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Abstract 
Thzs paper presents a novel method for surface profile 
determination using multiple sensors. Our approach 
is based on morphological processing techniques to fuse 
the range data from multiple sensor returns in a man- 
ner that directly reveals the target surface profile. The 
method has the intrinsic ability of suppressing spuri- 
ous readings due t o  noise, crosstalk, and higher-order 
reflections, as well as processing multiple reflections 
informatively. The algorithm is verified both b y  sim- 
ulations and experiments in the laboratory b y  process- 
ing real sonar data obtained from a mobile robot. The 
results are compared to those obtained from a more ac- 
curate structured-light system, which is however more 
complex and expensive. 

1 Introduction 
Perception of its surroundings is a distinguishing 

feature of an intelligent mobile robot. An inexpen- 
sive, yet efficient and reliable approach to perception 
is to employ multiple simple sensors coupled with ap- 
propriate data processing. 

Since sonar sensors are inexpensive devices which 
yie!d accurate range data up to several meters; they 
have been widely used in robotics applications. How- 
ever, due to their wide beamwidth, the angular resolu- 
tion of sonar sensors is low, resulting in an uncertainty 
about the location of the object encountered. 

Most of the approaches for map-building with sonar 
have concentrated on surfaces with fixed or piecewise- 
constant curvature, mostly composed of target primi- 
tives such as planes, corners, edges, and cylinders [l-61. 
In [7]., an analytical approach to surface curvature ex- 
traction is described which employs differential geom- 
etry. The method proposed in this paper is completely 
novel in that morphological processing techniques are 
applied to sonar data to reconstruct the profile of an 
arbitrarily curved surface. It is important to empha- 
size that morphological processing is employed here to 
process the sonar map being constructed in the robot's 
memory, rather than conventional camera images. 

Approaches based on geometrical or analytical 
modeling are often limited to  elementary target types 
or simple sensor configurations. On the other hand, 
our approach is aimed at the determination of arbi- 
trary surface profiles. The method is extremely flexi- 
ble in that it can equally easily handle arbitrary sen- 
sor configurations and orientations as well as synthetic 

arrays obtained by moving a small number of sensors. 
As already mentioned above, a commonly noted dis- 
advantage of sonar sensors is the difficulty associated 
with interpreting spurious readings, crosstalk, higher- 
order, and multiple reflections. The method proposed 
is capable of effectively suppressing spurious readings, 
crosstalk , and higher-order reflections. Furthermore, 
it has the intrinsic ability to make use of echo returns 
beyond the first one (i.e. multiple reflections) so that 
echoes returning from surface features further away 
than the nearest can also be processed informatively. 

In Section 2, basic principles of sonar sensing are 
reviewed. The morphological processing and curve- 
fitting algorithms are introduced and applied in Sec- 
tion 3. After describing the system setup, experimen- 
tal results are presented and discussed in Section 4. 

2 Basics of Sonar Sensing 

The ultrasonic sensors used in this work measure 
time-of-flight (TOF), which is the round-trip travel 
time of the pulse from the sonar to the object and 
back to  the sonar. Since the speed of ultrasonic waves 
is known ( c  = 343.3 m/s), the range r can be easily 
calculated from r = cto/2. Many ultrasonic transduc- 
ers operate in this pulse-echo mode. The transducers 
act both as receiver and transmitter. 

The objects are assumed to reflect the ultrasonic 
waves specularly. This is a reasonable assumption, 
since most systems operate below 200 kHz so that 
the propagating waves have wavelengths well above 
several millimeters. Details on the objects which are 
smaller than the wavelength cannot be detected [7]. 
The sonars used in our experimental setup are Po- 
laroid transducers operating a t  a resonant frequency 
f o  = 49.4 kHz [lo], which corresponds to a wavelength 
of X = c/fo = 6.9 mm at room temperature. 

