
Fault-Tolerant Irregular Topology Design Method
for Network-on-Chips

Suleyman Tosun, Vahid Babaei Ajabshir, Ozge Mercanoglu
Computer Engineering Department, Ankara

University, Golbasi, Ankara, Turkey

Email: {stosun,vahid.babaei,omercanoglu@ankara.edu.tr}

Ozcan Ozturk
Computer Engineering Department, Bilkent

University, Bilkent, Ankara, Turkey

Email: ozturk@cs.bilkent.edu.tr

Abstract—As the technology sizes of integrated circuits
(ICs) scale down rapidly, current transistor densities on chips
dramatically increase. While nanometer feature sizes allow
denser chip designs in each technology generation, fabricated
ICs become more susceptible to wear-outs, causing operation
failure. Even a single link failure within an on-chip fabric
can halt communication between application blocks, which
makes the entire chip useless. In this study, we aim to
make faulty chips designed with Network-on-Chip (NoC)
communication usable. Specifically, we present a fault-tolerant
irregular topology generation method for application specific
NoC designs. Designed NoC topology allows a different routing
path if there is a link failure on the default routing. We
compare fault-tolerant topologies with regular fault-tolerant
ring topologies, and non-fault-tolerant application specific
irregular topologies on energy consumption, performance,
and area using multimedia benchmarks and custom-generated
graphs.

Index Terms—Fault tolerance, Network-on-Chip, topology,
energy

I. INTRODUCTION

Technology improvements have made it possible to place

millions of transistors on a single chip, resulting in more

complex and denser designs than ever. Now, designers can

embed all system components on one chip, which is called

System-on-Chip (SoC). However, this rapid increase of the

number of components on chips has made current bus-

based and point-to-point-based communication methods in-

efficient as a result of low performance and synchronization

problems among components. At the beginning of the

millennium, researchers introduced a better and scalable

on-chip communication method, called Network-on-Chip

(NoC) [1].

The NoC architectures can be constructed using regular

or irregular topologies. Although regular topologies are

easy to construct and reusable, applications cannot be well

optimized on them. Irregular topologies are designed to

be application specific, which allows optimizing power

consumption, performance, and area [2]. Several studies

have been published regarding energy-efficient and/or fault-

tolerant regular topology-based NoC designs, especially for

This work is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant 112E360 and EU COST
Actions IC1204 - TRUDEVICE and IC1103 - MEDIAN.

mesh topologies [3]. However, studies of irregular applica-

tion specific topologies are restricted to exploring energy

efficiency [4]; fault tolerance has not been considered.

Generated topologies using current application specific

topology generation methods have only one communication

path between any communicating nodes. If there is a

permanent fault in any of the links or ports as a result

of the fabrication process, the system cannot recover its

functionality and the chip becomes useless. Motivated by

this fact, in this study we propose a fault-tolerant appli-

cation specific topology generation method for NoC-based

designs. In our method, we first generate random non-fault-

tolerant irregular topologies. We then add extra links to

the generated topologies to make it fault tolerant. As an

output, our method obtains several isomorphic fault-tolerant

topologies. The designer can select any topology from the

topology library that suits his/her design objectives.

We tested effectiveness of our method against ring and

non-fault-tolerant irregular topologies based on energy con-

sumption, area, and performance on both randomly gener-

ated graphs and multimedia benchmarks. Our results show

that with very small area overhead, our method obtains

fault-tolerant topologies.

II. PROBLEM DEFINITION

Our goals for the topology generation problem are 1) to

determine a topology such that all communicating cores

of the application can transmit data to each other over

the network with at least two alternative paths and 2)to

minimize energy consumption. To achieve these goals, the

number of routers for the system has to be determined.

Then, the resultant topology must ensure that each router

can be reached from all other network routers via at least

two paths and that all the cores are connected to at most

one router port. Additionally, the routing must be deadlock

and network congestion free (i.e., the router port and link

bandwidth requirements must be satisfied.) To explain this

problem more formally, we give the following definitions:

Definition 1 A Core Flow Graph (CFG) is a graph

G(V,E), where each vertex vi ∈ V represents a core (i.e., a

node) in the application, and each edge ei,j ∈ E represents

a dependency between two tasks vi and vj . The amount of

data transfer between vi and vj is represented by weight

2014 17th Euromicro Conference on Digital System Design

978-1-4799-5793-4/14 $31.00 © 2014 IEEE

DOI 10.1109/DSD.2014.13

631

Fig. 1. (a) CFG of MP3 encoder, (b)-(c) two examples of a fault-tolerant
TG.

wi,j for all ei,j and is given in bits per second. In Fig. 1.(a),

we give the CFG of MP3 encoder.

