
Shortest Unique Substring Query Revisited�

Atalay Mert İleri1, M. Oğuzhan Külekci2, and Bojian Xu3,��

1 Department of Computer Engineering, Bilkent University, Turkey
2 TÜBİTAK National Research Institute of Electronics and Cryptology, Turkey

3 Department of Computer Science, Eastern Washington University, WA 99004, USA
aileri@bilkent.edu.tr, oguzhan.kulekci@tubitak.gov.tr, bojianxu@ewu.edu

Abstract. We revisit the problem of finding shortest unique substring
(SUS) proposed recently by Pei et al. (ICDE’13). We propose an optimal
O(n) time and space algorithm that can find an SUS for every location
of a string of size n and thus significantly improve their O(n2) time
complexity. Our method also supports finding all the SUSes covering
every location, whereas theirs can find only one SUS for every location.
Further, our solution is simpler and easier to implement and can also be
more space efficient in practice, since we only use the inverse suffix array
and the longest common prefix array of the string, while their algorithm
uses the suffix tree of the string and other auxiliary data structures. Our
theoretical results are validated by an empirical study that shows our
method is much faster and more space-saving.

Keywords: shortest unique substring, repetitiveness, regularity.

1 Introduction

Repetitive structure and regularity finding [1] has received much attention in
stringology due to its comprehensive applications in different fields, including
natural language processing, computational biology and bioinformatics, security,
and data compression. However, finding the shortest unique substring (SUS)
covering a given string location was not studied, until recently it was proposed
by Pei et al. [5]. As pointed out in [5], SUS finding has its own important usage
in search engines and bioinformatics. We refer readers to [5] for its detailed
discussion on the applications of SUS finding. Pei et al. proposed a solution that
costs O(n2) time and O(n) space to find a SUS for every location of a string of
size n. In this paper, we propose an optimal O(n) time and space algorithm for
SUS finding. Our method uses simpler data structures that include the suffix
array, the inverse suffix array, and the longest common prefix array of the given
string, whereas the method in [5] is built upon the suffix tree data structure. Our

� Part of the work was done while the first and the third authors were with TÜBİTAK-
BİLGEM-UEKAE Mathematical and Computational Sciences Labs in 2013 summer.
All missed proofs and pseudocode can be found in the full version of this paper [2].

�� Corresponding author. Supported in part by EWU’s Faculty Grants for Research
and Creative Works.

A.S. Kulikov, S.O. Kuznetsov, and P. Pevzner (Eds.): CPM 2014, LNCS 8486, pp. 172–181, 2014.
c© Springer International Publishing Switzerland 2014

Shortest Unique Substring Query Revisited 173

algorithm also provides the functionality of finding all the SUSes covering every
location, whereas the method of [5] searches for only one SUS for every location.
Our method not only improves their results theoretically, the empirical study
also shows that our method gains space saving by a factor of 20 and a speedup
by a factor of four. The speedup gained by our method can become even more
significant when the string becomes longer due to the quadratic time cost of [5].
Due to the very high memory consumption of [5], we were not able to run their
method with massive data on our machine.

2 Preliminary

We consider a string S[1 . . . n], where each character S[i] is drawn from an
alphabet Σ = {1, 2, . . . , σ}. A substring S[i . . . j] of S represents S[i]S[i +
1] . . . S[j] if 1 ≤ i ≤ j ≤ n, and is an empty string if i > j. String S[i′ . . . j′] is a
proper substring of another string S[i . . . j] if i ≤ i′ ≤ j′ ≤ j and j′−i′ < j−i.
The length of a non-empty substring S[i . . . j], denoted as |S[i . . . j]|, is j− i+1.
We define the length of an empty string is zero. A prefix of S is a substring
S[1 . . . i] for some i, 1 ≤ i ≤ n. A proper prefix S[1 . . . i] is a prefix of S
where i < n. A suffix of S is a substring S[i . . . n] for some i, 1 ≤ i ≤ n. A
proper suffix S[i . . . n] is a suffix of S where i > 1. We say the character S[i]
occupies the string location i. We say the substring S[i . . . j] covers the kth
location of S, if i ≤ k ≤ j. For two strings A and B, we write A = B (and
say A is equal to B), if |A| = |B| and A[i] = B[i] for i = 1, 2, . . . , |A|. We say
A is lexicographically smaller than B, denoted as A < B, if (1) A is a proper
prefix of B, or (2) A[1] < B[1], or (3) there exists an integer k > 1 such that
A[i] = B[i] for all 1 ≤ i ≤ k − 1 but A[k] < B[k]. A substring S[i . . . j] of S
is unique, if there does not exist another substring S[i′ . . . j′] of S, such that
S[i . . . j] = S[i′ . . . j′] but i �= i′. A substring is a repeat if it is not unique.

