
ASSOCIATION RULES FOR SUPPORTING HOARDING IN MOBILE
COMPUTING ENVIRONMENTS

Yücel Saygın
Bilkent University, Turkey
saygin@cs.bilkent.edu.tr

Özgür Ulusoy
Bilkent University, Turkey
oulusoy@cs.bilkent.edu.tr

Ahmed K. Elmagarmid
Purdue University, USA

ake@cs.purdue.edu

Abstract

One of the features that a mobile computer should
provide is disconnected operation which is performed by
hoarding. The process of hoarding can be described as
loading the data items needed in the future to the client
cache prior to disconnection. Automated hoarding is the
process of predicting the hoard set without any user inter-
vention. In this paper, we describe an application indepen-
dent and generic technique for determining what should be
hoarded prior to disconnection. Our method utilizes associ-
ation rules that are extracted by data mining techniques for
determining the set of items that should be hoarded to a mo-
bile computer prior to disconnection. The proposed method
was implemented and tested on synthetic data to estimate
its effectiveness. Performance experiments determined that
the proposed rule-based methods are effective in improving
the system performance in terms of the cache hit ratio of
mobile clients especially for small cache sizes.

1. Introduction

Recent advances in computer hardware technology have
made it possible the production of small computers, such
as notebooks and palmtops, which can be carried around by
users. These portable computers are often equipped with
wireless communication devices that enable users to ac-
cess global data services from any location. A consider-
able amount of research has recently been conducted inmo-
bile database systemsarea with the aim of enabling mobile
(portable) computers to efficiently access a large number of
shared databases on stationary/mobile data servers. A de-
tailed description of the issues related to the recent research
on client server computing in mobile environments can be
found in [JHE99, PS98].

Mobile devices are beginning to support applications
such as multimedia and World Wide Web. Users would
like to surf the Internet and read their email while travel-
ing. However, mobile computers with wireless communi-

cation often frequently disconnect from the network due to
the cost of wireless communication or the unavailability of
the wireless network. Consider a businessperson who fre-
quently travels around by plane. Before getting on the plane
he/she would have to disconnect and then continue his/her
work on the air without wireless network support. The same
businessman may travel by car and knows that after a cer-
tain point, no wireless network support in a certain region
exists. Thus, his or her operation must go on into discon-
nected mode. Another person may not be willing to pay
for a continuous wireless connection, but would prefer to
connect intermittently, in order to access files of interest.
Such scenarios suggest that the disconnection mode may be
in high demand and the system should provide support for
disconnected operation. The process of hoarding involves
loading the files which may be needed in the future to the
client cache prior to disconnection. The early work on dis-
connected operation, done by the CODA project group in
CMU [KS92], was based on user’s manual specification of
the hoard set before disconnection via a script language.
They also had some limited form of automated hoarding.

Automated hoarding is the process of predicting the
hoard set without any user intervention. An approach for
automated hoarding based on clustering was proposed by
Kunning and Popek [KP97]. Their clustering method was
based on the notion of semantic distance. The semantic dis-
tance between two operations was calculated by using the
number of intervening references to other objects. Another
approach based on identifying the working sets of different
programs was proposed by Tait et al. [TLAC95]. In that
work, the authors constructed program trees together with
the files used by those programs. For a program, each ex-
ecution resulted in a tree. The trees belonging to the same
program were merged to obtain a final hoard set for that
program.

In previously proposed hoarding methods, it is assumed
that users run a program while disconnected and would like
to have access to other programs and data files needed by
the original program in the cache prior to disconnection.
This assumption enables researchers to use semantic infor-

mation about the data and executable files such as the file
extensions (.txt, .exe), and the directories these files are lo-
cated. The difference between our approaches and the pre-
viously proposed approaches is that we do not assume any
knowledge about file extensions or directory information.
We propose a more generic and application independent ap-
proach to hoarding. In our approach, we assume that no
information is available regarding which programs are run-
ning when the client requests are issued and what opera-
tions are issued on the data. We introduce the notion of a
session which consists of client requests and is independent
of the other sessions. Our approach to automated hoarding
is inferencing with association rules that simply exploits the
access patterns of clients to guess the future requests. As-
sociation rules provide us with sound priority measures like
the support, confidence, and size of the rules which can be
utilized for limiting the set of items to be loaded to the client
cache.