Definition 2 A Topology Graph (TG) is a connected

graph T (R,L) where R represents the set of routers and

L represents the set of links connecting the routers. In Fig.

1.(b) and (c), we give two examples of a TG. In both

topologies, two alternative paths between any router pairs

exist. In the first topology, we use eight routers and nine

links, whereas in the second we use nine routers and 11

links. In our topologies, each link connected to a router

port is assumed to be bidirectional (i.e., each port can be

used as input or output.)

Average path length (APL) of the network affects the

system’s total communication cost. Thus, we try to mini-

mize the APL in the generated topology.

Definition 3 Average path length APLT of a topology

T is the average of the shortest paths between any pairs of

the vertices of the topology graph. Let r denote the number

of vertices of the given topology. Then, the average path

length APLT is calculated by the following formula:

APLT =
2

r(r − 1)

∑
ri≤rj

d(ri, rj). (1)

For example, the APL of the graphs in Fig. 1.(b) and

(c) are 1.92 and 1.86, respectively.

Problem: Fault-Tolerant Topology Generation
(FTTG) Given a set of nodes (n) and the set of routers,

each having p ports, determine the number of routers (r)

and the number of links (l) for the topology. Then generate

the topology that meets the following criteria:

• The topology must be fully connected with the set of

routing paths P , where each path pi,j is the routing

path between each pair of routers (ri, rj).
• For each path pi,j , each link lk,l on this path should

satisfy the bandwidth constraint bw(ll,k).
• Additionally, to satisfy the fault-tolerance criteria,

there must be at least two alternative routing paths

Fig. 2. Flowchart of FTTG algorithm.

between any router pairs. That is:

∀(ri, rj) ∈ R, (pi,j) ≥ 2. (2)

• The objective function of the FTTG is to minimize the

APL of the generated topology T . In other words, our

objective function is:

min : APLT . (3)

III. FAULT TOLERANT TOPOLOGY GENERATION

(FTTG) ALGORITHM

We give the flowchart of the FTTG algorithm in Fig. 2.

Our algorithm has two main phases: 1) generating non-

fault-tolerant irregular topology using a minimum number

of routers and links, and 2) adding extra routers and links

to obtain a fault-tolerant version of the topology.

As shown in the flowchart, our method accepts the

number of nodes (n) of the given application (CFG), the

632

number of ports (p) for routers, and the iteration count (t) as

inputs. Based on these input values, it first calculates the

minimum number of routers (rmin) and links (lmin) for

non-fault-tolerant topology generation (N-FTTG) and the

maximum number of routers (rmax) and links (lmax) that

will be used for fault-tolerant topologies using Equations

(4) - (7), respectively. Since the fault-tolerant irregular

topology must utilize more than rmin routers, we start

FTTG with rmin + 1 routers. At each outer loop of the

FTTG algorithm, we add one more router to the routers at

hand until we reach rmax.

rmin =

⌈
n− 2

p− 2

⌉
(4)

lmin = rmin − 1 (5)

rmax = �rmin + lg (rmin)� (6)

lmax =

⌊
prmax − n

2

⌋
(7)

After selecting the number of routers for the topology,

we determine the number of links that can be added to the

network by determining how many empty ports must be left

for the application nodes, which is n here. We then generate

a random, fully connected, non-fault-tolerant topology with

r routers and r − 1 links. Certainly, some of the routers

must be connected to other routers with at most one port.

Thus, we connect these routers to each other by adding

l = lmax − lmin links, aiming to minimize the APL of

the topology. Each router and link must be on a cycle to

have at least two alternative routing paths, thus our next

step is to check that this is so. If there is a fault-tolerant

topology with r ports in the topology library, we check

whether the newly generated topology is isomorphic with

the existing topology. If it is, we simply discard the new

topology; otherwise, we add it to the library. This topology

generation process iterates t times, which is a predefined

iteration count.