Definition 1. For a particular string location k ∈ {1, 2, . . . , n}, the shortest
unique substring (SUS) covering location k, denoted as SUSk, is a unique
substring S[i . . . j], such that (1) i ≤ k ≤ j, and (2) there is no other unique
substring S[i′ . . . j′] of S, such that i′ ≤ k ≤ j′ and j′ − i′ < j − i.

For any string location k, SUSk must exist, because the string S itself can
be SUSk if none of the proper substrings of S is SUSk. Also there might be
multiple candidates for SUSk. For example, if S = abcbb, then SUS2 can be
either S[1, 2] = ab or S[2, 3] = bc.

For a particular string location k ∈ {1, 2, . . . , n}, the left-bounded shortest
unique substring (LSUS) starting at location k, denoted as LSUSk, is a
unique substring S[k . . . j], such that either k = j or any proper prefix of S[k . . . j]
is not unique. Note that LSUS 1 = SUS1, which always exists. However, if S is
not suffixed by an artificial terminator character $ /∈ Σ, then for an arbitrary
location k ≥ 2, LSUSk may not exist. For example, if S = abcabc, then none
of {LSUS4,LSUS5,LSUS6} exists. An up-to-j extension of LSUSk is the
substring S[k . . . j], where k + |LSUSk | ≤ j ≤ n.

174 A.M. İleri, M.O. Külekci, and B. Xu

The suffix array SA[1 . . . n] of the string S is a permutation of {1, 2, . . . , n},
such that for any i and j, 1 ≤ i < j ≤ n, we have S[SA[i] . . . n] < S[SA[j] . . . n].
That is, SA[i] is the starting location of the ith suffix in the sorted order of all
the suffixes of S. The rank array Rank [1 . . . n] is the inverse of the suffix array.
That is, Rank [i] = j iff SA[j] = i. The longest common prefix (lcp) array
LCP [1 . . . n+1] is an array of n+1 integers, such that for i = 2, 3, . . . , n, LCP [i]
is the length of the lcp of the two suffixes S[SA[i−1] . . . n] and S[SA[i] . . . n]. We
set LCP [1] = LCP [n+1] = 0. In the literature, the lcp array is often defined as
an array of n integers. We include an extra zero at LCP [n+1] is just to simplify
the description of our upcoming algorithms. The next Lemma 1 shows that, by
using the rank array and the lcp array of the string S, it is easy to calculate any
LSUS i if it exists or to detect that it does not exist.

Lemma 1. For i = 1, 2, . . . , n:

LSUS i =

{
S[i . . . i+ Li], if i+ Li ≤ n
not existing, otherwise

where Li = max{LCP [Rank [i]],LCP [Rank [i] + 1]}.

3 SUS Finding for One Location

In this section, we want to find the SUS covering a given location k using O(n)
time and space. We start with finding the leftmost one if k has multiple SUSes.
In the end, we will show an extension to find all the SUSes covering location k
with the same time and space complexities, if k has multiple SUSes.

Lemma 2. Every SUS is either an LSUS or an extension of an LSUS.

Example 1: S = abcbca, then SUS2 = S[1, 2] = ab, which is LSUS1. Example
2: S = abcbc, then SUS2 = S[1, 2] = ab, which is an extension of LSUS1 = S[1]
to location 2.

By Lemma 2, we know SUSk is either an LSUS or an extension of an LSUS,
and the starting location of that LSUS must be on or before location k. Then the
algorithm for finding SUSk for any given string location k is simply to calculate
LSUS1, . . . ,LSUSk if existing, using Lemma 1. During this calculation, if any
LSUS does not cover the location k, we simply extend that LSUS up to location
k. We will pick the shortest one among all the LSUS or their up-to-k extensions
as SUSk. We resolve the tie by picking the leftmost candidate. It is possible this
procedure can early stop if it finds an LSUS does not exist, because that indicates
all the other remaining LSUSes do not exist either. Due to the page limit, we
give the pseudocode of this procedure in the full version of this paper [2].

