed into h = 1 head HX and t > 0 tails TX1, . . . , TXt, so that
Y is composed from 1 head HY (which is the result of processing HX) and t
tails TY1, . . . , TYt (which are the results of recursively calling the relation with
TX1, . . . , TXt, respectively) by p-fix composition (i.e., Y is composed by putting
its head HY between its tails TYp−1 and TYp).

These schema patterns are called DCLR and DCRL (the reason for these
names will be explained soon). Template DCLR (resp. DCRL) below is the tem-
plate of the DCLR (resp. DCRL) schema pattern. In these patterns, minimal,
solve, etc., denote place-holders for relation symbols. During the particulari-
sation of a schema pattern to a schema, all these place-holders are renamed,
because otherwise all divide-and-conquer programs would have the same rela-
tion symbols. Indeed, since a template is an open program, the idea is to obtain

Generalised Logic Program Transformation Schemas 53

concrete programs from the template by adding programs for the open relations,
such that these programs satisfy the steadfastness constraints. The steadfastness
constraints corresponding to these DC templates (i.e., the specifications of their
open relations) are the same, since these templates have the same open relations.
Such constraints are shown in [12] in this volume.

r(X, Y)←
minimal(X),

solve(X,Y)

r(X, Y)←
nonMinimal(X),

decompose(X,HX, TX1, . . . , TXt),

r(TX1, TY1), . . . , r(TXt, TYt),

init(I0),

compose(I0, TY1, I1), . . . , compose(Ip−2, TYp−1, Ip−1),

process(HX,HY), compose(Ip−1, HY, Ip),

compose(Ip, TYp, Ip+1), . . . , compose(It, TYt, It+1),

Y = It+1

Template DCLR

r(X, Y)←
minimal(X),

solve(X,Y)

r(X, Y)←
nonMinimal(X),

decompose(X,HX, TX1, . . . , TXt),

r(TX1, TY1), . . . , r(TXt, TYt),

init(It+1),

compose(TYt, It+1, It), . . . , compose(TYp, Ip+1, Ip),

process(HX,HY), compose(HY, Ip, Ip−1),

compose(TYp−1, Ip−1, Ip−2), . . . , compose(TY1, I1, I0),

Y = I0

Template DCRL

We can now explain the underlying idea why we have two different schema
patterns for DC, and why we call them DCLR and DCRL. If we denote the
functional version of the compose relation with ⊕, then the composition of Y in
template DCLR by left-to-right (LR) composition ordering can be written as:

Y = ((((((e ⊕ TY1) ⊕ . . .) ⊕ TYp−1) ⊕ HY) ⊕ TYp) ⊕ . . .) ⊕ TYt (1)

54 Halime Büyükyıldız and Pierre Flener

where e is the (unique) term for which init holds. Similarly, the composition of
Y in DCRL by right-to-left (RL) composition ordering can be written as:

Y = TY1 ⊕ (. . . ⊕ (TYp−1 ⊕ (HY ⊕ (TYp ⊕ (. . . ⊕ (TYt ⊕ e)))))) (2)

Throughout the paper, we use the infix flat problem, whose DC programs are
given in the example below.

Example 1. The specification of infix flat is:

infix flat(B, F) iff list F is the infix representation of binary tree B

where infix representation means the list representation of the infix traversal of
the tree. Program 1 (resp. Program 2) below is the program for the infix flat/2
problem that is a (partially evaluated) instance of the DCLR (resp. DCRL)
schema pattern, for t = p = 2. Note the line-by-line correspondence between the
program computations and the templates.

infix flat(B, F)← infix flat(B, F)←
B = void, B = void,
F = [] F = []

infix flat(B, F)← infix flat(B, F)←
B = bt(, ,), B = bt(, ,),
B = bt(L, E, R), B = bt(L, E, R),
infix flat(L, FL), infix flat(L, FL),

infix flat(R, FR), infix flat(R,FR),
I0 = [], I3 = [],
append(I0, FL, I1), append(FR, I3, I2),
HF = [E], append(I1, HF, I2), HF = [E], append(HF,I2, I1),
append(I2, FR, I3), append(FL, I1, I0),
F = I3 F = I0

Program 1 Program 2

3 Program Transformation by Tupling Generalisation

If a program for a relation r, which has the specification Sr of Section 1, is
given as an instance of DCLR (or DCRL), then the specification of the tupling-
generalised problem of r, namely Sr tupling , is:

∀Xs : list of X . ∀Y : Y. (∀X : X . X ∈ Xs ⇒ Ir(X)) ⇒
(r tupling(Xs, Y) ⇔ (Xs = [] ∧ Y = e) ∨ (Xs = [X1, X2, . . . , Xn]

∧
n∧

i=1

Or(Xi, Yi) ∧ I1 = Y1 ∧
n∧

i=2

Oc(Ii−1, Yi, Ii) ∧ Y = In))

where Oc is the output condition of compose, and e is the (unique) term for
which init holds.

