Neighbourhood Preserving Load Balancing:
A Self-Organizing Approach

Attila Giirsoy and Murat Atun

Computer Engineering Department,
Bilkent University,
Ankara Turkey
{agursoy, atun}@cs.bilkent.edu.tr

Abstract. We describe a static load balancing algorithm based on Ko-
honen Self-Organizing Maps (SOM) for a class of parallel computations
where the communication pattern exhibits spatial locality and we present
initial results. The topology preserving mapping achieved by SOM re-
duces the communication load across processors, however, it does not
take load balancing into consideration. We introduce a load balancing
mechanism into the SOM algorithm. We also present a preliminary mul-
tilevel implementation which resulted in significant execution time im-
provements. The results are promising to further improve SOM based
load balancing for geometric graphs.

1 Introduction

A parallel program runs efficiently when its tasks are assigned to processors in
such a way that load of every processor is more or less equal, and at the same
time, amount of communication between processors is minimized. In this paper,
we discuss a static load balancing heuristic based on Kohonen’s self-organizing
maps (SOM) [1] for a class of parallel computations where the communication
pattern exhibits spatial locality. Many parallel scientific applications including
molecular dynamics, fluid dynamics, and others which require solving numerical
partial differential equations have this kind of communication pattern. In such
applications, the physical problem domain is represented with a collection of
nodes of a graph where the interacting nodes are connected with edges. In order
to perform these computations on a parallel machine, the tasks (the nodes of
the graph) need to be distributed to processor. Balancing the load of proces-
sors requires the computational load (total weight of the nodes) to be evenly
distributed to processors and at the same time the communication overhead
(which corresponds to edges connecting nodes assigned to different processors)
to be minimized. In this paper, we are interested in static load balancing prob-
lem, that is, the computational load of the tasks can be estimated a priori and
the computation graph does not change rapidly during the execution. However,
the approach can be extended to dynamic load balancing easily.

The partitioning and mapping of tasks of a parallel program to minimize
the execution time is a hard problem. Various approaches and heuristics have

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 234-Z411 2000.
© Springer-Verlag Berlin Heidelberg 2000

Neighbourhood Preserving Load Balancing: A Self-Organizing Approach 235

been developed to solve this problem. Most approaches are for arbitrary com-
putational graphs such as the heuristic of Kernighan-Lin [2| which is a graph
bipartitioning approach with minimal cut costs and the ones based on physical
or stochastic optimization such as simulated annealing and neural networks [3].
The computational graphs that we are interested, on the other hand, have spa-
tially localized communication patterns. For example, the computational graph
from a molecular dynamics simulation [4] is such that the nodes correspond to
particles, and the interactions of a particle is limited to physically close parti-
cles. In these cases, it is sometimes desirable to partition the computation graph
spatially not only for load balancing purposes but for also other algorithmic or
programming purposes. This spatial relation can also be exploited to achieve
an efficient partitioning of the graph. The communication overhead can be re-
duced if the physically nearby and heavily communicating tasks are mapped
to the same processor or to the same group of processors. The popular meth-
ods are based on decomposing the computation space recursively such as the
recursive coordinate bisection method. However this simple scheme fails under
certain cases. More advanced schemes include the nearest neighbour mapping
heuristic [5] and partitioning by space filling curves [6] which try to exploit
the locality of communication of the computation graph. In this work, we will
present an algorithm based on Kohonen’s SOM to partition such graphs. The
idea of SOM algorithm is originated from the organizational structure of human
brain and the learning mechanisms of biological neurons. After a training phase,
the neurons become organized in such a way that they reflect the topological
properties of the input set used in training. This important property of SOM
— topology preserving mapping — makes it an ideal candidate for partition-
ing geometric graphs. We propose an algorithm based on SOM to achieve load
balancing. Applying self-organization to partitioning and mapping of parallel
programs has been discussed by a few researchers [[7], [8], however, our modeling
and incorporation of load balancing into SOM is quite different from those work
and the experiments showed that our algorithm achieves load balancing more
effectively.