The major limitation of sonar sensors comes from 
their wide beamwidth. Polaroid transducers have a 
half beamwidth angle of Bo = 3112.5' [lo]. Although 
these devices return accurate range data, they can- 
not provide direct information on the angular position 
of the object from which the reflection was obtained. 
Thus, all that is known is that the reflection point lies 
on an arc whose radius is determined by r = cto/2 
(Figure l(a)). More generally, when one sensor trans- 
mits and another receives, it is known that the re- 
flection point lies on the arc of an ellipse whose focal 
points are the transmitting and receiving transducers 
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(Figure l (b)) .  Notice that the reflecting surface is tan- 
gent to these arcs at the actual point of reflection. The 
angular extent of these arcs is determined by the sen- 
sitivity regions of the transducers. Most commonly, 
the wide beamwidth of the transducer is accepted as 
a device limitation which determines the angular re- 
solving power of the system. In this naive approach, 
a range reading of T from a transmitting/receiving 
transducer is taken to  imply that an object lies along 
the line-of-sight of the transducer a t  the measured 
range. Consequently, the angular resolution of the sur- 
face profile measurement is limited by the rather large 
beamwidth, which is a major disadvantage. Our ap- 
proach, as will be seen, turns this disadvantage into an 
advantage. Instead of restricting oneself to  an angular 
resolution equal to  the beamwidth by representing the 
reflection point as a coarse sample along the line-of- 
sight, circular or elliptical arcs representing the uncer- 
tainty of the object location are drawn. By combining 
the information inherent in a large number of such 
arcs, angular resolution far exceeding the beamwidth 
of the transducer is obtained. 

sensitivity regii circle 
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Figure 1: a) For the same sonar transmitting and re- 
ceiving, the reflecting point is known to  be on the 
circular arc shown. b) The elliptical arc if the wave is 
transmitted and received by different sensors. 

3 Processing of the Sonar Data 
Structured sensor configurations such as linear and 

circular arrays as well as randomly scattered and ori- 
ented configurations have been considered. 

Figure 2(a) shows a surface, whose profile is to be 
determined. Figure 2(b) shows the circular and ellip- 
tical arcs obtained from a circular array of sensors, 
which both rotate and translate to  increase the num- 
ber of arcs generated from the available number of 
sensors. 

Notice that although each arc represents consid- 
erable uncertainty as to  the angular position of the 
reflection point nevertheless one can almost visually 
extract the actual curve shown in Figure Z(a) by ex- 
amining Figure 2(b). Each arc drawn is expected to  
be tangent to the surface a t  least a t  one point. At 
these actual reflection point(s), several arcs will inter- 
sect with small angles at nearby points on the surface. 
The many small segments of the arcs superimposed in 
this manner create the darker features in Figure 2(b), 
which tend to cover and reveal the actual surface. The 
remaining parts of the arcs, not actually corresponding 

to any reflections and simply representing the angu- 
lar uncertainty of the sensors, will remain more sparse 
and isolated. 
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Figure 2: a) The original surface. b) The circular sen- 
sor array mounted on a mobile robot moves to  35 dif- 
ferent locations and collects data  by rotating around 
its center from 45' to  135' with respect to  the positive 
x axis in 15' steps. The circular array has been shown 
at the 35 locations at its 90' position. 

In the next sections, morphological rules will be 
employed to  achieve what is natural for the human 
visual perception system: the extraction of Figure 2(a) 
from 2(b). 

3.1 Morphological Processing 
In this study, morphological operators are used to 
eliminate the sparse and isolated segments in the arc 
map, leaving the mutually reinforcing segments that 
directly reveal the original surface profile. Erosion, 
dilation, opening, closing, and thinning are the most 
widely used morphological operations to  accomplish 
tasks such as edge detection, enhancement, smooth- 
ing, and noise removal in image processing [8]. Ero- 
szon and dzlation are used to  thin or fatten an image 
respectively. These operations are defined according 
to  a structuring element or template. An example 3 x 3 
template is shown in Figure 3. 

I 1 1  

Figure 3: Template used for both erosion and dilation 
The algorithm for erosion is as follows: The tem- 

plate is shifted over the pixels of the sonar map which 
take the value 1 one at a time and the template's pixels 
are compared with those image pixels which overlap 
with the template [8 ] .  If they are all identical, the cen- 
tral pixel with value 1 will preserve its value; otherwise 
it is deleted. For the template shown in Figure 3 ,  all 
eight neighbors of the pixel must be 1 (n  = 8), and 
the image is eroded or shrunk accordingly. 