As an output, in our library we may have several topol-

ogy alternatives with different numbers of routers, varying

between rmin and rmax. The designer can select any of

these topologies that suits the design objectives, or the one

with the minimum APL.

The run-time complexity of FTTG algorithm is domi-

nated by the graph isomorphism algorithm [5], which is

O(r5). The outer loop of FTTG algorithm runs lg r times

and each inner loop iterates t times. Therefore, the time

complexity of FTTG can be approximated as O(tr5 lg r).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the FTTG algorithm by

comparing the topologies generated by FTTG with the

ones generated by N-FTTG and ring. In the first set of

experiments, we compare the FTTG algorithm based on

APL and area. In the second set of experiments, we use

real multimedia benchmarks to compare APL, area, energy,

and performance (i.e., average hop count (AHC)).

A. Evaluating FTTG

In this set of experiments, we generate topologies using

FTTG, N-FTTG, and ring or applications with different

numbers of nodes, n. We select the iteration count t = 500
and the number of ports as four, five, and eight. Due to

space concerns, we only give the results for topologies

generated using four port routers. We conduct experiments

with node numbers between eight and 100.

In Fig. 3, we illustrate how the APL values and per-

centage of area-increase scale with varying numbers of

nodes for topologies that use four port routers. In Fig. 3.(a),

we give the APL comparison for the ring, N-FTTG, and

FTTG. We select the topologies with the best APL values

for N-FTTG and FTTG. As the APL values for the three

types of topologies show, for a small number of nodes,

our FTTG algorithm determines topologies with similar

APL values to the N-FTTG and ring alternatives. After

the number of nodes exceeds 30, the N-FTTG determines

better APL values than its counterparts.

We give the area overhead in percentages in Fig. 3.(b),

comparing the area increase against ring and N-FTTG

topologies. As the graph shows, the area overhead is within

tolerable limits. In the area comparison, the fluctuation in

part of the function is because the selected number of

routers increases for varying n values. We select the max-

imum number of routers using Equation (6), and because

the lg(rmin) increases when the number of nodes increases,

fluctuations occur. As the graph in Fig. 3.(b) shows, when

the number of nodes increases, the area overhead decreases.

For large numbers of nodes, the APL value increase of

FTTG compared to N-FTTG is within tolerable limits.

However, FTTG brings a fault tolerance capability with a

small area and APL increase. With diminishing technology

size, we can expect that future applications will be much

higher than now, therefore, our FTTG method will be much

more effective in the future while it still meets the current

fault-tolerant topology needs.

B. Evaluating Energy Consumption

In this set of experiments, we evaluate the FTTG gen-

erated topologies based on energy consumption. We used

a simulated annealing (SA) based mapping algorithm to

map the given application on the generated topologies. To

test the mapping, we select six video applications from

the literature as benchmarks, namely the Video Object

Plane Decoder (VOPD) and the MPEG-4 decoder from [6],

the Multi-Window Display (MWD) from [4], and the 263

Decoder (263 Dec.), 263 Encoder (263 Enc.), and MP3

Encoder (MP3 Enc.) from [7].

For this set of experiments, we use four port routers.

After determining the number of routers and links, we

generate three topology alternatives. For the N-FTTG and

FTTG topologies, we select the one with a minimum APL

633

Fig. 3. Comparison of FTTG with ring and N-FTTG. (a) APL value comparison with varying numbers of nodes. (b) Area-increase percentages of
FTTG against ring and N-FTTG.

TABLE I
ENERGY, AREA, AND LATENCY COMPARISONS FOR RING, N-FTTG, AND FTTG.