The rest of the paper is organized as follows: In Section 2, we give a brief
description of the Kohonen maps. Then, we describe a load balancing algorithm
based on SOM and present its performance. In Section 4, we present a prelimi-
nary multilevel approach to further improve the execution time of the algorithm
and discuss future work in the last section.

2 Self Organizing Maps (SOM)

The Kohonen’s self-organizing map is a special type of competitive learning
neural network. The basic architecture of Kohonen’s map is n neurons that are
generally connected in a d-dimensional space, for example a grid, where each
neuron is connected with its neighbours. The map has two layers: an input layer
and an output layer which consists of neural units. Each neuron in the output
layer is connected to every input unit. A weight vector w; is associated with

236 Attila Giirsoy and Murat Atun

each neuron i. An input vector, v, which is chosen according to a probability
distribution is forwarded to the neuron layer during the competitive phase of the
SOM. Every neuron calculates the difference of its weight vector with the input
vector v (using a prespecified distance measure, for example, Euclidean distance
if the weight and input vectors represent points in space). The neuron with the
smallest difference wins the competition and is selected to be the excitation
center c:

n
|lwe = vl| = min [Jwy, — o]
k=1

After the excitation center is determined, the weight vectors of the winner neuron
and its topological neighbours are updated so as to align them towards the input
vector. This step corresponds to the cooperative learning phase of the SOM. The
learning function is generally formulated as:

—d(c,i)
w; — w; +exe 202k ||jw; —]|

The Kohonen algorithm has two important execution parameters. These are €
and 0. € is the learning rate. Generally, it is a small value varying between 1 and
0. It may be any decreasing function with increasing time step or a constant
value. 6 is the other variable which highly controls the convergence of the Koho-
nen algorithm. It determines the set of neurons to be updated at each step. Only
the neurons within the neighbourhood defined by 8 is updated by an amount de-
pending on the distance d(c,4). 6 is generally an exponential decreasing function
with respect to increasing time step.

3 Load Balancing with SOM

In this section, we will present a SOM based load balance algorithm. For the
sake of simplicity, the discussion is limited to two dimensional graphs. We assume
that the nodes of the graph might have different computational loads but the
communication load per edge is uniform. In addition, we assume that the cost
of communicating between any pair of processors is similar (this is a realistic
assumption since most recent parallel machines has wormhole routing). However,
it is easy to extend to model to cover more complicated cases. As far as the
partitioning of a geometric graph is considered, the most important feature of
the SOM is that it achieves a topology-representing mapping. Let the unit square
S = [0,1]? be the input space of the self-organizing map. We divide S into p
regions called processor regions where p = p, X p, is the number of processors.
Every processor P;; has a region, S;;, of coordinates which is a subset of S
bounded by ¢ x width, j x width, and (i + 1) x widthg, (j + 1) x width, where
width, = 1/p, and width, = 1/p,. Let each node (or task) of the computation
graph (that we want to partition and map to processors) correspond to a neuron
in the self-organizing map. That is, the computation graph corresponds to the
neural layer. A neuron is connected to other neurons if they are connected in
the computation graph. We define the weight vectors of the neurons to be the

Neighbourhood Preserving Load Balancing: A Self-Organizing Approach 237

Algorithm 1 Load Balancing using SOM

: for all neurons i do
initialize weight vectors w; = (z,y) € S randomly
end for
for all processors i do
calculate load of each processor
end for
set initial and final values of diameter 6; and 6;
set initial and final values of learning constant €; and ey
for t =0 to tmas do
10: let S, be the region of the least loaded processor p
11: select a random input vector v = (z,y) € S,
12: determine the excitation center ¢ such that for all neurons n

©

e — ol = min ||, — o]

13: for d =0 to 0 do

14: for all neurons k£ with distance d from center ¢ do
15: update weight vectors wy «— wy + €e262 ||wi, — v||
16: end for

17: end for

18: update diameter 6 «— Gi(%?) s

19: update learning constant € « el(i—f) Tmaw
20: update load of each processor
21: end for

positions on the unit square S. That is, each weight vector, w = (z,y), is a point
in S. Now, we define also mapping of a task to a processor as follows: A task ¢
is mapped to a processor Pj; if wy € S;;.