We performed experiments and compared our associa-
tion rule based hoarding method with LRU (Least Recently
Used) caching. The results showed that rule based hoarding
had a higher cache hit ratio especially for small cache sizes
which is typical for thin clients and palm top computers.

Hoarding through association rules can be achieved
through the following three phases of execution: 1) min-
ing of the history, 2) construction of the candidate set, and
3) construction of the hoard set. In phase 1, the history of
client requests are preprocessed and analyzed to come up
with the association rules using data mining techniques. In
phases 2 and 3, these rules are used to construct the candi-
date set and the hoard set, respectively.

The rest of the paper is organized as follows: Section 2
and Section 3 describe the first and second phases of the
hoarding process, respectively. Section 4 describes the sim-
ulation model and provides the experimental results we ob-
tained, and finally Section 5 concludes the paper while dis-
cussing possibilities for future research.

2 Mining Histories for Association Rules

The history of previous client requests should be mined
to come up with association rules. Mining algorithms for
association rules assume that the input data is a collection
of sets of items. In what follows, we provide a formal defi-
nition of association rules and discuss how the client request
history is preprocessed so that state of the art, efficient, and
incremental association rule finding algorithms are utilized.

2.1 Association Rules: An Overview

The problem of finding association rules among items
has been clearly defined by Agrawal et al. [AS94]. This
definition is provided for clarity:

Let I = i1; i2; :::; im be a set of literals, called items and
D be a set of transactions1, such that8T 2 D;T � I . A
transactionT contains a set of itemsX if X � T . An
association ruleis denoted by an implication of the form
X) Y , whereX � I , Y � I , andX \ Y = ;. A
rule X) Y is said to hold in the transaction setD with
confidencec if c% of the transactions inD that containX
also containY . The ruleX) Y hassupports in the
transaction setD if s% of transactions inD containX [Y .

The problem of mining association rules is to find all
the association rules that have a support and a confidence
greater than a user-specified thresholds [AS94]. The thresh-
olds for confidence and support are calledminconfandmin-
sup, respectively. The problem of mining association rules
has been well studied and is outside the scope of this pa-
per. In this paper, we focus on how a request history can
be analyzed to construct association rules that capture the
affinity among mobile client requests. We will examine the
utilization of the resulting association rules in hoarding. In
this approach, we assume that past data access requests of
clients issued to the server are stored in a history log. As-
sociation rules are obtained by analyzing the history of re-
quests issued by clients.

To date, association rules have been used in various con-
texts. For example, they are useful in determining the place-
ment and pricing of merchandise at megamarkets [AS94],
World Wide Web [MJHS96], and broadcasting data [SU99].
However, to the best of our knowledge, the automated use
of association rules in hoarding has not yet been considered
by any researcher.

2.2 The Use of Association Rules for Hoarding

Data mining techniques can be involved in hoarding al-
gorithms in order to extract association rules from client re-
quest histories. The extracted association rules which rep-
resent client access patterns, can be used to predict future
client requests. The predicted request set is what should be
loaded prior to disconnection so that the future client re-
quests are satisfied locally without requiring a connection
to the server. Association rules provide guides such as sup-
port, confidence and size of the rules which are crucial in
limiting the size of the data set to be hoarded.

In order to describe our approaches for hoarding, we first
need to introduce the notion of a session. Asessionconsists
of a group of continuous client requests and represents a
period of user interest for a particular issue. In theory, such
sessions are independent of each other. We assume that user
requests consist of sessions and that client requests could be

1In the context of data mining, a transaction is a set of items purchased
at a time in market basket data and it should not be confused with the
notion of transaction in the database context. Transactions will be mapped
to sessions for hoarding.

2

user1 (win11 : x z y;win12 : z y; ...;win1k : p q u)
user2 (win21 : x p;win22 : u w v; ...;win2l : r s)
... ...
usern (winn1 : x y; winn2 : u v; ...;winnm : x y z)

Table 1. User-based partitioning of the client
request history.

partitioned into sessions. Each session contains some pat-
terns of client requests. Data mining techniques find these
patterns and produce rules that can be used to build a rule
base of associations. When disconnection occurs, rules are
used to infer a user’s future requests. The rest of the session
is stored locally at the client’s side. It is assumed here that
hoarding sets are limited to one session. Therefore, histo-
ries must be divided into a sequence of sessions.