Graph n
Energy (mJ)

Energy compare (%): Area Overhead (%):
Average Hop Count

FTTG vs. FTTG vs.
Ring N-FTTG FTTG Ring N-FTTG Ring N-FTTG Ring N-FTTG FTTG

Mpeg-4 12 2.70 2.84 2.92 8.15 2.83 1.00 2.40 1.23 1.23 1.15
VOPD 16 2.94 2.64 3.09 5.23 17.25 0.75 1.71 1.20 1.05 1.15
MWD 12 0.83 0.97 0.87 4.90 -10.46 1.00 2.40 0.58 0.83 0.67
263 Dec 14 11.41 8.92 11.49 0.70 28.72 0.86 2.00 0.93 0.73 1.00
263 Enc 12 155.12 170.09 154.79 -0.21 -8.99 1.00 2.40 1.00 0.83 0.75
MP3 Enc 13 9.95 8.61 10.08 1.37 17.10 1.71 3.00 0.69 0.69 0.77

value. We then map the applications onto the generated

topologies using our SA method. In the mapping process,

we aim to minimize only the dynamic energy consumption

of the network components (i.e., the total energy consump-

tion of sending data over routers and links). We use the

well-accepted energy model presented in [8] to calculate the

energy consumption. In this model, the energy consumption

of one bit between two communicating nodes is calculated

by summing the energy consumed on router ports and links.

For energy consumption parameters, we adopt the energy

model for 100-nm technology given in [7]. In this model,

the energy consumption of the routers is estimated at 328

nJ/Mb and 65.5 nJ/Mb for the input and output ports,

respectively. In addition, the link energy consumption is

estimated at 79.6 nJ/Mb/mm.

We present the results of these experiments in Table I. In

the first two columns, we give the name of the graph and the

number of nodes for the given graph, respectively. Columns

three, four, and five give the energy consumptions of the

mappings for the ring, N-FTTG, and FTTG, respectively.

Columns six and seven show the energy comparison im-

provement of FTTG against the ring and N-FTTG, respec-

tively. The next two columns show the area overhead of the

FTTG topologies against the ring and N-FTTG topologies.

Finally, the last three columns show the AHC value to

compare the latency for the three mappings.

As the energy values in Table I show, our FTTG and

the mappings obtain better results than the ring and N-

FTTG most of the time. The area increases against ring and

N-FTTG are around 1% and 2%, respectively. The AHC

values for all three mappings are very close. As this set of

experiments on real benchmarks demonstrates, our FTTG

algorithm brings a fault tolerance capability to NoC design,

with only a small area overhead and with better energy

values than N-FTTG.

V. CONCLUSIONS

In this paper, we present a fault-tolerant application

specific topology generation algorithm. Our algorithm gen-

erates topologies such that each router of the topology can

be reached from any router with at least two alternative

paths. The generated topology can be used to tolerate at

least one link failure by applying the packet’s alternative

routings. We compare our method with ring and non-fault-

tolerant topologies and show that with only a small increase

in area, our method brings fault-tolerance capability to NoC

designs.

REFERENCES

[1] W. J. Dally and B. Towles, ”Route packets, not wires: On-chip
interconnection networks,” Proc. of DAC’01, pp. 684-689, 2001.

[2] S. Tosun, Y. Ar, and S. Ozdemir, ”Application-specific topology
generation algorithms for network-on-chip design,” Computers &
Digital Techniques, IET, vol. 6, no. 5, pp. 318-333, 2012.

[3] S. Tosun, ”New heuristic algorithms for energy aware application
mapping and routing on mesh-based nocs,” Journal of Systems
Architecture, vol. 57, no. 1, pp. 69-78, 2011.

[4] K.-C. Chang and T.-F. Chen, ”Low-power algorithm for automatic
topology generation for application-specific networks on chips,”
Computers & Digital Techniques, IET, vol. 2, no. 3, 2008.

[5] A. Dharwadker and J. Tevet, ”The graph isomorphism algorithm,”
Proceedings of the Structure Semiotics Research Group, 2009.

[6] M. Janidarmian, A. Khademzadeh, and M. Tavanpour, ”Onyx: A new
heuristic bandwidth-constrained mapping of cores onto tile-based
Network on Chip,” IEICE Electron. Express, vol. 6, no. 1, pp. 1-7,
Jan., 2009.

[7] K. Srinivasan, K. S. Chatha, and G. Konjevod, ”Linear-programming
based techniques for synthesis of network-on-chip architectures,”
IEEE Trans. Very Large Scale Integr. Syst. 14, 4 (Apr. 2006).

[8] J. Hu and R. Marculescu, ”Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures,”
Proc. of DATE’03, pp. 688-693, 2003.

634