The load balancing algorithm, Algorithm1, starts with initializing various pa-
rameters. First, all tasks are distributed to processors randomly (that is, weight
vectors are initialized to random points in S). During the learning phase of the
algorithm, we repetitively chose an input vector from S and present it to the
neural layer. If we choose the input vector with uniform probability over S, then,
the neural units will try to fill the area S accordingly. If the computation of each
task (node) and communication volume (edges) are uniform (equal), then the
load balance of this mapping will be near-optimal. However, most computational
graphs might have non-uniform computational loads at each node. In order to
enforce a load balanced mapping of tasks, we have to select input vectors dif-
ferently. This can be achieved by selecting inputs from the regions closer to the
least loaded processor. This strategy will probably force SOM to shift the tasks
towards to least loaded processor and the topology preserving feature of SOM
will try to keep communication minimum. A detailed study of how to choose
input vector and various alternatives is presented in [9]. It has been experimen-
tally found out that choosing the input vector always in the region of the least
loaded processor leads to better results. As we mentioned before, € is the learning
rate which is generally an exponential function decreasing with increasing time
step. At the initial steps of the algorithm, € is closer to 1, which means learning

238 Attila Giirsoy and Murat Atun

rate is high. Towards to the end, as ¢ becomes closer to 0, the adjustments do
minor changes on weight vectors and so the mapping becomes more stable. In
our algorithm we used 0.8 and 0.2 for initial and final values of €. To determine
the set of neurons to be updated, we defined 6 to be the length of the shortest
path (number of edges) to reach from the excitation center. Initially, it has a
value of 6; = \/n and it exponentially decreases to 1. These values are the most
common choices used in SOMs. The lines 13-17 in Algorithm1 correspond to this
update process. Figure [I] illustrates a partitioning of a graph with 4253 nodes
into eight processors using the proposed algorithm.

Fig. 1. Partitioning a FEM graph (airfoil): 4253 nodes to 8 processor

3.1 Results

We have tested our algorithm on some known FEM/Grid graphs available from
AG-Monien (Parallel Computing Group) Web pages [10]. We compared the
performance of our algorithm with the results of algorithm given in Heiss-
Dormanns [7]. They reported that their SOM based load balancing algorithm
was comparable with other approaches. Particularly, the execution time of their
algorithm was on the average larger than mean field annealing based solutions
but less than simulated annealing ones for random graphs.

We conducted runs on a set of FEM/Grid graphs and gathered execution
times for our algorithms and Heiss-Dormanns’ algorithm on a Sun Ultra2 work-
station with 167MHZ processor. Table [[l shows the load balance achieved and
total execution times. Our approach performed better on all cases. However,
as in other stochastic optimization problems, the selection of various parame-
ters such as learning rate plays and important role in the performance. For the
runs for the algorithm by Heiss-Dormanns, we used their suggestions for setting
various parameters in the algorithm given in their reports.

Neighbourhood Preserving Load Balancing: A Self-Organizing Approach 239

Table 1. Load balance and execution time results for FEM/Grid graphs

Communication Load Execution
Cost(x1000) |Imbalance (%)| Time (secs)
Heiss- Heiss- Heiss-

