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ABSTRACT 
The effect of a localized light source directivity improvement due to an arbitrarily shaped dielectric cylinder 

taken as a 2-D model of a dielectric lens is studied. The source is simulated by the field of a Complex Source- 
Point (CSP). An efficient algorithm for the solution of 2D problem of wave scattering by a smooth dielectric 
cylinder is developed, based on the concept of analytical regularization. Basic properties of the algorithm are 
studied. Numerical results for the accuracy of the algorithm and sample far-field characteristics such as total 
radiated power, directivity and radiation pattems for various lens parameters are presented. 

INTRODUCTION 
In the optical and microwave ranges, dielectric lenses and rods are frequently used to focus the radiation or 

improve its directive character. However, analysis and design of lenses frequently involves a number of high- 
frequency approximations neglecting the lens edges and not taking a full iiccount of all the interactions between 
different parts of the scattering objects [ 13. If done numerically, it is often based on the discretizations having 
unclear and uncontrollable accuracy. Another commonly faced drawback which may spoil the wavelength-scale 
lens analysis is due to modeling of the incident field as a dipole field [2] or a Gaussian beam [3]. This is because 
the former field has a fixed shape, and the latter does not satisfy the Helmholtz equation. Therefore, there is 
a need in developing a more adequate simulation technique able to serve a!; a promising CAD tool. 

MATHEMATICAL MODEL 

discussed, as shown in Fig. 1. 
The 2-D model of a dielectric lens scattering is 

Lens: The scatterer is taken as a homogeneous isotropic 

section [4] that simulates a rectangle with rounded edges. 
The curve L bounding the lens cross-section is determined 
by the following equation: 

dielectric cylinder with a so-called "super-elliptic" cross- X * 

[x/la]2" + Iy/a]2" = 1 , 0 < v < a, (1) Fig. 1 Scattering geometry and notations. 
Dot:i and cuny line denote branch points and 

biwnch cut in the real space due to CSP. where I is the axial ratio and parameter v determines the 
supper-ellipse comer rounding. The greater the value of the 
parameter v ,  the closer the cross-section contour to a rectangle ( v  =1 corresponds to an ellipse), however for all 
v>1/2 it is a twice-differentiable curve. 

Source: The incident field is generated by a CSP line source located at rCs . The main advantages of the CSP 
field 

U ,  ( r )  = Hi ' )  (klr - r,l) (2) 

are that it is an exact solution of the Helmholtz equation with respect to the observation point, and has a variable 
beam width controlled by parameter kb [5]. Here k is the free-space wavenumber, and the complex source 
position vector is 
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Parameters b and p can be associated with the width and orientation angle of a light-emitting aperture simulated 
by a CSP. Note that the CSP excitation depicted in Fig. 1 imply that p = n . Hence, the branch points of U. in 
the real space are located at (xo , yo f b) ,  with yo = 0. 

Basic IEs and analytical regularization: The total field has to satisfy the Helmholtz equation with the 
coefficients k and k ,  = k& inside and outside the lens, respectively. After splitting out the incident CSP field, 
it is presented in terms of the single-layer potentials with the density functions to be determined: 

where the kernels are the Green’s finctions of the free space and uniform media of relative permittivity E ,  

respectively: 

( 5 )  
i 

4 4 
Go(r,rs) = LHo (klr - r,l), G, (r, r,) = -Ho  (klr - rsl) 

and H ,  is the Hankel function of the first kind. 
By applying the boundary conditions, a set of singular integral equations (IEs) is obtained. Extraction and 

analytical inversion of the singular parts of the IEs are done by adding and subtracting the canonical-shape 

operators with kernels :o(e) = - H ,  (2k{e)uSinI(t - t s ) /2 / ) ,  and their normal derivatives, respectively, and by 

using a Galerkin scheme with angular exponents as global basis functions. This results in a coupled pair of 
infinite-matrix equations having favorable features: 

i 

4 

- where the matrix elements A,, , B,, , C,, , D,, and U,, U, are obtained as Fourier-expansion coefficients, 
with integrands given by the smooth functions. The latter are the differences between (5) on L and on 
the canonical-shape contour, i.e. a circle of radius U. The coefficient a is 1 or E for E- or H- polarization, 
respectively. Equation (6) can be easily transformed to a classical block-type Fredholm second-kind matrix 
equation. 

Such a regularization guarantees point-wise convergence of the numerical solution, i.e., a possibility to 
minimize the error to machine precision by solving progressively greater matrices. The rate of convergence 
of the algorithm can be estimated by plotting the normalized computational error, e(NK), in the sense of the I,’ 
norm, versus the matrix truncation number NK: 

where pfK, v / fK  are the expansion coefficients computed from the matrix equation with each block truncated 
after NK equations. Details of the algorithm properties can be found in [6].  

In application to dielectric scatterers, this approach is also free from the heavy inaccuracies near to natural 
resonances that are intrinsic for conventional numerical approximations [7]. 