Lemma 3. Given a string location k and the rank and the lcp array of the string
S, we can find SUSk using O(k) time. If multiple SUSk exist, the leftmost one
is returned.

Shortest Unique Substring Query Revisited 175

Adding the linear time cost for the construction of the suffixe array, the rank
array, and the lcp array, we have the following theorem.

Theorem 1. For any location k in the string S, we can find SUSk using O(n)
time and space. If multiple SUSk exist, the leftmost one is returned.

It is trivial to extend the one-SUS finding algorithm to find all the SUSes covering
a particular location k as follows. We will first find the leftmost SUSk. Then we
start over again to recheck LSUS1 . . .LSUSk or their up-to-k extensions, and
return those whose length is equal to the length of SUSk. The pseudocode of
this new procedure is given in [2]. This procedure clearly costs an extra O(k)
time. Combining the claim in Theorem 1, we get the following theorem.

Theorem 2. We can find all the SUSes covering any given location k using
O(n) time and space.

4 SUS Finding for Every Location

In this section, we want to find SUSk for every location k = 1, 2, . . . , n. If k has
multiple SUSes, the leftmost one will be returned. In the end, we will show an
extension to return all SUSes for every location.

A natural solution is to iteratively use the algorithm for finding the SUS cov-
ering a particular location as a subroutine to find every SUSk, for k = 1, 2, . . . , n.
However, the total time cost of this solution will be O(n)+

∑n
k=1 O(k) = O(n2),

where O(n) captures the time cost for the construction of the suffix array, the
rank array, and the lcp array, and

∑n
k=1 O(k) is the total time cost for the n

instances of the one-SUS finding algorithm. We want to have a solution that
costs a total of O(n) time and space, which implies that the amortized cost for
finding each SUS is O(1).

By Lemma 2, we know that every SUS must be an LSUS or an extension of
an LSUS. The next Lemma 4 further says if SUSk is an extension of an LSUS,
it has special properties and can be quickly obtained from SUSk−1.

Lemma 4. For any k ∈ {2, 3, . . . , n}, if SUSk is an extension of an LSUS, then
(1) SUSk−1 must be a substring whose right boundary is the character S[k− 1],
and (2) SUSk is the substring SUSk−1 appended by the character S[k].

4.1 The Overall Strategy

We are ready to present the overall strategy for finding SUS of every loca-
tion, by using Lemma 2 and 4. We will calculate all the SUS in the order of
SUS1, SUS2, . . . ,SUSn. That means when we want to calculate SUSk, k ≥ 2,
we have had SUSk−1 calculated already. Note that SUS1 = LSUS1, which is
easy to calculate using Lemma 1. Now let’s look at the calculation of a particu-
lar SUSk, k ≥ 2. By Lemma 2, we know SUSk is either an LSUS or an extension
of an LSUS. By Lemma 4, we also know if SUSk is an extension of an LSUS,

176 A.M. İleri, M.O. Külekci, and B. Xu

then the right boundary of SUSk−1 must be S[k − 1] and SUSk is just SUSk−1

appended by the character S[k]. Suppose when we want to calculate SUSk, we
have already calculated the shortest LSUS covering location k or have known
the fact that no LSUS covers location k. Then, by using SUSk−1, which has
been calculated by then, and the shortest LSUS covering location k, we will be
able to calculate SUSk as follows:

Case 1: If the right boundary of SUSk−1 is not S[k−1], then SUSk cannot be
an extension of an LSUS (the contrapositive of Lemma 4). Thus, SUSk is just
the shortest LSUS covering location k, which must be existing in this case.

Case 2: If the right boundary of SUSk−1 is S[k−1], then SUSk may or may not
be an extension of an LSUS. We will consider two possibilities: (1) If the shortest
LSUS covering location k exists, we will compare its length with | SUSk−1 |+1,
and pick the shorter one as SUSk. If both have the same length, we resolve the
tie by picking the one whose starting location index is smaller. (2) If no LSUS
covers location k, SUSk will just be SUSk−1 appended by S[k].

