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ABSTRACT

Exact solution for hopping and correlation e�ects in
atomic clusters and mesoscopic/nanoscopic networks is
outlined. The program translates the Hamiltonian oper-
ator of the cluster written in terms of second-quantized
creation and annihilation operators, to sparse matrix of
(extremely) large dimension and solves the latter with
the help of new compiler termed ABC (\Advanced Basic-
C" compiler/convertor/programmer). The ABC creates
a stand-alone executable or, if proved necessary, source
C-code received from the original program written in a
simpli�ed Quick Basic dialect. ABC employes mathe-
matical functions including the complex variables, ar-
bitrary precision 
oating-point numbers, special func-
tions, standard mathematical routines (mulidimensional
integrals, eigenvalues of Hermitian marices, in particu-
lar a new algorithm for sparce Hermitian matrices, etc.)
and is appropriate to practically all software/hardware
environments (Windows, OS/2, Linux and UNIX ma-
chines).

Keywords: Atomic cluster, mesoscopic system, persis-
tent current, superconducting network, sparse matrix.

1 FORMULATION OF THE MODEL

The understanding of electron transport and binding
energy in strongly correlated electronic systems (high-
temperature superconductors; molecular conductors, e.g.
carbon nanotubes and fullerenes; mesoscopic structures;
biological systems and soft matter; quantum computers)
is one of demanding tasks in modern condensed matter
physics and microelectronics. The present paper aims at
the goal of exact solution of electron transport and cor-
relation in atomic clusters and networks the examples
of which are presented in Fig.1.
The simplest Hamiltonian of cluster has form [1]
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where a+i�(ai�) is fermionic second-quantized operator
creating (annihilating) electron at atomic site i with
spin projection � = �1=2 ="#, ni� = a+i�ai� is the
site occupation operator, and bk the bosonic operator
of the deformation �eld mediating the electron-electron
attraction. e�ij is the Peierls substitution phase factor
taking into consideration the e�ect of external magnetic
�eld,

�ij = 2�
�

Ns�0

(j � i) (2)

where Ns is the number of sites in z-projected cluster
with magnetic �eld in z direction producing a mag-
newtic 
ux �. Vi is the (random) potential at site i,
and U , V , W and Vph are the coupling constants:

U : Hubbard potential;
V;W : occupation-dependent hopping potentials;
Vph: electron-phonon coupling strength.

Operators am are presented as matrices

am = (v
)m�1a(
u)N�m; m = 1:::N (3)

where a; u; v are 2� 2 matrices

a =

�
0 1
0 0

�
; u =

�
1 0
0 1

�
; v =
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1 0
0 �1

�
(4)

and 
 is the symbol of Kronecker matrix product. In
particular, for N = 3 we receive matrices

a1 =

0
BBBBBBBBBB@

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCCCA
; (5)

a2 =

0
BBBBBBBBBB@

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCCCA
; (6)
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Figure 1: (a)Cubic cluster centered with a vibrating two-level oscillator; (b)Icosahedral cluster; (c)Network of octahe-
dral clusters.

a3 =

0
BBBBBBBBBB@

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 �1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

1
CCCCCCCCCCA

(7)

satisfying the commutation relations

a+i aj + aja
+

i = �ij : (8)

The bosonic sector of operators continues the line in
Eq.(3) to left by replacing in it v to u, if we choose an
approximation for the vibrational modes as the two-level
vibrators.

The full Hilbert space of the Hamiltonian (1) without
the bosonic operators has dimension 22N where N is the
number os sites. The dimension may be reduced by us-
ing symmetries including the one related to conservation
of spin-up and spin-down particle numbers, as well as ge-
ometrical symmetries of the cluster but not in the case
of nonzero 
ux which is important in phase-sensisitive
phenomena like quantum computation, superconducting
weak links (Josephson e�ect and Andreev re
ection), as
well as Aharonov-Bohm e�ect and persistent currents in
mesoscopic loops. In case when � 6= 0, the only symme-
try allowing for the reduction of the matrix dimension
is the spin-up/spin-down particle number conservation

N� = 2
X
i

�a+i�ai� : (9)

Using Eqs.1,5, matrix operator H is block-diagonalized
to partial matricesHs1s2 of smaller dimension (see Table
1) which are solved with the help of ABC.