Generalised Logic Program Transformation Schemas 55

The tupling generalisation schemas (one for each DC schema pattern) are:

TG1 : 〈 DCLR, TG, At1 , Ot112, Ot121 〉 where
At1 : - compose is associative

- compose has e as the left and right identity element
- ∀X : X . Ir(X) ∧minimal(X)⇒ Or(X, e)
- ∀X : X . Ir(X)⇒ [¬minimal(X)⇔ nonMinimal(X)]

Ot112 : partial evaluation of the conjunction
process(HX,HY), compose(HY,TY, Y)
results in the introduction of a non-recursively defined relation

Ot121 : partial evaluation of the conjunction
process(HX,HY), compose(Ip−1, HY, Ip)
results in the introduction of a non-recursively defined relation

TG2 : 〈 DCRL, TG, At2 , Ot212, Ot221 〉 where
At2 : - compose is associative

- compose has e as the left and right identity element
- ∀X : X . Ir(X) ∧minimal(X)⇒ Or(X, e)
- ∀X : X . Ir(X)⇒ [¬minimal(X)⇔ nonMinimal(X)]

Ot212 : partial evaluation of the conjunction
process(HX,HY), compose(HY,TY, Y)
results in the introduction of a non-recursively defined relation

Ot221 : partial evaluation of the conjunction
process(HX,HY), compose(HY, Ip, Ip−1)
results in the introduction of a non-recursively defined relation

where the template of the common schema pattern TG is given on the next page.
Note that, in the TG template, all the open relations of DCLR (or DCRL)

appear, but no new relations. This crucial observation enables the once-and-for-
all verification of the conditional equivalence of the two templates in the TGi

transformation schemas wrt Sr under Ati , which verification is thus indepen-
dent of the actual specifications of the open relations (i.e., the steadfastness
constraints) [4].

The applicability conditions of TG1 (resp. TG2) ensure the equivalence of the
DCLR (resp. DCRL) and TG programs for a given problem. The optimisabil-
ity conditions ensure that the output programs of these generalisation schemas
can be made more efficient than the input programs. Indeed, the optimisability
conditions, together with some of the applicability conditions, check whether the
compose calls in the TG template can be eliminated. For instance, the conjunc-
tion solve(X, HY), compose(HY, TY, Y) in the second clause of r tupling can be
simplified to Y = A, if relation r maps the minimal form of X into e, and if e is
also the right identity element of compose. This is already checked by the second
and third applicability conditions of TG1 and TG2. Also, in the third and fourth
clauses of r tupling, the conjunction process(HX, HY), compose(HY, TY, Y)
can be partially evaluated, resulting in the disappearance of that call to compose,
and thus in a merging of the compose loop into the r loop in the DCLR (or
DCRL) template, if the optimisability condition Ot112 (or Ot212) holds.

Let us illustrate tupling generalisation by applying the TGi generalisation
schemas on the infix flat problem.

56 Halime Büyükyıldız and Pierre Flener

r(X, Y)← infix flat(B,F)←
r tupling([X], Y) infix flat t([B], F)

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [], Bs = [],
init(Y) F = []

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [X|TXs], Bs = [B|TBs],
minimal(X), B = void,
r tupling(TXs,TY), infix flat t(TBs, TF),
solve(X,HY), HF = [],
compose(HY,TY, Y), append(HF,TF, F)

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [X|TXs], Bs = [B|TBs],
nonMinimal(X), B = bt(, ,),
decompose(X,HX, TX1, . . . , TXt), B = bt(L, E, R),
minimal(TX1), . . . , minimal(TXt), L = void, R = void,
r tupling(TXs,TY), infix flat t(TBs, TF),
process(HX,HY), HF = [E],
compose(HY,TY, Y) append(HF,TF, F)

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [X|TXs], Bs = [B|TBs],
nonMinimal(X), B = bt(, ,),
decompose(X,HX, TX1, . . . , TXt), B = bt(L, E, R),
minimal(TX1), . . . , minimal(TXp−1), L = void,
(nonMinimal(TXp); . . . ; nonMinimal(TXt)), R = bt(, ,),
r tupling([TXp, . . . , TXt|TXs], TY), infix flat t([R|TBs], TF),
process(HX,HY), HF = [E],
compose(HY,TY, Y) append(HF,TF, F)