2.3 Partitioning the History into Sessions

There can be two basic approaches for mining the client
request history depending on how the history of user re-
quests is partitioned: 1) the flat approach and 2) the user-
based partitioning approach. The flat approach tries to ex-
tract data item request patterns regardless of who requested
them. The user-based partitioning approach, on the other
hand, divides the client request history into subsets with re-
spect to the user who requested them, as shown in Table 1.
Table 1 presents the windows of requests corresponding to
each user, such asuser1 who hadk different request win-
dows. The analysis is done for each subset of the client
request history corresponding to a user independent of the
other subsets.

In order to make use of the existing data mining algo-
rithms, we need to construct sessions out of the existing
history. When we cannot assume any session boundaries,
we need to use a sliding window approach for simulating
the sessions. We used a gap-based approach to determine
the session boundaries. In gap-based approach, we assume
that a new session starts when the time delay between two
consecutive requests is greater than a prespecified threshold
calledgap.

In both flat and user-based partitioning approaches, we
divide the request set into windows and find the associa-
tion rules using the data mining algorithms mentioned pre-
viously. These windows correspond to the sessions for the
data mining algorithm. However, the construction of the
windows is different for the two approaches. In the user-
based partitioning approach, we can observe the temporal
patterns of a user to divide his/her request set into sessions.
In the gap-based method, windows are clusters of item/s
requested according to the times of requests; if a user has

1 42 3 5 6 7 8 9 10 11 12 13 14 20 21 22 230 16 18 1915 17

3 2 3 6 2 7 2 5 3

24 25

3 7 91 112 5 8

Timestamps

Data ids

Figure 1. A sample history

requested items consecutively and relatively quickly, then
these items should be put in the same window. We define
a window as a group of requests where the time delay be-
tween two consecutive requests is less than a certain thresh-
old. After requesting a set of items consecutively, if the
user waits an extended period of time before starting an-
other session, then the sequence of items requested in the
new session can be put into another window. In Table 1, the
requests ofuser1, for instance, are divided intok windows.
The first window ofuser1, denoted bywin11 , has three re-
quests, namely data items x, z, and y. We need to set a
threshold value for the time delay in between two consecu-
tive windows. We may set this threshold to infinity in order
to put all items requested by the same user into the same
window; this might be a reasonable approach if there are
multiple users and each user accesses a reasonable amount
of items. When the number of users is small and each user
accesses many documents, then we need to set a reasonable
threshold value. For the flat approach, we determine a fixed
window length and use a sliding window approach to con-
struct the windows. The sliding window approach is based
on moving the window one item further and consider the
items in the current window for finding the large item sets.

In order to be able to use data mining algorithms to ob-
tain association rules, windows are mapped tosessionsand
data item requests are mapped toitems. Standard associa-
tion rule finding algorithms are then used to find the associ-
ation rules in the history. The state of the art association rule
finding algorithm calledApriori is appropriate for our pur-
poses [AS94]. Initially, the Apriori algorithm finds all the
large data items and computes their supports. Large data
items are characterized by the fact that the percentage of
the windows that supports them is greater than the minimum
support value. Then using these large items, 2-itemsets (i.e.,
itemsets of size 2) are found by combining large items by
checking their support values against the minimum support.
Incrementally, item sets of sizen are constructed by using
item sets of sizen � 1 (wheren > 1) until no larger item
sets could be found.

Figure 1 shows a sample history generated for clarifying
the proposed methods. The numbers above the line are the
time stamps and the numbers below the line are requested
items. If we do not assume any session boundaries, then we
need to use a sliding window algorithm which results in the
following sessions if the window size is set to 3:f1; 2; 1g,
f2; 1; 3g, f1; 3; 2g, f3; 2; 1g, f2; 1; 3g, f1; 3; 5g, f3; 5; 6g,

3

f5; 6; 2g, f6; 2; 7g,f2; 7; 2g, f7; 2; 5g, f2; 5; 3g, f5; 3; 8g,
f3; 8; 3g, f8; 3; 7g, f3; 7; 9g. If the gap-based methods will
be used and the gap is set to 2 units, then we have 8 sessions
which aref1; 2g,f1; 3; 2g, f1; 3g, f5; 6g, f2; 7g, f2; 5g,
f3; 8g, f3; 7; 9g. If a length-based approach is going to be
used and length is set to 3, then we have;f1; 2; 1g, f3; 2; 1g,
f3; 5; 6g, f2; 7; 2g, f5; 3; 8g, f3; 7; 9g. Cluster-based ap-
proach depends on the clustering methods we use and will
not be discussed in this paper. Cluster-based methods gen-
erate session patterns similar to the sessions generated by
the gap-based approaches.