Therefore, the real challenge, by the time we want to calculate SUSk, k ≥ 2,
is to ensure that we would already have calculated the shortest LSUS covering
location k or we would already have known that no LSUS covers location k.

4.2 Preparation

We now focus on the calculation of the shortest LSUS covering every string
location k, denoted by SLSk. Let Candidateki denote the shortest one among
those of {LSUS1, . . . ,LSUSk} that exist and cover location i. The leftmost one
will be picked if multiple choices exist for both SLSk and Candidateki . For an
arbitrary k, 1 ≤ k ≤ n, SLSk may not exist, because the location k may not
be covered by any LSUS. However, if SLSk exists, by the definition of SLS and
Candidate , we have:

Fact 1. If SLSk exists: SLSk = Candidatekk = Candidatek+1
k = · · · = Candidatenk

Our goal is to ensure SLSk will have been known when we want to calculate
SUSk, so we calculate every SLSk following the same order k = 1, 2, . . . , n, at
which we calculate all SUSes. Because we need to know every LSUS i, i ≤ k
in order to calculate SLSk (Fact 1), we will walk through the string loca-
tions k = 1, 2, . . . , n: at each walk step k, we calculate LSUSk and maintain
Candidateki for every string location i that has been covered by at least one of
{LSUS1,LSUS2, . . . ,LSUSk}. Note that Candidateki = SLS i for every i ≤ k
(Fact 1). Those Candidateki with i ≤ k would have been used as SLS i in the
calculation of SUS i. So, after each walk step k, we will only need to maintain
the candidates for locations after k.

Lemma 5. (1) LSUS1 always exists. (2) If LSUSk exists, then {LSUS1, LSUS2,
. . ., LSUSk} all exist. (3) If LSUSk does not exist, then none of {LSUSk,
LSUSk+1, . . ., LSUSn} exists.

We know after k walk steps, we have calculated LSUS1,LSUS2, . . . ,LSUSk.
By Lemma 5, we know that there exists some �k, 1 ≤ �k ≤ k, such that

Shortest Unique Substring Query Revisited 177

LSUS1, . . . ,LSUS �k all exist, but LSUS �k+1 . . .LSUSk do not exist. If �k = k,
that means LSUS1, . . . ,LSUSk all exist. Let γk denote the right boundary of
LSUS �k , i.e., LSUS �k = S[�k . . . γk]. We know every location j = 1, . . . , γk has
its candidate Candidatek

j calculated already, because every such location j has
been covered by at least one of the LSUSes among LSUS1, . . . ,LSUS �k . We also
know if γk < n, every location j = γk +1, . . . , n still does not have its candidate
calculated, because every such location j has not been covered by any LSUS
from LSUS1, . . . ,LSUS �k that we have calculated at the end of the kth walk
step.

Lemma 6. At the end of the kth walk step, if γk > k, then for any i and j,
k ≤ i < j ≤ γk, Candidate

k
j also covers location i.

Lemma 7. At the end of the kth walk step, if γk > k, then |Candidatekk | ≤
|Candidatekk+1 | ≤ . . . ≤ |Candidatekγk

|.
The next lemma shows that the right boundary of LSUS i will be on or after the
right boundary of LSUS i−1, if LSUS i exists.

Lemma 8. For each i = 2, 3, . . . , n: |LSUS i | ≥ |LSUS i−1 | − 1

4.3 Finding SLS for Every Location

Invariant. We calculate SLSk for k = 1, 2, . . . , n by maintaining the following
invariant at the end of every walk step k: (A) If γk > k, locations {k + 1, k +
2, . . . , γk} will be cut into chunks, such that: (A.1) All locations in one chunk
have the same candidate. (A.2) Each chunk will be represented by a linked
list node of four fields: {ChunkStart, ChunkEnd, start, length}, respectively
representing the start and end location of the chunk and the start and length of
the candidate shared by all locations of the chunk. (A.3) All nodes representing
different chunks will be connected into a linked list, which has a head and a
tail, referring to the two nodes that represent the lowest positioned chunk and
the highest positioned chunk. (B) If γk ≤ k, the linked list is empty.