The dilation algorithm is very similar to  that for 
erosion, but is used to  enlarge the image according to  
the template. This time, all eight neighbors of those 
image pixels which originally equal 1 are set equal to  1. 
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In this study, the structuring element for dilation 
and erosion is the 3 x 3 square template, shown in Fig- 
ure 3 with the central pixel encircled. Since the tem- 
plate is symmetric, the image will be fattened (dila- 
tion) or thinned (erosion) in all directions by one pixel. 

The direct use of erosion may eliminate too many 
points and result in loss of information characteriz- 
ing the surface. For such cases, the compound opera- 
tions of opening and closing are considered. Opening 
consists of erosion followed by dilation and vice versa 
for closing. Opening helps reduce small extrusions, 
whereas closing enables one to fill the small holes in- 
side the image. Closing is applied prior to thinning, 
described below, in cases where the points are not 
closely connected to each other so that the direct use 
of thinning may result in the loss of too many points. 
Filling the gaps using closing first may prevent this 
from happening. 

Thinnzng is a generalization of erosion with a pa- 
rameter n varying in the range l 5 n < 8. In this case, 
it is sufficient for any n neighbors of the central image 
pixel to equal 1 in order for that pixel to preserve its 
value of 1. The flexibility that comes with this pa- 
rameter enables one to make more efficient use of the 
information contained in the arc map. 

In prunzng, which is a special case of thinning, at 
least one (n = 1) of the neighboring pixels must have 
the value 1 in order for the central pixel to remain 
equal to 1 after the operation. This operation is used 
to eliminate isolated points [8]. Thus, pruning and 
erosion are the two extremes of thinning with n = 1 
and n = 8 respectively. 

Since there are many alternatives for morphologi- 
cal processing of sonar data, an error measure is in- 
troduced as a success criterion: 

Here, i is the discrete index along the I direction and 
yj is the discretized function representing the actual 

N surface with variance U; = k c i , l ( y j  - k Ci yj)2. N 
is the total number of columns whereas Nk represents 
those columns left with at least one point as-a result 
of some morphological operation. mi is the vertical 
position of the median (centermost) point along the 
ith column of the map matrix (e.g. Figure 4(a)). If 
there are no points in a particular column, that col- 
umn is excluded from the summation. If the number of 
columns thus excluded is large; that is, if the morpho- 
logical operations have eliminated too many points, 
the remaining points will not be sufficient to extract 
the contour reliably, even if e is small. We will denote 
by fc = N k / N  the fraction of columns left with at  
least one point at  the end of a morphological opera- 
tion. This factor must also be taken into account when 
deciding on which method provides a better result. 

Additionally, CPU times of the algorithms (tCpu) 
are measured. These represent the total time the com- 
puter takes to realize the morphological operations 

starting with the raw TOF data. Morphological op- 
erations are implemented in the C programming lan- 
guage and the programs are run on a 200 MHz Pen- 
tium PC. 

The result of applying n = 5 thinning to the sonar 
data in Figure 2(b) is presented in Figure 4. The re- 
sults of various morphological operators applied to the 
same map are summarized in Table 1. Error measures 
E1 and Ea, given in the same table, will be discussed 
in the next section. Since simple erosion results in very 
small values of fe, we have considered thinning with 
parameter n. The error e tends to decrease with in- 
creasing n. However, larger values of n tend to result 
in smaller values of fc so that a compromise is neces- 
sary. For the time being, we note that the thinning 
parameter n allows one to trade off between e and fc.  

- ~ ~ : ~ ~ . . . ~  , i  
: 
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Figure 4: 
fc = 0.464, tCpU = 1.07 s. 