3 Utilization of the Association Rules for
Hoarding

The association rules obtained after mining the request
history are used for determining thecandidate setand the
hoard setof the client upon disconnection. The candidate
set is defined as the set of all candidates for hoarding for a
specific client. Hoard set is the set of data items actually
loaded to the client prior to disconnection. A candidate set
is constructed using inferencing on association rules as ex-
plained in Section 3.1. Some other heuristics are used to
prune the candidate set to the hoard set so that it fits to the
cache of the mobile client as explained in Section 3.2.

The process of automated hoarding via association rules
can be summarized as follows: (1)Requests of the client in
the current session are used through an inferencing mech-
anism to construct the candidate set prior to disconnection,
(2) Candidate set is pruned to form the hoard set, (3) Hoard
set is loaded to the client.

The need to have separate steps for constructing the can-
didate set and the hoard set arises from the fact that users
also move from one machine to another that may have lower
resources. The construction of the hoard set must adapt to
such potential changes.

Details about how the hoarding process constructs can-
didate and hoard sets are provided in Sections 3.1 and 3.2
below.

3.1 Construction of the Candidate Set

An inferencing mechanism is used to construct the can-
didate set of data items that are of interest to the client to be
disconnected. The candidate set of the client is constructed
in two steps: (1) The inferencing mechanism finds the as-
sociation rules whose heads (i.e., left hand side) match with
the client’s requests in the current session, (2) The tails (i.e.,
right hand side) of the matching rules are collected into the
candidate set.

The inferencing mechanism examines the current re-
quests and predicts future ones. The rules obtained from

the history shown in Figure 1 as a result of gap-based par-
titioning approach are:1 ! 2 and1 ! 3 with a minimum
support of 20% and minimum confidence of 80%. If we
have the list6; 7; 1; 5 belonging to a current client session,
then the data items2 and3 should be placed into the can-
didate set as a result of the inference mechanism because
data item1 was requested and our rules tell us with a cer-
tain confidence level that if a user requests data item1, then
he/she will also request data items2 and3 in the near fu-
ture. Priorities need to be assigned for the items obtained as
a result of the inferencing. Our priority metric is based on
the rule confidence and support values; i.e., items inferred
by a rule with a high confidence or support. To include both
the support and confidence value, the priority of a rule is set
to be the multiplication of the confidence and support value
for that rule.

3.2 Construction of the Hoard Set

The client that issued the hoard request has limited re-
sources. The storage resource is of particular importance
for hoarding since we have a limited space to load the can-
didate set. Therefore, the candidate set obtained in the first
phase of the hoarding set should shrink to the hoard set so
that it fits the client cache. Each data item in the candidate
set is associated with a priority. These priorities together
with various heuristics must be incorporated for determin-
ing the hoard set. The data items are used to sort the rules in
descending order of priorities. The hoard set is constructed
out of the data items with the highest priority in the candi-
date set just enough to fill the cache.

For an effective hoarding, the cache misses during dis-
connection should be recorded and reflected to the history
upon reconnection. In this manner, we can capture the
whole picture of client requests, both connected and dis-
connected.

4 Simulation Model and Experimental Re-
sults

We implemented the data mining algorithms and the rule
based hoarding mechanism to show the effectiveness of
the proposed methods. The data set generator of the IBM
Quest project was used for simulating the history of ses-
sions [AS94]. The simulation model we used and the ex-
perimental results we obtained are provided in Section 4.1
and Section 4.2, respectively.

4.1 Simulation Model

In our simulation model, we make use of the history of
sessions for both extracting rules and testing the effective-

4

Data Mining Program

Hoard Request

Hoard Set

Server

Rule Base

Inference Engine

set
Candidate Incomplete

Session

 HISTORY DATA Time0

Request Generator

Session Generator

Client
Cache

Figure 2. Architecture of the Simulation

ness of the rule based hoarding method. The architecture of
our simulation model is shown in Figure 2.