Maintenance of the Invariant. We describe in an inductive manner the pro-
cedure that maintains the invariant. Algorithm 1 shows the pseudocode. We
start with an empty linked list.

Base Step: k = 1. We are walking the first step. We first calculate LSUS1 using
Lemma 1. We know LSUS1 must exist. Let’s say LSUS1 = S[1 . . . γ1] for some
γ1 ≤ n. Then, Candidate1

i = LSUS1 for every i = 1, 2, . . . , γ1. We record all these
candidates by using a single node (1, γ1, 1, γ1). This is the only node in the linked
list and is pointed by both head and tail. We know SLS1 = Candidate11 (Fact 1),
so we return SLS1 by returning (head.start, head.length) = (1, γ1). We then
update head.ChunkStart from 1 to be 2. If it turns out head.ChunkEnd= γ1 < 2,
meaning LSUS1 really covers location 1 only, we delete the head node from the
linked list, which will then become empty.

178 A.M. İleri, M.O. Külekci, and B. Xu

Algorithm 1. Function calls FindSLS (1), . . ., FindSLS (n) return SLS1,
. . ., SLSn, if the corresponding SLS exists; otherwise, null is returned

1 Construct Rank[1 . . . n] and LCP [1 . . . n] of the string S;
2 Initialize an empty List; // Each node has four fields: {ChunkStart, ChunkEnd, start,

length}.
3 head ← 0; tail ← 0 ; // Reference to the head and tail node of the List

4 FindSLS (k)
/* Process LSUSk, if it exists. */

5 L ← max{LCP [Rank[k]],LCP[Rank [k] + 1]};
6 if k + L ≤ n then // LSUSk exists.

// Add a new list element at the tail, if necessary.
7 if head = 0 then List[1] ← (k, k + L, k, L + 1); head ← 1; tail ← 1 ; // List was

empty.
8 else if k + L > List[tail].ChunkEnd then
9 tail + +; List[tail] ← (List[tail − 1].ChunkEnd + 1, k + L, k, L+ 1);

/* Update candidates and merge the nodes whose candidates can be shorter.
Resolve the tie by picking the leftmost one. */

10 j ← tail;
11 while j ≥ head and List[j].length > L + 1 do j − −;
12 ;
13 List[j + 1] ← (List[j + 1].ChunkStart, List[tail].ChunkEnd, k, L + 1);

tail ← j + 1;

14 if head �= 0 then SLSk ← (head.start, head.length) ; // The list is not empty.
15 else SLSk ← (null, null) ; // SLSk does not exist.
16 ;

/* Discard the information about location k from the List. */

17 if head > 0 then // List is not empty
18 if List[head].ChunkEnd ≤ k then
19 head + +; // Delete the current head node
20 if head > tail then head ← 0; tail ← 0; ; // List becomes empty

21 else List[head].ChunkStart ← k + 1;
22 ;

23 return SLSk

Inductive Step: k ≥ 2. We are walking the kth step. We first calculate LSUSk.
Case 1: LSUSk does not exist. (1) If head does not exist. It means that location k
is covered neither by any of LSUS1, . . . ,LSUSk−1 nor by LSUSk, so SLSk simply
does not exist, and we will simply return (null, null) to indicate that SLSk does
not exist. (2) If head exists, (head.start, head.length)will be returned as SLSk,
because Candidatek

k = SLSk (Fact 1). Then we will remove the information
about location k from the head by setting head.ChunkStart = k + 1. After
that, we will remove the head node if head.ChunkEnd < head.ChunkStart.

Case 2: LSUSk exists and LSUSk = S[k . . . γk], γk ≤ n. By Lemma 5, we
know LSUS1, . . . ,LSUSk−1 all exist. Let γk−1 denote the right boundary of
LSUS1, . . . ,LSUSk−1. By Lemma 8, we know γk ≥ γk−1 and γk−1 is also the
right boundary of LSUSk−1, i.e., LSUSk−1 = S[k − 1 . . . γk−1]. Note that both
γk−1 < k and γk−1 ≥ k are possible. (1) If head does not exist, it means γk−1 < k
and none of locations {k . . . γk} is covered by any of LSUS1, . . . ,LSUSk−1. We
will insert a new node (k, γk, k, γk − k+ 1), which will be the only node in the