Result of n = 5 thinning: e = 0.0496, 

3.2 Curve Fitting 
As a last step, curve fitting is applied in order to 
achieve a compact representation of the surface profile 
in the robot's memory. Since our aim is to fit the best 
curve to the points, not necessarily passing through 
all of them, least-squares optimization (LSO) is pre- 
ferred to interpolation. LSO finds the coefficients of 
the best-fitting polynomial p ( z )  of order m (which is 
predetermined) by minimizing 

i=l  j = 1  

where E; is the sum of the squared deviations of the 
polynomial values p ( z i )  from the data points fij. zi 
is the horizontal coordinate corresponding to the ith 
column of the map matrix and faj is the vertical co- 
ordinate of the j t h  point along the ith column. The 
polynomial coefficients are obtained by solving linear 
equations obtained by setting the partial derivatives 
equal to zero. Once an acceptable polynomial approx- 
imation is found, the surface can then be compactly 
represented by storing only these coefficients. 

To assess the overall performance of the method, 
two final error measures are introduced, both compar- 
ing the final polynomial fit with the actual surface: 

. 
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The first is a root-mean-square absolute error mea- 
sure, with dimensions of length, which should be inter- 
preted with reference to  the wavelength A ,  that repre- 
sents the ultimate resolving power of the system. The 
second is a dimensionless relative error measure which 
can be interpreted as the error relative to the variation 
of the actual surface. 

The curve fitted to  the surface map after thinning 
shown in Figure 4 is presented in Figure 5. Table 1 
shows that increasing n improves e but worsens fc and 
that El and E2 achieve a minimum at some value of 
n (which in this case happens to  occur a t  n = 5 for 
both El and E2). In the simulations, where the actual 
surface is known, it is possible to  choose the optimal 
value of n,  minimizing El or E2. In real practice, 
this is not possible so that  one must use a value of 
n judged appropriate for the class of surfaces under 
investigation. 

qr ,I 
0 

0 200 400 600 800 -200 
x (cm) 

Figure 5: Polynomial fit of order m = 11: 
E1 = 3.57 cm, E2 = 0.040. 

I .  I \ , , \  I ,  I 

thinning (n  = 2 )  1 0.09 1 0.97 1 1.12 1 6.32 I 0.068 
thinninr f n  = 3)  I 0.09 I 0.83 I 1.11 I 4.87 I 0.053 

I I I . . ... U \  

thinning (n  = 4) I 0.05 I 0.64 I 1.09 I 3.74 I 0.041 
thinning (n  = 5) I 0.05 I 0.46 I 1.07 I 3.57 I 0.039 

- \  

thinning (n  = 6) I 0.04 I 0.27 I 1.07 I 5.47 I 0.059 
thinning ( n  = 7) I 0.03 I 0.13 I 1.06 I 6.93 I 0.075 

Table 1: Results of various morphological operations. 

In the simulations, higher-order reflections (i.e. 
echoes detected after bouncing off from object surfaces 
more than once) are ignored since they are difficult to  
model, although they almost always exist in practice: 
The key idea of the method is that a large number of 
data points coincide with the actual surface (at least 
at the tangent points of the arcs) and the data points 
off the actual surface are more sparse. Those spurious 
arcs caused by higher-order reflections and crosstalk 

also remain sparse and lack reinforcement. The thin- 
ning algorithms eliminate these spurious arcs together 
with the sparse arc segments resulting from the angu- 
lar uncertainty of the sensors. 

4 Experimental Verification 
In this section, the method is verified using the sen- 

sor systems on the Nomad 200 mobile robot in our 
laboratory. 

4.1 System Description 
The Nomad 200 is an integrated mobile robot of height 
76.2 cm and diameter 45.7 cm, including tactile, in- 
frared, sonar, and structured-light sensing systems 
(Figure 6). The robot can translate only in the for- 
ward and backward directions but not sideways with- 
out rotating first. The maximum translational and 
rotational speeds of the Nomad 200 are 60 cm/s and 
6Oo/s respectively [lo]. 

. * I I )  . 

Figure 6: Nomad 200 mobile robot. 

Nomad 200 has onboard computers for sensor and 
motor control and for host computer communication. 
The communication is managed with a graphic in- 
terface (server). The robot can also be run from a 
C language program either through the server or di- 
rectly [lo]. 