We assume that the whole set of past requests are stored
in a history. Our experiments consist of two stages: (1)Rule
extraction, where the the history is mined for extracting as-
sociation rules. (2)Rule performance evaluation, where the
history is used to test the effectiveness of the extracted rules.

First, the sessions are generated, then the rule extraction
mechanism performs the task of extracting the association
rules from the collection of sessions. Rule sets with differ-
ent minimum confidence and support requirements can be
constructed by the rule extraction program. The resulting
association rules are written to a file in a specific format
to be read later by the simulation program. The simulation
program was written in C++.

The second stage of our experiments is performed as fol-
lows: First of all, the client requests are divided into two
groups: (1) Requests issued while disconnected, (2) Re-
quests issued while connected.

A request generator program takes the data generated by
the IBM benchmark and converts it to a stream of client
requests consisting of sessions. The beginning and end
of the sessions are marked and disconnect requests are in-
serted. Hoard requests are also inserted as a client request
that marks disconnection times. Hoard requests are issued
relative to the beginning of the sessions and have a normal
distribution with meanaverage session length=2.

The main subsystems of the broadcast simulation pro-
gram are theserver, client, cache, andrulebase. Server has
a rule base used for constructing the hoard set. The client
interacts with the server by sending both data and hoard re-
quests to it. Rule base loads the association rules from a
file generated by the data mining program. The client has a

cache to store a limited amount of requested items.

4.2 Experimental Results

We used the IBM Almaden Quest data generator to sim-
ulate the history of client requests [AS94]. The data gener-
ated by this benchmark is suitable for our purposes because
we could finetune the generated data. Basically, the bench-
mark produces a collection of sets of items. The sets of
items correspond to the sessions in the context of hoarding.

We implemented the Apriori algorithm for mining asso-
ciation rules. We extended the mining algorithm with an
inverted list so that the implementation could be performed
with set operations like union and intersection. Data min-
ing is performed in main memory. The running time of the
data mining algorithm does not exceed a few seconds for a
thousand sessions. Considering that the mining process is
not done frequently, these running times are not significant.

The client request log is partitioned into disconnected
and connected periods. The length of these periods is cal-
culated in terms of number of requests. The client part of
the system loads the requests into a queue together with the
disconnection period and frequency information. When the
disconnection period is reached, the hoard set is sent to the
client, and the cache hit ratio is measured for the discon-
nection period. Overall, the disconnected cache hit ratio is
calculated by averaging the individual disconnected cache
hit ratios. The resulting hit ratios can be compared to that
of the LRU approaches.

We have performed various experiments to see the effect
of different parameters on the performance. Local storage
done by the mobile client is referred to as its cache. Our
main performance criterion is the cache hit ratio since the
main purpose of hoarding process is to decrease the number
of cache misses during disconnection.

The number of sessions does not have any impact on the
performance; the value selected for this parameter in our ex-
periments is 200. The number of different data items gener-
ated is 150. We assume 50 different patterns in the data set
and the average pattern length is taken to be 10 items. Cache
size and its impact on the performance is an important pa-
rameter that we need to evaluate. We measure the cache size
in terms of the number of data items that the cache can hold
since we did not simulate the size of data items. Consid-
ering that the data items are most likely html documents or
multimedia applications, data items would consist of one or
more pages. Therefore, the locality in the number of pages
would not affect the system performance. As a result, the
cache size in terms of the number of data items does not de-
viate very much from real life where cache size is measured
in terms of kilo bytes.

We targeted small size devices like palmtops, which have
a limited memory and potentially short sessions of connec-

5

10 20 30 40 50 60 70 80 90 100
Cache Size

0

10

20

30

40

50

60

70

80

90

100

H
it

R
a

tio

(%
)

NUM_ITEMS = 150, NUM_SESSIONS = 200

LRU
LRU with Rules

Figure 3. Cache Hit ratio as a function of the
cache size

tion. A cache size of 50 or at most 100 items (or objects)
used in our experiments seems reasonable, considering the
amount of space multimedia or web items consume. Since
we are assuming thin clients with a small cache size, we
varied the cache size from 10 to 100 items. The results we
obtained for the cache hit ratio under different cache sizes
are displayed in Figure 3. As we observe from the figure,
in general, rule-based hoarding methods are more effective
for small cache sizes. As the cache size gets closer to the
number of distinct data items, the cache hit ratio gets closer
to the LRU cache hit ratio. Since the mobile devices are
characterized by a limited cache size, we could state that
our methods are effective for mobile computers. The cache
size is measured in terms of the number of items, assuming
that the items retrieved are html documents, possibly with
images. A cache size of 50 seems to be a reasonable value.