Field characteristics: As the far-field characteristics are of interest, the large-r approximation is used. This 
enables one to replace the Hankel finctions with its asymptotic and to reduce the first integral of (4) to 

where @(t )  is the far-field radiation pattern. 

radius r --+ 03 and can be presented as a series in the following way: 
The total radiated power is found by integrating the Pointing vector radial component over a circle of large 
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where Y,,," are the Fourier-expansion coefficients, with the integrand given by the corresponding factor in (S), and 
a. is Zo or Zi ' ,  in the case of the E- and H- polarization, respectively, Z, = (~~/,u~)1'~ is the free space 
impedance. 

Based on the series representation, main-beam directivity is determined as: 

Note that numerical results for the total radiated power and directivity should be compared to the same values 
for a CSP located in free space: 

where I, is the modified Bessel function. 

NUMERICAL RESULTS 
One can see (Fig.2.) that the value of the relative error 

decreases with increasing of NK. However it is important to 
see what is the rate of that decrement and what is its 
dependence on the scatterer parameters. The analysis of the 
plots shows that accuracy guaranteed by choosing 
NK c (ka& + l k  + Y ) -  ka + 30/ka is 2 digits if ka<3 and 3 
digits if ka>3. The corresponding truncation number values 
are pointed with arrows and connected with dash-dotted line. 
In general, a check of the numerical error behavior should 
always precede the computations of the lens performance. 

Figs.3 and 4 enable one to optimize the lens directivity 
by varying the CSP distance from the back end of the rod- 
like lens and by changing the rod length, as controlled by 
parameters kA and kal, respectively. One can see that the 
main maximum of D(kA) is achieved with kAo0.7 that 
corresponds approximately to & / 8 ,  where A, is the 
wavelength in dielectric. Increasing of the shift results in 
a fall of directivity. Note that here the wavelength is fixed 
and controlled by parameter ka. 

Fig. 4 shows that the directivity as a function of the 
normalized length is also non-monotonic. If ka= 1, 
it displays a series of maxima with the greatest at the length 
of the rod al equal approximately to 3 4 .  Note that 
the periodical sequences of extrema are explained 
by internal resonances. Their period is around 0.25 le .  

Two curves in the figure correspond to the directivity in 
the direction of the maximum lobe of radiation pattern and 
along the symmetry plane given by p =1 80°, respectively. 
The direction of the maximum lobe versus the normalized 
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Fig. 2. Commutations error versus truncation 
number. ka = I ,  E =2.5 f iO.0, v =1, 
kb =O. I. /=180. kA=O.  7, yo/a =O. 

- E-pol, k a l =  14.7 
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Fig. 3. Directivity versus normalized shqt 

ka = I j .  ~ = 2 . 5 .  v = l ,  kb =O.I,  p=180, yo/a=O. 
parameter kA= kal - 

length is given in Fig. 5 .  The normalized radiated power as 
a function of the normalized rod length is given in Fig. 6. Finally, Fig. 7 presents sample far-field radiation 
patterns for different antenna sizes in the E- polarization. One can see that the effect of spatial compression of 
the originally almost omnidirectional radiation really takes place. Besides, the splitting of the main-lobe is also 
well seen that makes intuitive consideration "the longer rod, the better" invalid and calls for a full-wave analysis. 

As a resonant nature of the effects is clearly seen a further research is required and will be done by the 
presented approach. 
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Fig. 4. Directivity versus the normalized rod-length parameter. 
Dashed and solid lines are for Directiviv in the maximal lobe 

Fig. 6. Radiatedpower normalized by the power of the CSP in 
the free space versus rod-length. 

and CSP axis direction, respectively. 
k a = I ,  &=2.S, v = I ,  kb=O.l,p=180, kA=O.7,yo=O. 

ka = I .  ~ = 2 . 5 .  ~ ‘ 1 .  kb =0.1, p=l80, kA=0.7,yo=O. 
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The directivity of the CSP in the free space is DO =0.042. 
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Fig. 5. The direction of the maximum lobe of the radiation patter 
versus the rod length Vor the same parameters as in Fig.4) 
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CONCLUSIONS Fig. 7. Normalized radiation patterns corresponding to 
the maximum and minimum of the directiviv in Fig. 4. Dash- 

ka = I .  ~ z 2 . S .  v= l .  kb =0.1. 0=180. kAz0.7. vn=O. 

An efficient and accurate based On 
the analytical regularization, to the 2D problem of the 

is for the of the Same C s p  in thefree space, 
., .- . .  

wave scattering by an arbitrary shaped smooth dielectric 
cylinder has been used to analyze the dielectric rod-like lens performance. Though, as it is shown, the algorithm 
can generate data with up to digital precision, a uniform 2-digit accuracy was kept for numerical results. It has 
been demonstrated that placing a light-emitting source inside a dielectric rod-like lens leads to a significant 
improvement of directivity. Also the importance of the right choice of CSP location with respect to the back end 
of the rod and the rod length has been shown. The given sample far-field radiation patterns demonstrate 
the effect of focusing if these parameters are chosen properly. 

The presented approach can be easily modified to cover the case of a beam source located outside 
the dielectric lens. Such a geometry can be used to simulate an external laser-beam input to an optical lens 
or a section of optical fiber. 
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