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [X|TXs], Bs = [B|TBs],
nonMinimal(X), B = bt(, ,),
decompose(X,HX, TX1, . . . , TXt), B = bt(L, E, R),
(nonMinimal(TX1); . . . ; nonMinimal(TXp−1)), L = bt(, ,),
minimal(TXp), . . . , minimal(TXt), R = void,
minimal(U1), . . . , minimal(Up−1), UL = void,
decompose(N,HX, U1, . . . , Up−1, TXp, . . . , TXt), N = bt(UL, E, R),
r tupling([TX1, . . . , TXp−1, N |TXs], Y) infix flat t([L, N |TBs], TF),

r tupling(Xs, Y)← infix flat t(Bs,F)←
Xs = [X|TXs], Bs = [B|TBs],
nonMinimal(X), B = bt(, ,),
decompose(X,HX, TX1, . . . , TXt), B = bt(L, E, R),
(nonMinimal(TX1); . . . ; nonMinimal(TXp−1)), L = bt(, ,),
(nonMinimal(TXp); . . . ; nonMinimal(TXt)), R = bt(, ,),
minimal(U1), . . . , minimal(Ut), UL = void, UR = void,
decompose(N,HX, U1, . . . , Ut), N = bt(UL, E, UR),
r tupling([TX1, . . . , TXp−1, infix flat t([L, N, R|TBs], F)

N, TXp, . . . , TXt|TXs], Y)

Template TG and Program 3

Generalised Logic Program Transformation Schemas 57

Example 2. The specification of the infix flat problem, and its DCLR and
DCRL programs, are in Example 1 in Section 2. The infix flat problem can
be tupling-generalised using the TGi transformation schemas above, since the
infix flat programs have open relations that satisfy the applicability and op-
timisability conditions of these schemas. So, the specification of the tupling-
generalised problem of infix flat is:

infix flat t(Bs, F) iff F is the concatenation of the infix representations of the
elements in the binary tree list Bs.

Program 3 on the previous page is the tupling-generalised program for infix flat
as an instance of TG, for t = p = 2.

Although the tupling generalisation schemas are constructed to tupling-
generalise DC programs (i.e., to transform DC programs into TG programs),
these schemas can also be used in the reverse direction, such that they trans-
form TG programs into DC programs, provided the optimisability conditions
for the corresponding DC schema pattern are satisfied; note that applicability
conditions work in both directions.

4 Program Transformation by Descending Generalisation

Descending generalisation [9] can also be called the accumulation strategy (as
in functional programming [2], and in logic programming [17]), since it intro-
duces an accumulator parameter and progressively extends it to the final result.
Descending generalisation can also be seen as transformation towards difference
structure manipulation, since any form of difference structures can be created
by descending generalisation, and not just difference-lists.

Four descending generalisation schemas (two for each DC schema pattern) are
given. Since the applicability conditions of each descending generalisation schema
are different, the process of choosing the appropriate generalisation schema for
the input DC program is done only by checking the applicability and optimisabil-
ity conditions, and the eureka (i.e., the specification of the generalised problem)
then comes for free.

The reason why we call the descendingly generalised (DG) schema patterns
‘DGLR’ and ‘DGRL’ is similar to the reason why we call the divide-and-conquer
schema patterns DCLR and DCRL, respectively. In descending generalisation,
the composition ordering for extending the accumulator parameter in the tem-
plate DGLR (resp. DGRL) is from left-to-right (LR) (resp. right-to-left (RL)).

The first two descending generalisation schemas are:

DG1 : 〈 DCLR, DGLR, Adg1 , Odg112, Odg121 〉 where
Adg1 : - compose is associative

- compose has e as the left identity element
Odg112 : - compose has e as the right identity element

and Ir(X) ∧minimal(X)⇒ Or(X, e)
- partial evaluation of the conjunction

58 Halime Büyükyıldız and Pierre Flener

process(HX,HY), compose(Ap−1, HY, Ap)
results in the introduction of a non-recursively defined relation

Odg121 : - partial evaluation of the conjunction
process(HX,HY), compose(Ip−1, HY, Ip)
results in the introduction of a non-recursively defined relation

DG4 : 〈 DCRL, DGLR, Adg4 , Odg412, Odg421〉 where
Adg4 : - compose is associative

- compose has e as the left and right identity element
Odg412 : - Ir(X) ∧minimal(X)⇒ Or(X, e)

- partial evaluation of the conjunction
process(HX,HY), compose(Ap−1, HY, Ap)
results in the introduction of a non-recursively defined relation

Odg421 : - partial evaluation of the conjunction
process(HX,HY), compose(HY, Ip, Ip−1)
results in the introduction of a non-recursively defined relation

where e is the (unique) term for which init holds. These schemas have the same
formal specification (i.e., eureka) for the relation r descending1 of the schema
pattern DGLR, namely:

∀X : X . ∀Y, A : Y. Ir(X) ⇒
[r descending1(X, Y, A) ⇔ ∃S : Y. Or(X, S) ∧ Oc(A, S, Y)]

where Oc is the output condition of compose. The template of the common
schema pattern DGLR of DG1 and DG4 is:

r(X, Y)←
init(A), r descending1(X, Y, A)

r descending1(X, Y, A)←
minimal(X),

solve(X, S), compose(A,S, Y)

r descending1(X, Y, A)←
nonMinimal(X),

decompose(X,HX, TX1, . . . , TXt),

init(E), compose(A,E,A0),

r descending1(TX1, A1, A0), . . . , r descending1(TXp−1, Ap−1, Ap−2),

process(HX,HY), compose(Ap−1, HY, Ap),

r descending1(TXp, Ap+1, Ap), . . . , r descending1(TXt, At+1, At),

Y = At+1

Template DGLR

Note that, in the DGLR template, all the open relations of DCLR (or DCRL)
appear, but no new relations. The applicability and optimisability conditions of
these two generalisation schemas differ, since the composition ordering is changed
from RL to LR in DG4.

We now illustrate descending generalisation on our infix flat problem.

Generalised Logic Program Transformation Schemas 59

Example 3. The specification of a program for the LR descendingly generalised
version of infix flat is:

infix flat descending1(B, F, A) iff list F is the concatenation of list A and the
infix representation of binary tree B.

Program 4 is the program for infix flat as an instance of DGLR, for t = p = 2.

infix flat(B, F)←
infix flat descending1(B, F, [])

infix flat descending1(B, F, A)←
B = void,

S = [], append(A,S, F)

infix flat descending1(B, F, A)←
B = bt(, ,),

B = bt(L, E, R),

append(A, [], A0),

infix flat descending1(L, A1, A0),

HF = [E], append(A1, HF, A2),

infix flat descending1(R, A3, A2),

F = A3

Program 4

Since the applicability conditions of DG1 (resp. DG4) are satisfied for the in-
put DCLR (resp. DCRL) infix flat program, the descendingly generalised
infix flat program can be Program 4. However, for this problem, descending
generalisation of the infix flat programs with the DG transformation schemas
above should not be done, since the optimisability conditions of DG1 (resp.
DG4) are not satisfied by the open relations of infix flat. Indeed, in the non-
minimal case of infix flat descending1, partial evaluation of the conjunction
HF = [E], append(A1, HF, A2) does not result in the introduction of a non-
recursively defined relation, because of properties of append (actually, due to
the inductive definition of lists). Moreover, the induction parameter of append,
which is here the accumulator parameter, increases in length each time append
is called in the non-minimal case, which shows that this program is not a good
choice as a descendingly generalised program for this problem. So, the optimis-
ability conditions are really useful to prevent non-optimising transformations.

The other two descending generalisation schemas are:

DG2 : 〈 DCLR, DGRL, Adg2 , Odg212, Odg221 〉 where
Adg2 : - compose is associative

- compose has e as the left and right identity element
Odg212 : - Ir(X) ∧minimal(X)⇒ Or(X, e)

- partial evaluation of the conjunction

60 Halime Büyükyıldız and Pierre Flener

process(HX,HY), compose(HY,Ap, Ap−1)
results in the introduction of a non-recursively defined relation

Odg221 : - partial evaluation of the conjunction
process(HX,HY), compose(Ip−1, HY, Ip)
results in the introduction of a non-recursively defined relation

DG3 : 〈 DCRL, DGRL, Adg3 , Odg312, Odg321〉 where
Adg3 : - compose is associative

- compose has e as the right identity element
Odg312 : - compose has e as the left identity element

and Ir(X) ∧minimal(X)⇒ Or(X, e)
- partial evaluation of the conjunction
process(HX,HY), compose(HY,Ap, Ap−1)
results in the introduction of a non-recursively defined relation

Odg321 : - partial evaluation of the conjunction
process(HX,HY), compose(HY, Ip, Ip−1)
results in the introduction of a non-recursively defined relation

where e is the (unique) term for which init holds. These schemas have the same
formal specification (i.e., eureka) for the relation r descending2 of the schema
pattern DGRL, namely:

∀X : X . ∀Y, A : Y. Ir(X) ⇒
[r descending2(X, Y, A) ⇔ ∃S : Y. Or(X, S) ∧ Oc(S, A, Y)]

where Oc is the output condition of compose. Note the reversal of the roles of
A and S compared to the specification of r descending1 above. The template of
the common schema pattern DGRL of DG2 and DG3 is:

r(X, Y)←
init(A), r descending2(X, Y, A)

r descending2(X, Y, A)←
minimal(X),

solve(X, S), compose(S, A,Y)

r descending2(X, Y, A)←
nonMinimal(X),

decompose(X,HX, TX1, . . . , TXt),

init(E), compose(E,A,At+1),

r descending2(TXt, At, At+1), . . . , r descending2(TXp, Ap, Ap+1),

process(HX,HY), compose(HY,Ap, Ap−1),

r descending2(TXp−1, Ap−2, Ap−1), . . . , r descending2(TX1, A0, A1),

Y = A0

Template DGRL

Note that, in the DGRL template, all the open relations of DCLR (or DCRL)
appear, but no new relations. The applicability and optimisability conditions of
these two generalisation schemas differ, since the composition ordering is changed
from LR to RL in DG2.