The Sensus 200 Sonar Ranging System on the robot 
consists of 16 Polaroid transducers which can yield 
range information from 15 cm to 10.7 m with fl % 
accuracy. The Polaroid transducer has beamwidth 25' 
and resonant frequency 49.4 kHz.  

The Sensus 500 Structured-Light System consists 
of a laser diode (as its light source) and a CCD array 
camera. The operating range of the system is from 
0.305 m to 3.05 m. The range is determined by (laser 
line striping) triangulation, which causes decreasing 
accuracy with increasing range and also possible an- 
gular measurement errors. 

In the experiments, both sonar and structured-light 
data are collected from various surfaces constructed in 
our laboratory. The structured-light system is much 
more expensive and complex, requiring higher-power 
and sufficient ambient light for operation. Since it 

1518 



reveals a very accurate surface profile, the surface de- 
tected by this system is used as a reference in the ex- 
perimental calculation of the errors using sonar data. 

In order to  prevent any crosstalk between consecu- 
tive pulses, the sonars should be fired a t  62 ms inter- 
vals since the maximum range of operation of Polaroid 
transducers is 10.7 m. In the experiments, the sonars 
are fired at 40 ms intervals. This prevents much of the 
crosstalk, and in the few cases where erroneous read- 
ings are obtained due to  crosstalk, these are readily 
eliminated by the algorithm. This is another aspect 
in which the algorithm exhibits its robust character. 

I operation (s) 

4.2 Experimental Results 
Several surfaces have been constructed in our labo- 
ratory with different curvature and dimensions, using 
thin cardboard of height 1.05 m and length 3.65 m .  

The sonars on the Nomad 200 are in a circular con- 
figuration and only the five front sensors are activated. 
Since the robot has a limited number of sensors which 
can detect the surface, by moving the robot and rotat- 
ing its turret, the equivalent of a much larger number 
of sensors is created synthetically. First, the robot re- 
mained stationary and collected data by rotating its 
turret. However, there were many locations on the 
surface which could not be seen by the robot if only 
the turret rotated. On the contrary, pure translation 
alongside the surface generally provided satisfactory 
results. 
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Figure 7: 
structured-light data, b) sonar data. 

a) The surface profile revealed by the 

The structured-light data obtained from one of the 
constructed cardboard surfaces is presented in Fig- 
ure 7(a). The sonar data presented in Figure 7(b) is 
obtained by translating the mobile robot horizontally 
over a distance of 1.5 m along the line y = 0 and col- 
lecting data every 2.5 cm. The turret is oriented such 
that both the structured-light and the front sonars are 
directed towards the surface and it does not rotate 
throughout the translational movement. 

As expected, the structured-light data provides a 
very accurate surface profile. In the arc map obtained 
by sonar, there are some arcs which are not tangent to 
the actual surface at any point. These correspond to  
spurious data due to  higher-order reflections, readings 
from other objects in the room, or totally erroneous 

readings. These points are readily eliminated by mor- 
phological processing (Figure $(a)). If the final curve 
in Figure 8(b) is compared with the structured-light 
data in Figure 7(a), it can be observed that a close fit 
to  the original surface is obtained. The errors in this 
case are El = 1.41 cm, E2 = 0.156, and tCpU = 0.15 s .  
Generally speaking, the error is larger where curvature 
is greater. 

zoor-----l zOOr----- 
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( 4  (b) 
Figure 8: a) Result of erosion (n = 8) followed by 
pruning (n = 1) applied after erosion. b) Polyno- 
mialfit to  part (a): E1 = 1.41 cm, E2 = 0.156, and 
tCpU = 0.15 s. 

Several results obtained for this surface are summa- 
rized in Table 2. All polynomials are of degree m = 10. 
The minimum estimation error El (obtained from the 
case in Figure 8) is not much larger than the wave- 
length X = 6.9 mm which represents the fundamental 
resolution limit of the system. 

I morphological I t,,u I f5 1 I E  2 1  

" 
erosion & thinning (n = 2) 1 0.14 I 1.50 I 0.167 1 

Table 2: Experimental results. 