Graph |Processor Mesh|Dorm.| Our |Dorm.| Our |Dorm.| Our
Alg. Alg. Alg. Alg. Alg. | Alg.
3elt 4X4 2.16 1.11 | 22.71| 0.45 |604.19 |135.69
3elt 4X8 1.25 1.66 |[15.03| 1.47 |372.69 |133.08
Airfoil 4X4 1.76 1.04 |[24.15| 0.57 |498.66 |118.67
Airfoil 4X8 0.90 1.56 10.04 | 0.82 |300.22|115.98
Bespwrl0 4X4 0.48 0.76 |21.96 | 0.33 |555.96 [162.65
Bcespwrl0 4X8 0.74 1.09 51.14 | 2.44 | 862.85 (159.21
Crack 4X4 2.23 1.51 5.47 | 0.21 [1986.90|290.65
Crack 4X8 3.67 2.37 |26.88 | 0.42 |810.02(281.52
Jagmesh 4X4 0.50 0.39 |12.25| 0.85 | 16.87 | 18.26
Jagmesh 4X8 0.92 0.62 |32.19| 4.84 | 29.27 | 18.40
NASA4704 4X4 136.02| 10.27 |60.77 | 0.91 |843.27 (214.34
NASA4704 4X8 255.31| 14.90 |[88.21| 3.63 |1182.2(211.09

4 Improvement with Multilevel Approach

In order to improve the execution time performance of the load balancing algo-
rithm, we modified it to do the partitioning in a multilevel way. Since physically
nearby nodes get assigned to the same processor (most likely), it will be ben-
eficial if we could cluster a group of nodes into a super node and run the load
balancing on this coarser graph, then unfold the super nodes and refine the par-
titioning. This is very similar to multilevel graph partitioning algorithms which
have been used very successfully to improve the execution time [11]. In multilevel
graph partitioning, the initial graph is coarsened, to get smaller graphs where
a node in the coarsened graph represents a set of nodes in the original graph.
When the graph is coarsened to a reasonable size, an expensive but powerful
partitioner performs an initial partitioning of the coarsened graph. Then, the
graph is uncoarsened, that is unfolding the collapsed nodes, and mapping of
unfolded nodes is handled (refinement phase). In our implementation, we have
used the heavy-edge-matching (HEM) scheme for the coarsening phase as de-
scribed in [T1]. HEM scheme selects nodes in random. If a node has not matched
yet, then the node is matched with a maximum weight neighbour node. This
algorithm is applied iteratively, each time obtaining a coarser graph. For initial
partitioning of the coarsest graph and refinement phases, we have used our SOM
algorithm without any change. The performance results of a preliminary multi-
level implementation of our algorithm for the FEM/Grid graphs is presented in
Table 2l The results show that multilevel implementation reduces the execution
time significantly.

240 Attila Giirsoy and Murat Atun

Table 2. Execution results of SOM and MSOM: n-initials is the number of nodes
in the initial graph, n-final is the number of nodes in the coarsest graph, and
Levels is the number of coarsening levels

Graph |Processors|n-initial|Levels|n-final|Load Imbalance|Execution Time
SOM| MSOM | SOM || MSOM|
Whitaker 4x4 9800 9 89 [0.08 0.73 (216.18|| 42.29
Whitaker 4x8 9800 9 89 [0.57 1.55 |212.16|| 60.57
Jagmesh 4x4 936 5 65 |0.85 1.42 18.26 || 3.86
Jagmesh 4x8 936 5 65 |4.84 5.98 18.40| 5.70
3elt 4x4 4720 8 71 1045 1.69 |135.69| 31.99
3elt 4x8 4720 8 71 | 147 1.69 |133.08| 33.95
Airfol 4x4 4253 8 63 |0.57 1.07 |118.67| 28.58
Airfol 4x8 4253 8 63 |0.82 1.82 |115.98|| 35.16
NASA704 4x4 4704 7 97 10.91 4.98 |214.34|| 61.31
NASA704 4x8 4704 7 97 |3.63 8.16 211.09(| 101.28
Big 4x4 4704 10 96 |0.10 2.25 [521.28|| 78.50
Big 4x8 4704 10 96 |4.37 2.66 [492.30|| 142.69

5 Related Work

Heiss-Dormanns used computation graph as input space and processors as out-
put space (the opposite of our algorithm). A load balancing correction, activated
once per a predetermined number of steps, changes the receptive field of proces-
sor nodes according to their load. Changing the magnitude of a receptive field
corresponds to transferring the loads between these receptive fields. The results
show that our approach handles load balancing better and has better execution
time performance.