Generalised Logic Program Transformation Schemas 61

Example 4. The specification of a program for the RL descendingly generalised
version of infix flat is:

infix flat descending2(B, F, A) iff list F is the concatenation of the infix rep-
resentation of binary tree B and list A.

Program 5 is the program for infix flat as an instance of DGRL, for t = p = 2.

infix flat(B, F)←
infix flat descending2(B, F, [])

infix flat descending2(B, F, A)←
B = void,

S = [], append(S,A,F)

infix flat descending2(B, F, A)←
B = bt(, ,),

B = bt(L, E, R),

append([],A, A3),

infix flat descending2(R, A2, A3),

HF = [E], append(HF,A2, A1),

infix flat descending2(L, A0, A1),

F = A0

Program 5

Since both the applicability conditions and the optimisability conditions of DG2

(resp. DG3) are satisfied for the input DCLR (resp. DCRL) infix flat pro-
gram, descending generalisation of the infix flat programs results in Program 5.
Partial evaluation of the conjunction HF = [E], append(HF, A2, A1) in the non-
minimal case of infix flat descending2 then results in A1 = [E|A2]. Similarly,
partial evaluation of the conjunction S = [], append(S, A, F) in the minimal case
results in F = A. Altogether, this amounts to the elimination of append.

Although the descending generalisation schemas are constructed to descend-
ingly generalise DC programs, these schemas can also be used to transform DG
programs into DC programs, provided the optimisability conditions for the cor-
responding DC schema pattern are satisfied. It is thus possible that we have
Program 4 for the infix flat problem, and that we want to transform it into a
more efficient program; then the DC programs are good candidates, if we have
the descending generalisation schemas above.

5 Program Transformation Using Duality Laws

In Section 2, while we discussed the composition ordering in the DC program
schemas, the reader who is familiar with functional programming has noticed

62 Halime Büyükyıldız and Pierre Flener

the similarities with the fold operators in functional programming. A detailed
explanation of the fold operators and their laws can be found in [3]. Here, we
only give the definitions of the fold operators, and their first law. The foldr
operator can be defined as follows:

foldr (⊕) a [x1, x2, . . . , xn] = x1 ⊕ (x2 ⊕ (. . . (xn ⊕ a) . . .))

where ⊕ is a variable that is bound to a function of two arguments.
Similarly, the foldl operator can be defined as follows:

foldl (⊕) a [x1, x2, . . . , xn] = (. . . ((a ⊕ x1) ⊕ x2) . . .) ⊕ xn

Thus, equation (1) in Section 2, which illustrates the composition of Y in the
DCLR template, can be rewritten using foldl:

Y = foldl (⊕) e [TY1, . . . , TYp−1, HY, TYp, . . . , TYt]

Similarly, the foldr operator can be used to rewrite equation (2), which illus-
trates the composition of Y in the DCRL template:

Y = foldr (⊕) e [TY1, . . . , TYp−1, HY, TYp, . . . , TYt]

The first three laws of the fold operators are called duality theorems. The first
duality theorem states that:

foldr (⊕) a xs = foldl (⊕) a xs

if ⊕ is associative and has (left/right) identity element a, and xs is a finite list.
By adding optimisability conditions, we can now devise a transformation

schema based on this first duality theorem (compare with [16]):
Ddc : 〈 DCLR, DCRL, Addc, Oddc12, Oddc21〉 where

Addc : - compose is associative
- compose has e as the left and right identity element

Oddc12 : - partial evaluation of the conjunction
process(HX,HY), compose(HY, Ip, Ip−1)
results in the introduction of a non-recursively defined relation

Oddc21 : - partial evaluation of the conjunction
process(HX,HY), compose(Ip−1, HY, Ip)
results in the introduction of a non-recursively defined relation

where e is the (unique) term for which init holds, where the schema patterns
DCLR and DCRL are given in Section 2, and where Addc comes from the con-
straints of the first duality theorem. The optimisability conditions check whether
the compose operator can be eliminated in the output program.