2 THE \ABC" COMPILER

We focus on the numeric algorithm for coupled fermi-
and fermi-bose systems allowing easy calculation of eigen-
values and eigenvectors of extremely large (of dimension

up to 1000000, when executed on a standard Pentium
PC) sparse complex Hermitian matrices. The program
was devised with a newly developed Advanced Basic/C
Compiler/Convertor/Programmer (\ABC") which pro-
duces C-codes as well as executables �t for various hard-
ware/software environments (Windows, Linux and UNIX
machines). The ABC C-code is translated from the
QuickBasic dialect source code extended for easy use
of mathematical routines such as complex numbers, ar-
bitrary precision arithmetics, multidimensional integra-
tion, eigenvalue problem for sparse and conventional
complex Hermitian matrices, etc.

ABC assumes a mathematical subspace of Basic di-
alect as it was speci�ed in the Microsoft QuickBasic. By
using the QuickBasic compiler as an editor, we have an
additional advantage of testing the initial program code
for possible errors by trying to execute (but not actually
executing) the program thus eleminating most of (pos-
sible) syntax errors. The ABC code accepts complex
numbers, special functions, arbitrary precision 
oating-
point variables and a number of standard (and some-
times new) mathematical algorithms written in compli-
ance with the (pseudo)QuickBasic dialect, so that the
error checking is also applicable to these QuickBasic ex-
tensions within the QuickBasic rules. As an example,
below is a full program in ABC

DIM a; b; c; x; y AS DOUBLE : a = 0:111 : b = 0:222

c = integ(x; 0; 1; y; 1�x; 1+x; SIN(pi �a �x � y+ b) 2)

PRINT a; b; c

for calculating an integral

c =

Z 1

0

dx

Z 1+x

1�x

dy sin2(�axy + b): (10)

In case when program execution is assumed on a ma-
chine di�erent from the one of the ABC (e.g., faster,
allowing larger RAM), the C-code appropriate to that



Table 1: Maximal reduced dimensions and other parameters for various clusters. Ns - number of sites, Ne - maximal
number of electrons on cluster, DH - dimension of the Hilbert space of cluster's Hamiltonian matrix, DR - maximal
dimension of the reduced matrix Hs1s2 .

Cluster type Ns Ne DH DR

Tetrahedron 4 8 256 36
Octahedron 6 12 4096 400
Cube 8 16 65536 4900
Icosahedron 12 24 16777216 853776
Ring 8 16 65536 4900
Ring 10 20 1048576 63504
Prism 2�6 24 16777216 853776
Prism 3�3 18 262144 15876

machine is generated. The codes thus produced are gen-
erally equal, or faster, than the conventional C-codes on
same machine. Unlike similar programs for mathemat-
ical calculations (Maple or Matlab), ABC doesn't sup-
port any sophisticated graphics and, generally speaking,
is not an advanced interactive routine. Also, dynamic
strings are limited to the scope necessary for easy com-
munication with the compiler (command-line data input
and output, helps, etc.). The goal is rather in easy pro-
gramming for nonprofessionals (physicists, mathemati-
cians), on a professional level.

3 PHYSICAL IMPLEMENTATION

An example of numeric solution, Fig.2, represents
the mesoscopic parity e�ect [2], i.e., number-parity sen-
sitive dependence of the energy of cluster (mesoscopic
superconductivity [3]), and the energy versus magnetic

ux threading the cluster dependence (representing the
persistent-current [4]) and supercurrent e�ects. The
program allows calculation of the energy and other rel-
evant physical characteristics of cluster with the single
algorithm in which the cluster type (cubic, orthohedral,
etc.) as well as the coupling strengthes are speci�ed as
parameters. In previous works, cubic cluster [5] and the
cluster 4� 4 [6] have been examined within the Hub-
bard model at � = 0 for restricted value of electron
�lling.