Rule confidence also affects the cache hit ratio. The per-
formance results obtained by varying the rule confidence are
depicted in Figure 4. As can be seen from the figure, very
high minimum confidence values cause the cache hit ratio to
decrease. This is due to the fact that a higher minimum con-
fidence requirement means that we will have a lower num-
ber of rules, which decreases the number of predicted items.
In the extreme case of a confidence of 100%, the number of
rules we can have is the minimum, and the cache hit ratio
is close to that of the LRU without rule extension. With
lower confidence values, we have a larger number of rules.
However, since we are using the rule confidence and sup-
port values for limiting the number of inferred items, the
cache hit ratio does not change much for the minimum con-

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
Confidence

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

C
a

ch
e

 H
it

R
a

tio
 (

%
)

CACHE_SIZE = 50, SUPPORT = 20

Figure 4. Cache Hit ratio as a function of the
minimum confidence

fidence value in the range of 0 to 70. This is due to the fact
that we are already eliminating the low confidence rules by
the priority mechanism.

The number of different patterns in the data set also has
an effect on the cache hit ratio, as shown in Figure 5. LRU
with rules consistently has a higher hit ratio as compared to
LRU, for all different numbers of patterns. However, as the
number of patterns increases, both LRU and LRU with rule
extension inhibit a decreased cache hit ratio and the differ-
ence between the hit ratios also decreases. This is due to the
fact that rules better represent a dataset with a lower number
of patterns, and we would extract more rules with a smaller
number of patterns for the same minimum confidence and
support.

Overhead of mining and inferencing: Rule extraction
should be performed periodically to reflect changes in re-
quest patterns. However, this would lead to a process-
ing overhead on the server in addition to the inferencing
it causes. We can determine a threshold value for the wait-
ing period before restarting the history mining and devel-
opment of new association rules. For huge histories, min-
ing the whole history periodically is a waste of resources;
therefore, some incremental methods can be applied to re-
duce the time spent for remining. Efficient methods for
incremental rule maintenance are proposed in [CHNW96].
Some timing measurements are presented in Figure 6 and
Figure 7. Figure 6 shows the time required for inferencing
as a function of the number of rules. This timing measure-
ment is performed over 2000 sessions andCPU timegives

6

30 40 50 60 70 80 90 100
Number of Different Patterns

30

40

50

60

70

80

H
it

R
a

tio

(%
)

NUM_ITEMS = 150, CACHE_SIZE = 50

LRU with Rules
LRU

Figure 5. Cache Hit ratio as a function of the
number of different patterns

0 40 80 120 160 200 240 280 320 360 400
Size of the Rulebase

0

40

80

120

160

200

240

280

320

360

400

C
P

U
 t
im

e
 (

m
se

cs
)

Figure 6. CPU time for inferencing as a func-
tion of the number of rules in the rulebase

0 100 200 300 400 500 600 700 800 900 1000
Number of sessions

0

1

2

3

4

5

6

C
P

U
 t

im
e

 (
se

cs
)

Support = 20, Confidence = 40, Num Items = 150

Figure 7. CPU time for rule extraction as a
function of the number of session

the time required to perform the inferencing 2000 times. For
the time being, we search the whole rulebase to find out the
matching rules. Matching is performed by a subset opera-
tion and can be performed in constant time assuming that
the rule and session sizes are bounded. More efficient rule
searching mechanisms could be employed to improve the
performance since the inferencing time is directly propor-
tional to the size of the rulebase. The processing overhead
of rule extraction, in terms of the CPU time required to mine
for rules from histories of different sizes, is presented as a
function of the number of sessions in Figure 7.

Inferencing with rules is performed at the server; there-
fore, mobile clients are not affected by the inferencing over-
head except for the server delay. With efficient incremental
mining and inferencing techniques, the server load and thus
client waiting times for hoarding can be decreased.