Similarly, it is possible to give a duality schema between the DG schema
patterns:

Ddg : 〈 DGLR, DGRL, Addg, Oddg12, Oddg21〉 where
Addg : - compose is associative

- compose has e as the left and right identity element

Generalised Logic Program Transformation Schemas 63

Oddg12: - ∀X : X . Ir(X) ∧minimal(X)⇒ Or(X, e)
- partial evaluation of the conjunction
process(HX,HY), compose(HY,Ap, Ap−1)
results in the introduction of a non-recursively defined relation

Oddg21: - ∀X : X . Ir(X) ∧minimal(X)⇒ Or(X, e)
- partial evaluation of the conjunction
process(HX,HY), compose(Ap−1, HY,Ap)
results in the introduction of a non-recursively defined relation

where e is the (unique) term for which init holds, and where the schema patterns
DGLR and DGRL are given in Section 4.

6 Evaluation of the Transformation Schemas

We evaluate the transformation schemas using performance tests done on par-
tially evaluated input and output programs of each transformation schema. How-
ever, the reader may find this evaluation a little bit dubious, since the transfor-
mation schemas in this paper are only dealing with the declarative features of
programs. This evaluation is made because we think that these performance
tests will help us see what our theoretical results amount to when tested prac-
tically, although in an environment with procedural side-effects. The programs
are executed using Mercury 0.6 (for an overview of Mercury, please refer to [22])
on a SPARCstation 4. Since the programs are really short, the procedures were
called 500 or 1000 times to achieve meaningful timing results. In Table 1, the
results of the performance tests for five selected relations are shown, where each
column heading represents the schema pattern to which the program written for
the relation of that row belongs. (Of course, quicksort is not really a relation:
we just mean to indicate that some partitioning is used as decompose for the
sort relation.) The timing results are normalised wrt the DCLR column.

relations DCLR DCRL TG DGLR DGRL
Prefix flat 1.00 0.92 0.23 11.88 0.15
Infix flat 1.00 0.49 0.02 7.78 0.05

Postfix flat 1.00 0.69 0.14 5.48 0.09
reverse 1.00 1.00 0.04 1.01 0.01

quicksort 1.00 0.85 0.72 6.02 0.56

Table 1. Performance test results

The reason why we chose the relations above is that for all the five considered
schema patterns programs can be written for these relations.

Let us first compare the DCLR and DCRL schema patterns. For reverse,
the DCLR and DCRL programs are the same, since they are singly recursive,
and their compose relation is append, which is associative. For the binary tree
flat relations and for quicksort, the DCRL programs are much better than the

64 Halime Büyükyıldız and Pierre Flener

DCLR programs, because of properties of relations like append (which is the
compose relation in all these programs), which are the main reason for achiev-
ing the optimisations of the DCRL programs for the relations above. Hence,
if the input programs for the binary tree flat relations and for the quicksort
problem to the duality schema are instances of the DCLR schema pattern, then
a duality transformation will be performed, resulting in DCRL programs for
these relations, since both the applicability and the optimisability conditions
are satisfied by these programs. If the DCRL programs for the relations above
are input to the duality schema, then the duality transformation will not be per-
formed, since the optimisability conditions are not satisfied by append, which is
the compose relation of the DCRL programs. Of course, there may exist some
other relations where the duality transformation of their DCRL programs into
the DCLR programs will provide an efficiency gain. Unfortunately, we could not
find a meaningful relation of this category.

The next step in evaluating the transformation schemas is to compare the
generalised programs of these example relations. If we look at Table 1, the most
obvious observation is that the DGRL programs for all these relations are very
efficient programs. However, tupling generalisation seems to be the second best
as a generalisation choice, and it must even be the first choice for relations like
infix flat, where the composition place of the head in the result parameter is in
the middle, and where the minimal and nonMinimal checks can be performed
in minimum time. Although a similar situation occurs for quicksort, its TG
program is not quite as efficient as its DGRL program. This is mainly because of
partition, which is the decompose relation of quicksort, being a costly operation,
although we eliminated most of the partition calls by putting extra minimality
checks into the TG template. Since append, which is the compose relation in
all the programs, cannot be eliminated in the resulting DGLR programs, the
DGLR programs for these relations have the worst timing results. The reason for
their bad performance is that the percentages of the total running times of the
DGLR programs used by append are much higher than the percentages of the
total running times of the DCLR and DCRL programs used by append for these
relations. The reason for the increase in the percentages is that the length of the
accumulator, which is the input parameter to append in the DGLR programs,
is larger than the length of the input parameter of append in the DCLR and
DCRL programs, since the partial result has to be repeatedly input to the
compose relation in descending generalisation.

A transformation should be performed only if it really results in a program
that is more efficient than the input program. So, for instance, the descending
generalisation of the input DCLR program for infix flat resulting in the DGLR
program must not be done, even though the applicability conditions are satisfied.
This is the main reason for the existence of the optimisability conditions in the
schemas.