3.1 The Hubbard Model

The Hubbard model (Hamiltonian (1) with U > 0
and V =W = Vph = 0) was suggested for explanation of
high-temparature superconductivity in ceramic metals
(La2�xSrxCuO4, Y Ba2Cu3O7�x). Some authors claim
that superconductivity may exist in crystal without the
electron-phonon interaction and with the repulsive in-
teraction between opposite-spin electrons at sites. The
problem was analized, in particular, within the Quan-
tum Monte-Carlo computational method [7] near the

half �lling (corresponding to the number of electrons
nearly equal to the number of sites) without the conclu-
sive results.

In small specimens, the question arizes whether su-
perconductive pairing can survive in case when the en-
ergy level spacing approaches, or becomes larger than
the superconducting energy gap [8]. It was suggested [2]
that lowering of system energy at even number of elec-
trons compared to the odd number, the so called parity
gap

�p = E2n+1 �
1

2
(E2n +E2n+2); (11)

may serve for discrimination between the superconduc-
tive and nonsuperconductive behavior. Our calculation
showed that the parity gap doesn't appear in case of
positive Hubbard U but the negative-U Hubbard Hamil-
tonian is indeed superconductive. We present, as an
example, the energy versus the number of particle de-
pendence for cubic cluster E(N) (Fig.2,left panel) which
clearly shows the existence of the parity gap.

3.2 Occupation-dependent Hopping

Electon transport in oxides is determined by a pecu-
liarity speci�c to atoms in the lowest part of the periodic
table (H , O, B and, possibly, C). Speci�cally, in case of
oxygen, delocalization of electron from the oxygen site
(localization of hole at the site) results in signi�cant in-
crease of positive charge near the atom and therefore
in shrinking of the electronic cloud near the atom thus
reducing the transfer integral between the oxygens (or
between the oxygen and the near metallic atom) sites.
This will cause signi�cant change in the transfer inte-
gral between the sites resulting in strong interatomic
interaction (which is neither attractive nor repulsive but
nevertheless results in electron pairing). The Hamilto-
nian responsible for this interaction is displayed as a sec-
ond line in Eq.(1) and consists of the multiplicative (V )
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Figure 2: (a)Energy versus number of particles in negative-U cubic cluster. 1 - U=jtj = �1, 2 - U=jtj = �2, 3 -
U=jtj = �3, 4 - U=jtj = �4; (b)Energy versus magnetic 
ux threading cubic cluster. hc=e-periodicity represents the
persistent current e�ect, the hc=2e-periodicity is accounting for the pairing (superconductive) correlation.

and additive (W ) occupation-dependent hopping am-
plitudes. Depending on the values of V and W , energy
versus particle number dependence shows dips with a
nonzero parity gap. This may serve as a possible mech-
anism of high-temperature superconductivity in oxide
metals [1], [9], [10].

3.3 Persistent Current and Flux

Quantization

Magnetic 
ux dependence of cluster energy produces
a current

J = �@E=@�: (12)

Such currents, termed persistent currents, exist even in
the noninteracting Fermi gas [4] and have periodicity in
magnetic 
ux equal to the 
ux quantum �0 = hc=e =
4:14�10�7G�cm2. Superconducting cluster (the one with
the negative value of U or the nonzero value of V;W ,
in certain domain of the ratio V=t, W=t), develops the
E(�) dependence with twice shorter periodicity than in
noninteracting Fermi gas [1], as it evidenced in Fig.2,b
(right panel). Similar dependences have been calculated
earlier for mesoscopic rings [11], [12].
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