In another SOM based work, Meyer [§] identified the computation graph
with the output space and processors with input space (called inverse mapping
in their paper). Load balancing was handled by defining a new distance metric to
be used in learning function. According to this new metric the shortest distance
between any two vertices in the output space is formed by the vertices of least
loaded ones of all other paths. It is reported that SOM based algorithm performs
better than simulated annealing approaches.

6 Conclusion

We describe a static load balancing algorithm based on Self-Organizing Maps
(SOM) for a class of parallel computations where the communication pattern
exhibits spatial locality. It is sometimes desirable to partition the computation
graph spatially not only for load balancing purposes but for also other algo-
rithmic or programming purposes. This spatial relation can also be exploited to
achieve an efficient partitioning of the graph. The communication overhead can

Neighbourhood Preserving Load Balancing: A Self-Organizing Approach 241

be reduced if the physically nearby and heavily communicating tasks are mapped
to the same processor or to the same group of processors. The important prop-
erty of SOM — topology preserving mapping — makes it an interesting approach
for such partitioning. We represented tasks (nodes of the computation graph) as
neurons and processors as the input space. We enforced load balancing by choos-
ing input vectors from the region of least loaded processor. Also, a preliminary
multilevel implementation is discussed which has improved the execution time
significantly. The results are very promising (it produced better results than the
other self-organized approaches). As future work, we plan to work on improving
both the performance of the current implementation and also develop new mul-
tilevel coarsening and refinement approaches for SOM based partitioning.

Acknowledgement
We thank H.Heiss and M. Dormanns for providing us the source code of their
implementation.

References

1. Kohonen, T.: The Self-Organizing Map Proc. of the IEEFE, Vol.78, No.9, Septem-
ber, 1990, pp.1464-1480

2. Kernighan, B.W., Lin., S.: An Efficient Heuristic for Partitioning Graphs, Bell
Syst. J., 49, 1970, pp. 291-307

3. Bultan T., Aykanat C.: A New Mapping Heuristic Based on Mean Field Anneal-
ing, J. Parallel Distrib. Comput., 1995, vol 16, pp. 452-469

4. Nelson, M., et al.: NAMD: A Parallel Object-Oriented Molecular Dynamics Pro-
gram, Intn. Journal of Supercomputing Applications and High Performance Com-
puting, Volume 10, No.4, 1996., pp.251-268

5. Sadayappan, P., Ercal., F.: Nearest-Neighbour Mapping of Finite Element
Graphs onto Processor Meshes, IEEE Trans. on Computers, Vol. C-36, No 12,
1987, pp. 1408-1424

6. Pilkington, J.R, Baden, S.B.: Dynamic Partitioning of Non-Uniform Structured
Workloads with Spacefilling Curves, IEEE Trans. on Parallel and Distributed
Sys. 1997, Volume 7, pp. 288-300

7. Heiss, H., Dormanns, M.: Task Assignment by Self-Organizing Maps Interner
Bericht Nr.17/93, Mai 1993 Universitat Karlsruhe, Fakultdt fiir Informatik

8. Quittek, J.W., Optimizing Parallel Program Execution by Self-Organizing Maps,
Journal of Artificial Neural Networks, Vol.2, No.4, 1995, pp.365-380

9. Atun, M.: A New Load Balancing Heuristic Using Self-Organizing Maps, M.Sc
Thesis, Computer Eng. Dept., Bilkent University, Ankara, Turkey, 1999

10. University of Paderborn, AG-Monien Home Page (Parallel Computing Group),
http://www.uni-paderborn.de/fachbereich/AG /monien.

11. Karypis., G, Kumar. V.: A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs, TR 95-035, Department of Computer Science, Univer-
sity of Minesota, 1995.

	Introduction
	Self Organizing Maps (SOM)
	Load Balancing with SOM
	Results

	Improvement with Multilevel Approach
	Related Work
	Conclusion