In some of the cases, using generalisation schemas to transform input pro-
grams that are already generalised programs into DC programs can produce an
efficiency gain. For example, if the DGLR program for any of the flat relations

Generalised Logic Program Transformation Schemas 65

is the input program to descending generalisation (namely DG1 or DG4), then
a de-generalisation will be performed resulting in the DCLR (or DCRL) pro-
gram, which is more efficient than the input DGLR program. However, with the
current optimisability conditions, if the input program for any of the relations
above to generalisation is a DGRL program, then the generalisation schemas
are still applied in the reverse direction, resulting in a DCRL program, which
means that the de-generalisation will result in a program that is less efficient
than the input program. This makes us think of even more accurate ways of
defining the optimisability conditions, namely as actual optimisation conditions,
such that the transformation will always result in a better program than the
input program. However, more performance analyses and complexity analyses
are needed to derive such conditions.

7 A Prototype Transformation System

TranSys is a prototypical implementation of the schema-based program trans-
formation approach summarised in this paper. TranSys is a fully automatic
program transformation system and was developed to be integrated with a
schema-guided program development environment. Therefore, the input program
to TranSys is assumed to be developed by a synthesiser using the database of
schema patterns known to TranSys. The schema pattern of which the input
program is an instance is thus a priori known, and so are the renamings of
the open relation symbols, the particularisations of the schema variables such
as t and p, as well as the “closing” programs defining these open relations of
the template. In other words, no matching between the input program and the
templates of the transformation schemas has to be performed, unlike in [6,25].
Given an input program, TranSys outputs (what it believes to be) the best
programs that are more efficient than the input program: this is done by collect-
ing the leaves of the tree rooted in that input program and where child nodes
are developed when both the applicability and the optimisability conditions of
a transformation schema hold. All the transformation schemas and the schema
patterns, which are the input (or output) schema patterns of these transforma-
tion schemas, given in [5] (i.e., a superset of the schemas given in this paper),
are available in the database of the system.

TranSys has been developed in SICStus Prolog 3. Since TranSys is a
prototype system, for some parts of the system, instead of implementing them
ourselves, we reused and integrated other systems:

– For verifying the applicability conditions and some of the optimisability con-
ditions, PTTP is integrated into the system. The Prolog Technology Theorem
Prover (PTTP) was developed by M. Stickel (for a detailed explanation of
PTTP, the reader can refer to [24]). PTTP is an implementation of the model
elimination theorem proving procedure for the full first-order predicate cal-
culus. TranSys uses the version of PTTP that is written in Prolog and that
compiles clauses into Prolog.

66 Halime Büyükyıldız and Pierre Flener

– For verifying the other optimisability conditions, and for applying these op-
timisations to the output programs of the transformation schemas, we in-
tegrated Mixtus 0.3.6. Mixtus was developed by D. Sahlin (for a detailed
explanation of Mixtus, the reader can refer to [19]). Mixtus is an automatic
partial evaluator for full Prolog. Given a Prolog program and a query, it will
produce a new program specialised for all instances of that query. The partial
evaluator is guaranteed to terminate for all input programs and queries.

For a detailed explanation of the TranSys system, the reader is invited to
consult [5].

8 Conclusions and Future Work

This paper results from the research that began by investigating the suggestions
in [11]. The contributions of this research are:

– pre-compilation of more general generalisation schemas (tupling and de-
scending) than those in [11], which were restricted to sub-families of divide-
and-conquer programs;

– discovery of the duality schemas;
– discovery of the optimisability conditions;
– validation of the correctness of the transformation schemas, based on the

notions of correctness of a program, steadfastness of a program in a set
of specifications, and equivalence of two programs (the correctness proofs
of the transformation schemas given in this paper and in [5] can be found
in [4]; another approach to validation of transformation schemas can be found
in [18]);

– development of a prototype transformation system;
– validation of the effectiveness of the transformation schemas by performance

tests.

This research opens future work directions, such as:

– extension to normal programs and open frameworks;
– consideration of other program schemas (or schema patterns);
– extension of the schema pattern language so as to express even more general

program families;
– representation of the loop merging strategy as a transformation schema;
– search for other transformation schemas;
– identification of optimisation conditions that always ensure improved per-

formance (or complexity) of the output program wrt the input program;
– validation of the effectiveness of the transformation schemas by automated

complexity analysis (using GAIA [7] and/or CASLOG [8]).

Generalised Logic Program Transformation Schemas 67

Acknowledgments. We wish to thank the anonymous reviewers of the previous
versions of this paper as well as the participants of the LOPSTR’97 workshop for
their valuable comments and suggestions, especially Yves Deville (UC Louvain,
Belgium). We also gratefully acknowledge the feedback of the students of the
second author’s Automated Software Engineering course at Bilkent, especially
Necip Fazıl Ayan, Brahim Hnich, Ayşe Pınar Saygın, Tuba Yavuz, and Cemal
Yılmaz.