Closing operat,ions were not needed in processing 
the experimental data because the points were suffi- 
ciently dense. If this was not the case, one would first 
apply closing in order to  add extra points to fill the 
gaps between the points of the original map. 

4.3 Computational Cost of the Method 
The average CPU times are in general of the order 
of a few seconds, indicating that the method is viable 
for real-time applications. For comparison, the time it 
takes for an array of 16 sonars to  collect all the TOF 
data is 16x40 m s =  0.64 s which is of the same order 
of magnitude as the processing time. It should be 
noted that the actual algorithmic processing time is a 
small fraction of the C P U  time, as most of the time is 
consumed by file operations, reads and writes to  disk, 
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matrix allocations etc. Thus, it seems possible that 
a dedicated system can determine the surface profile 
even faster, bringing the computation time below the 
data collection time. 

5 Discussion and Conclusion 
A novel method is described for determining arbi- 

trary surface profiles by applying morphological pro- 
cessing to  sonar data. The method is both extremely 
flexible, versatile, and robust, as well as being simple 
and straightforward. It can deal with arbitrary num- 
bers and configurations of sensors as well as synthetic 
arrays obtained by moving a relatively small number 
of sensors. Accuracy increases with the number of sen- 
sors used (actual or synthetic) and has been observed 
to  be quite satisfactory, except when the radius of cur- 
vature of the surface is very small [9]. The method is 
robust in many aspects; it has been seen that it has 
the inherent ability to  eliminate undesired T O F  read- 
ings arising from higher-order reflections as well as 
the ability to suppress crosstalk when the sensors are 
fired at shorter intervals than that nominally required 
to  avoid crosstalk. In addition, the method can effec- 
tively eliminate spurious T O F  measurements due to  
noise, and process multiple echoes informatively. 

The processing time is small enough to make real- 
time applications feasible. For instance, the system 
can be used for continual real-time map building pur- 
poses on a robot navigating in an environment with 
vertical walls of arbitrary curvature. Two extensions 
immediately come to mind. First, it is possible for 
the robot to continually add to  its collection of arcs 
and reprocess them as it moves, effectively resulting 
in a synthetic array with more sensors than the robot 
actually has. Second, the method can be generalized 
to three-dimensional environments with the arcs being 
replaced by spherical or elliptical caps and the mor- 
phological rules extended to  three dimensions. In cer- 
tain problems, it may be preferable to reformulate the 
method in polar or spherical coordinates. 

Although the structured-light system has been used 
mainly as a reference in this study, the fact that its 
strengths and weaknesses are complementary to the 
sonar system suggests the possibility of fusing the out- 
put of the two systems. The structured-light system 
provides a very accurate surface profile, but introduces 
errors increasing with range, as a result of the trian- 
gulation technique it employs. On the other hand, 
sonars yield better range information over a wider 
range but are less adept at recognizing the contour de- 
tails due to their wide beamwidth. The best properties 
of these two sources of information can be combined 
by first calibrating the structured-light range errors 
using sonar data, and then using the profile found by 
the structured-light system as a reference for sonar. 
Despite this possibility, the method described in this 
paper may be preferable in many circumstances, since 
the structured-light system is much more expensive 
and complex compared to  sonar sensors. 

Although not fully reported here, a detailed quan- 
titative study of the performance of different morpho- 

logical operations as well as the effect of TOF noise, 
and the dependence of the error on surface curvature, 
spatial frequency, and distance can be found in [9]. 

The essential idea of this paper - the use of mul- 
tiple range sensors combined with morphological pro- 
cessing for the extraction of the surface profile - can 
also be applied to  other physical modalities of range 
finding of vastly different scales and in many differ- 
ent application areas. These may include radar, un- 
derwater sonar, optical sensing and metrology, remote 
sensing, ocean surface exploration, geophysical expio- 
ration, and acoustic microscopy. Some of these appli- 
cations (e.g. geophysical exploration) may involve an 
inhomogeneous and/or anisotropic medium of prop- 
agation. It is envisioned that the method could be 
generalized to  this case by constructing broken or non- 
ellipsoidal arcs. 
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