Shortest Unique Substring Query Revisited 179

linked list. (2) If head exists, it means γk−1 ≥ k. If γk > tail.ChunkEnd= γk−1,
we will first insert a new node (tail.ChunkEnd+ 1, γk, k, γk − k+ 1) at the tail
side of the linked list to record the candidate information for locations in the
chunk after γk−1 through γk. After the work in either (1) or (2) is finished,
we then travel through the nodes in the linked list from the tail side toward
the head. We stop when we meet a node whose candidate is shorter than or
equal to LSUSk or when we reach the head end of the linked list. This travel
is valid because of Lemma 7. We will merge all the nodes whose candidates are
longer than LSUSk into one node. The chunk covered by the new node is the
union of the chunks covered by the merged nodes, and the candidate of the
new node obtained from merging is LSUSk. This merge process ensures every
location maintains its best (shortest) candidate by the end of each walk step,
and also resolves ties of multiple candidates by picking the leftmost one. We
will return (head.start, head.length) as SLSk, because Candidatek

k = SLSk

(Fact 1). Finally, we will remove the information about location k from the head
by setting head.ChunkStart = k + 1. We will remove the head node if it turns
out that head.ChunkEnd> head.ChunkStart.

Lemma 9. Given the lcp array and the rank array of S, the amortized time
cost of FindSLS () is O(1) over the sequence of function calls FindSLS (1),
FindSLS (2), . . ., FindSLS (n).

4.4 Finding SUS for Every Location

Once we are able to sequentially calculate every SLSk or detect it does not exist,
we are ready to calculate every SUSk at the order of k = 1, 2, . . . , n, by using
the strategy described in Section 4.1. Due to the page limit, the pseudocode
describing this procedure is given in [2].

Theorem 3. We can find SUS1, SUS2, . . . ,SUSn of string S using a total of
O(n) time and space.

4.5 Extension: Finding all the SUSes for every Location

It is possible that a particular location can have multiple SUSes. For example, if
S = abcbb, then SUS2 can be either S[1, 2] = ab or S[2, 3] = bc. The algorithm
of Theorem 3 only returns one of them. However, we can easily modify the algo-
rithm to return all the SUSes of every location, without changing Algorithm 1.

Suppose a particular location k has multiple SUSes. We know, at the end of the
kth walk step but before the linked list update, SLSk returned by Algorithm 1
is recorded by the head node and is the leftmost one among all the SUSes
that are LSUS and cover location k. Because every string location maintains
its shortest candidate and due to Lemma 7, all the other SUSes that are LSUS
and cover location k are being recorded by other linked list nodes that are
immediately following the head node. This is because if those other SUSes are
not being recorded, that means the location right after the head node’s chunk

180 A.M. İleri, M.O. Külekci, and B. Xu

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

1 5 10 20 50 100 200

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

ds
)

File Size in MBs

dblp.xml

Tsurata et. al.
this paper
Pei et.al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 5 10 20 50 100 200

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

ds
)

File Size in MBs

dna

Tsurata et. al.
this paper
Pei et.al.

 0

 40

 80

 120

 160

 200

 240

1 5 10 20 50 100 200

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

ds
)

File Size in MBs

english

Tsurata et. al.
this paper
Pei et.al.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

1 5 10 20 50 100 200

P
ea

k
M

em
or

y
U

sa
ge

 (
M

B
s)

File Size in MBs

dblp.xml

Tsurata et. al.
this paper
Pei et.al.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

1 5 10 20 50 100 200

P
ea

k
M

em
or

y
U

sa
ge

 (
M

B
s)

File Size in MBs

dna

Tsurata et. al.
this paper
Pei et.al.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

1 5 10 20 50 100 200

P
ea

k
M

em
or

y
U

sa
ge

 (
M

B
s)

File Size in MBs

english

Tsurata et. al.
this paper
Pei et.al.

Fig. 1. Processing speed and peak memory consumption of RSUS, OSUS, and ours

has a candidate longer than SUSk or does not have a candidate calculated yet,
but that location is indeed covered by a SUSk at the end of the kth walk step.
It’s a contradiction. Same argument can be made to the other next neighboring
locations that are covered by SUSk.

