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Abstract. We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas
without any tunneling between the layers. The effective interactions describing screening and
correlation effects between the dipoles in a single layer (intra-layer) and across the layers (inter-
layer) are modeled within the Hubbard approximation. We calculate the rate of momentum
transfer between the layers when the gas in one layer has a steady flow. The momentum transfer
induces a steady flow in the second layer which is assumed initially at rest. This is the drag
effect familiar from double-layer semiconductor and graphene structures. Our calculations show
that the momentum relaxation time has temperature dependence similar to that in layers with
charged particles which we think is related to the contributions from the collective modes of the
system.

1. Introduction
Ultracold gases of polar atoms or molecules with their anisotropic long-range interaction are of
great interest in recent years. [1, 2] Single and multi-layer structures of two-dimensional (2D)
bosons or fermions are being studied from the point of view of their quantum phases, Fermi liquid
properties, collective excitations, and formation of density waves. [3, 4, 5, 6, 8, 9, 10, 11, 12]
Ground-state properties of 2D dipolar fermions have been investigated in a number of works
[13, 14, 15]. Transport properties on the other hand are much less studied [16]. In this work,
we address a transport property in dipolar fermion gases in analogy to a similar effect observed
in electronic systems.

In electronic bilayer systems a transport phenomenon known as the drag effect has been
studied for a long time. In the drag effect when a current is applied to one of the layers the
electrons in the second will be dragged resulting in an interlayer resistivity which is related
to the momentum transfer between the layers. [18, 19] Interestingly, the newly discovered 2D
electronic systems such as graphene also exhibit this phenomenon [20].

In this paper, we consider the drag effect in a double-layer dipolar system of polarised
fermions. It is assumed that a flow is established in one of the layers while We adapt the
Hubbard approximation to describe the correlation effects between the dipoles within the same
layer and use the random-phase approximation (RPA) to account for the interactions across the
layers. We assume that the Femi gases in the parallel layers are in normal state so that the
transfer of momentum from one layer to another gives rise to a friction-like effect. This is in
contrast to the so-called dissipationless drag predicted for the same system when the fermions
are in a superfluid state [21].
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2. Model
We consider two infinite parallel layers of 2D spin-polarized dipolar Fermi gas, separated by
a distance d. We assume that an external field aligns the dipoles perpendicularly to the
to the laters, so that the intra-layer interaction is purely repulsive and isotropic and given
by V11(r) = Cdd/(4π r

3). The inter-layer bare interaction on the other hand is V12(r) =
(Cdd/4π)(r2 − 2d2)/(r2 + d2)5/2. The Fourier transform of the intra-layer interaction is not
well-defined, therefore a cut-off parameter related to the width of the layer is used in various
applications. [11, 12]

In this work we adapt the Hubbard approximation for the intra-layer interaction which is a
familiar approach from electronic systems. [22] The Hubbard approximation allows us to obtain
the intra-layer interaction in Fourier space free of any cut-off parameter and it may be regarded
as an effective interaction. For the inter-layer interaction we use the bare Fourier transform as
no cut-off is required in this case. Therefore, in Fourier space the intra-layer interaction V11(q)
within a single layer and the inter-layer interaction V12(q) across the layers are given by [21]

V11(q) =
Cdd

2

[√
k2F + q2 − q

]
and V12(q) = −Cdd

2
q exp(−qd) , (1)

where the indices 1 and 2 indicate different layers and Cdd is the dipole-dipole coupling constant.
As a result of the momentum transfer caused by inter-layer dipole-dipole interactions, an

applied current in one layer drives a current in the other one. This momentum transfer
constitutes the Coulomb drag rate in the system, given by [?, 19]

τ−1D =
~2

8mnkBTπ2

∞∫
0

dq q3
∞∫
0

dω
|W12(q, ω)|2 Im χ1(q, ω) Im χ2(q, ω)

sinh2(~ω/(2kBT ))
, (2)

where kB is the Boltzmann constant and χ(q, ω) is the 2D polarization function. In addition,
m is the mass of a dipole and n is the density of a single layer. Here, W12 is the dynamically
screened effective interaction, defined by

W12 =
V12

ε(q, ω)
(3)

in which the dielectric function is written as

ε(q, ω) = [1− V11(q)χ1(q, ω)] [1− V22(q)χ2(q, ω)]− [V12(q)]
2 χ1(q, ω)χ2(q, ω) , (4)

in terms of the intra- and inter-layer interactions and non-interacting dynamic susceptibility of
the ith layer χi(q, ω) for spin-polarised fermions.

3. Results
We calculate the drag rate τ−1D between the layers of dipolar gases using Eq. (2) as a function of
temperature. Note that the temperature dependence comes from various occurrences of χ’s in
the integrand. The dimensionless interaction strength parameter is defined as λ = kFa0 where
a0 denotes the characteristic length scale, obtained by a0 = mCdd/(4π~2). Here, m is the mass
of a dipole, kF =

√
4πn is the Fermi wave number and n is the density of a single layer.

Figures 1 and 2 show the drag rate for various values of the interaction strength λ and
layer separation distance d. In general, as the distance d gets larger inter-layer interactions are
weakened and the drag rate decreases. As the coupling strength λ increases, both the intra- and
inter-layer interactions become stronger which results in an increased drag rate. However, we
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Figure 1. The dimensionless drag rate τ−1D as a function of temperature for different values
of the interaction strengths, indicated by λ, as λ = 0.2 (dashed-dotted lines), λ = 2.0 (dashed
lines), λ = 4.0 (solid lines) and λ = 8.0 (dotted lines). Here, the graphs are obtained for the
systems with the well separation distances d = 0.1, 0.15, 0.2, and 0.25, respectively.

do see some anomalies especially at larger values of λ. We surmise that this is because of the
Hubbard approximation model we use for the intra-layer interactions and improved interaction
models are necessary for further explorations. The overall shape of the drag rate as a function
of temperature (up to 3TF resembles that of electronic double-layer structures. [23] Therefore,
it is natural to associate the peak around TF with the collective excitation modes of double-
layer dipolar fermions in a similar manner. These are in essence collective density excitations
which may be associated with in-phase and out-of-phase oscillations in the double layer system.
[21] The peak position in the drag rate also depends on the separation distance d and coupling
strength λ. As λ increases the collective modes become less energetic (dispersion is softened)
and it becomes easier to excite the modes. This results in a decrease in the overall shape of the
drag rate as a function of temperature and a shift in the peak position towards low temperature.
With some irregularities we observe this general behaviour. To understand the discrepancies we
need to resort to improved interaction models. It would be interesting to calculate the drag rate
due to collective excitations only to understand the origin of enhancement at high temperatures.
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Figure 2. Temperature dependence of the dimensionless drag rate τ−1D for the corresponding
values of the interaction strengths, λ = 0.2, 2.0, 4.0, 8.0. The solid, dashed, dotted and dashed-
dotted lines define the well separation distances for d = 0.1, 0.15, 0.2, 0.25, respectively.

4. Conclusion
In conclusion we have calculated the drag rate between two layers of dipolar Fermi gas. We
have found that for typical layer separation distances and moderate interaction strengths the
drag rate shows a peaked behaviour as a function of temperature. We believe that this is due
to the collective mode excitations in the double-layer structure similar to that encountered in
electronic systems. More sophisticated screened interaction models are needed to study the
strongly correlated regime (large λ). It would also be interesting to explore the effects of density
imbalance in the layers.
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