References

1. T. Batu. Schema-Guided Transformations of Logic Algorithms. Senior Project Re-
port, Bilkent University, Department of Computer Science, 1996.

2. R.S. Bird. The promotion and accumulation strategies in transformational pro-
gramming. ACM Transactions on Programming Languages and Systems 6(4):487–
504, 1984.

3. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

4. H. Büyükyıldız and P. Flener. Correctness Proofs of Transformation Schemas.
Technical Report BU-CEIS-9713. Bilkent University, Department of Computer Sci-
ence, 1997.

5. H. Büyükyıldız. Schema-based Logic Program Transformation. M.Sc. Thesis, Tech-
nical Report BU-CEIS-9714. Bilkent University, Department of Computer Science,
1997.

6. E. Chasseur and Y. Deville. Logic program schemas, semi-unification, and con-
straints. In: N.E. Fuchs (ed), Proc. of LOPSTR’97 (this volume).

7. A. Cortesi, B. Le Charlier, and S. Rossi. Specification-based automatic verifica-
tion of Prolog programs. In: J. Gallagher (ed), Proc. of LOPSTR’96, pp. 38–57.
LNCS 1207. Springer-Verlag, 1997.

8. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM TOPLAS
15(5):826–875, 1993.

9. Y. Deville. Logic Programming: Systematic Program Development. Addison-
Wesley, 1990.

10. Y. Deville and J. Burnay. Generalization and program schemata: A step towards
computer-aided construction of logic programs. In: E.L. Lusk and R.A. Overbeek
(eds), Proc. of NACLP’89, pp. 409–425. The MIT Press, 1989.

11. P. Flener and Y. Deville. Logic program transformation through generalization
schemata. In: M. Proietti (ed), Proc. of LOPSTR’95, pp. 171–173. LNCS 1048.
Springer-Verlag, 1996.

12. P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In: N.E. Fuchs
(ed), Proc. of LOPSTR’97 (this volume).

13. N.E. Fuchs and M.P.J. Fromherz. Schema-based transformation of logic programs.
In: T. Clement and K.-K. Lau (eds), Proc. of LOPSTR’91, pp. 111–125. Springer
Verlag, 1992.

14. T.S. Gegg-Harrison. Representing logic program schemata in λProlog. In: L. Ster-
ling (ed), Proc. of ICLP’95, pp. 467–481. The MIT Press, 1995.

15. T.S. Gegg-Harrison. Extensible logic program schemata. In: J. Gallagher (ed),
Proc. of LOPSTR’96, pp. 256–274. LNCS 1207. Springer-Verlag, 1997.

16. A. Hamfelt and J. Fischer Nilsson. Declarative logic programming with primitive
recursion relations on lists. In: L. Sterling (ed), Proc of JICSLP’96. The MIT Press.

68 Halime Büyükyıldız and Pierre Flener

17. A. Pettorossi and M. Proietti. Transformation of logic programs: foundations and
techniques. Journal of Logic Programming 19(20):261–320, 1994.

18. J. Richardson and N.E. Fuchs. Development of correct transformation schemata
for Prolog programs. In: N.E. Fuchs (ed), Proc. of LOPSTR’97 (this volume).

19. D. Sahlin. An Automatic Partial Evaluator of Full Prolog. Ph.D. Thesis, Swedish
Institute of Computer Science, 1991.

20. D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial In-
telligence 27(1):43–96, 1985.

21. D.R. Smith. KIDS: A semiautomatic program development system. IEEE Trans-
actions on Software Engineering 16(9):1024–1043, 1990.

22. Z. Somogyi, F. Henderson, and T. Conway. Mercury: An efficient purely declar-
ative logic programming language. In: Proc. of the Australian Computer Science
Conference, pp. 499–512, 1995.

23. L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In: J.-
M. Jacquet (ed), Constructing Logic Programs, pp. 127–140, John Wiley, 1993.

24. M.E. Stickel. A Prolog technology theorem prover: A new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104:109–128, 1992.

25. W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic pro-
gram analysis and optimisation using enhanced schema-based transformations. In:
M. Proietti (ed), Proc. of LOPSTR’95, pp. 174–188. LNCS 1048. Springer-Verlag,
1996.

	Introduction
	Divide-and-Conquer Programs
	Program Transformation by Tupling Generalisation
	Program Transformation by Descending Generalisation
	Program Transformation Using Duality Laws
	Evaluation of the Transformation Schemas
	A Prototype Transformation System
	Conclusions and Future Work