Therefore, finding all the SUSes covering location k becomes easy—simply go
through the linked list nodes from the head node toward the tail node and
report all the LSUSes, whose lengths are equal to the length of SUSk, which
we have found. If the rightmost character of SUSk−1 is S[k − 1] and the sub-
string SUSk−1 appended by S[k] has the same length, that substring will be
reported too. Due to the page limit, the pseudocode describing this procedure
is given in [2]. The overall time cost of maintaining the linked list data struc-
ture (the sequence of function calls FindSLS (1),FindSLS (2), . . . ,FindSLS (n))
is still O(n). The time cost of reporting the SUSes covering a particular location
becomes O(occ), where occ is the number of SUSes that cover that location.

5 Experiments

We have implemented our proposal in C++ without best engineering effort, using
the libdivsufsort1 library for the suffix array construction and Kasai et al.’s
method [3] to compute the LCP array. We have compared our work against
Pei et al.’s RSUS [5] and Tsurata et al.’s [6] OSUS implementations, a recent
independent work obtained via personal communication after we posted our
work at arXiv. Notice that OSUS also computes the suffix array with the same
libdivsufsort package.

RSUS was prepared with an R interface. We stripped off that R interface and
built a standalone C++ executable for the sake of fair benchmarking. OSUS was

1 Available at: https://code.google.com/p/libdivsufsort

https://code.google.com/p/libdivsufsort

Shortest Unique Substring Query Revisited 181

developed in C++. We run it with the -l option to compute a single leftmost SUS
for a given position rather than its default configuration of reporting all SUSs.
We also commented the sections that print the results to the screen on all three
programs so as to measure the algorithmic performance better.

We run the tests on a machine that has Intel(R) Core(TM) i7-3770 CPU @
3.40GHz processor with 8192 KB cache size and 16GB memory. The operating
system was Linux Mint 14. We used the Pizza&Chili corpus in the experiments
by taking the first 1, 5, 10, 20, 50, 100, and 200 MBs of the largest dblp.xml,
dna, and English files. The results are shown in Figure 1.

It was not possible to run the RSUS on large files, since RSUS requires more
memory than that our machine has, and thus, only up to 20MB files were in-
cluded in the RSUS benchmark. Compared to RSUS, we have observed that
our proposal is more than 4 times faster and uses 20 times less memory. The
experimental results revealed that OSUS is on the average 1.6 times faster than
our work, but in contrast, uses 2.6 times more memory.

The asymptotic time and space complexities of both ours and OSUS are same
as being linear (note that the x axis in both figures uses log scale). The peak
memory usage of OSUS and ours are different although they both use suffix
array, rank array (inverse suffix array), and the LCP array, and computing these
arrays are done with the same library (libdivsufsort). The difference stems from
different ways these studies follow to compute the SUS. OSUS computes the
SUS by using an additional array, which is named as the meaningful minimal
unique substring array in the corresponding study. Thus, the space used for that
additional data structure makes OSUS require more memory.

Both OSUS and our scheme present stable running times on all dblp, dna,
and english texts and scale well on increasing sizes of the target data conforming
to their linear time complexity. On the other hand RSUS exhibits its O(n2) time
complexity on all texts, and especially its running time on english text takes
much longer when compared to other text types.

References

1. Crochemore, M., Rytter, W.: Jewels of stringology. World Scientific (2003)
2. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited,

http://arxiv.org/abs/1312.2738
3. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-

common-prefix computation in suffix arrays and its applications. In: Amir, A., Lan-
dau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg
(2001)

4. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms 3(2-4), 143–156 (2005)

5. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: Proceed-
ings of the 2013 IEEE International Conference on Data Engineering (ICDE), pp.
937–948 (2013)

6. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings queries
in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Heidelberg (2014)

http://arxiv.org/abs/1312.2738

	Shortest Unique Substring Query Revisited
	1 Introduction
	2 Preliminary
	3 SUS Finding for One Location
	4 SUS Finding for Every Location
	4.1 The Overall Strategy
	4.2 Preparation
	4.3 Finding SLS for Every Location
	4.4 Finding SUS for Every Location
	4.5 Extension: Finding all the SUSes for every Location

	5 Experiments
	References