5 Conclusions and Future Work

In this paper, we proposed a new method for automated
hoarding to support seamless disconnected operation. Our
method basically utilizes the association rules via an infer-
encing mechanism to decide what data items to hoard. As
an initial step, a method for constructing sessions out of the
client request history to feed into the data mining algorithm
as transactions was described. This allowed us to use data
mining algorithms to analyze the history of previous client
requests. We described how the hoarding process could be
performed via association rules together with an inferenc-
ing mechanism to determine the candidate set of data items

7

that may be of interest to the user in the future. A priority
assignment method was proposed which exploits the confi-
dence and support values of the association rules. The pri-
orities were used to prune the candidate set of data items in
order to develop a smaller set that will fit the limited storage
of mobile clients.

Experiments were also conducted to gauge the effective-
ness of the proposed methods in terms of the client cache hit
ratio. We observed that the use of association rules consid-
erably improves the hit ratio of the client cache especially
for small cache size. The results are promising at this stage
and can be improved further with some extensions. We also
performed experiments to measure the processing overhead
of rule extraction and inferencing. These results support our
claim that neither infrequent mining nor inferencing intro-
duces a considerable overhead to the system. We believe
that the performance could be improved even further with a
more efficient incremental mining and inferencing process.

One of the more appealing aspects of this work is that we
bring old problems of production rules into the arena with a
new method of rule gathering and application. We proposed
the usage of the data mining concepts for different applica-
tions, such as obtaining production rules. Temporality in
association rules is an important aspect which captures the
temporal behavior of associations. We are planning to in-
vestigate how temporal association rules could be used for
automated hoarding. Listed below are some more heuristics
for limiting the hoard set that we are planning to test:

� Considering the size of data items for determining
what to hoard: Hoarding 10 small items inferred by
a lower priority rule might be better than hoarding a
huge file that may consume half of the client cache in-
ferred by higher priority rules.

� Considering the time to load a data item on the cache:
In case the hoarding for weak connection, we can
hoard big data items and let smaller ones be loaded
by the client during the weak connection time. The
“size” and “time to load” heuristics seem to contradict
each other. However, for some items transmission time
might be high because of their location in the network.

� Considering, if available, expiration times of data
items for the hoarding process: We may not want to
hoard data that will expire in the near future.

User request patterns may change over time. For that
reason, the history should be analyzed to eliminate those
patterns that no longer reflect more recent user request pat-
terns. The frequency of mining the history depends on the
particular system in concern. Efficient incremental mining
algorithms are proposed in [CHNW96]. Dynamic nature of
the client request patterns will be considered in the future
by using incremental association rule mining algorithms.

References

[AAB+96] R. Agrawal, A. Arning, T. Bollinger,
M. Mehta, J. Shafer, and R. Srikant. The
quest data mining system. InProc. of the 2nd
Int’l Conference on Knowledge Discovery
in Databases and Data Mining, Portland,
Oregon, August 1996.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. InProc. of the 20th
Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

[CHNW96] David Wai-Lok Cheung, Jiawei Han, Vincent
Ng, and C. Y. Wong. Maintenance of dis-
covered association rules in large databases:
An incremental updating technique. InPro-
ceedings of the 12th International Conference
on Data Engineering (ICDE), pages 106–114,
1996.

[JHE99] J. Jing, A. Helal, and A. K. Elmagarmid.
Client server computing in mobile environ-
ments.ACM Computing Surverys, June 1999.

[KP97] G. Kuenning and G. Popek. Automated hoard-
ing for mobile computers. InProceedings of
the ACM Symposium on Operating Systems
Principles, St. Malo, France, 1997.

[KS92] James J. Kistler and Mahadev Satyanarayanan.
Disconnected operation in the coda file sys-
tem.ACM Transactions on Computer Systems,
10(1):3–25, 1992.

[MJHS96] Bamshad Mobasher, Namit Jain, Eui-Hong
Han, and Jaideep Srivastana. Web mining:
Pattern discovery from world wide web trans-
actions. Technical Report 96-050, Depart-
ment of Computer Science, University of Min-
nesota, September 1996.

[PS98] Evaggelia Pitoura and George Samaras.Data
Management for Mobile Computing. Kluwer
Academic Publishers, 1998.

[SU99] Yucel Saygin and Ozgur Ulusoy. Exploiting
data mining techniques for broadcasting data
in mobile computing environments.Submitted
for Journal Publication, 1999.

[TLAC95] Carl Tait, Hui Lei, Swarup Acharya, and
Henry Chang. Intelligent file hoarding for
mobile computers. InProceedings of Mobi-
com’95, Berkeley, CA, November 1995.

8

