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1. Introduction 

Our ultimate goal is to solve very large numerical problems, which are obtained from 
mathematical formulations of real-life electromagnetic problems. In order to solve large 
problems, advances in both solution algorithms and computer hardware should be 
utilized. The fast multipole method (FMM) and its multi-level version,  the multi-level 
fast multipole algorithm (MLFMA), are two of the preferred choices for the solution 
algorithm due to their reduced computational complexities and memory requirements. 
[1] As for the hardware, a parallel architecture is preferred due to its increased 
computing power. Consequently, this choice of hardware forces a parallel 
implementation of the MLFMA. 

Implementation of the MLFMA requires the consideration of several parameters. Some 
of the high-level choices that need to be made are as follows:  
• Integral-equation (IE) formulation: Electric-field IE (EFIE), magnetic-field IE 

(MFIE), or combined-field IE (CFIE), where CFIE EFIE (1 )MFIEα α= + − . 
• Iterative solver: Krylov-subspace methods such as conjugate gradient squared 

(CGS), biconjugate gradient (BiCG),  biconjugate gradient stabilized (BiCGstab), 
generalized minimal residual (GMRES). 

• Preconditioner: Near-field (NF) preconditioner, filtered NF preconditioner, block-
diagonal preconditioner, diagonal preconditioner, or no preconditioner. [2] 

• Initial guess.  

It is a substantial task to find the optimal or even a near-optimal combination of the 
above parameters, especially considering that the type of the problem to be solved is yet 
another parameter. It is important to note that a seemingly straightforward choice to 
simplify the formulation and to reduce the computational burden, such as using the 
EFIE with no preconditioner, backfires as a nonconvergent combination. As a remedy, 
one could use the CFIE formulation, which produces a better-conditioned system of 
equations, and a NF preconditioner to reduce the number of iterations. However, this 
combination has the disadvantages of CFIE not being suitable for some (open) 
geometries and the NF preconditioner not being easily parallelizable.  

Therefore, the preferred combination of the parameters listed above is not trivially 
obvious and requires a careful investigation. In this paper, these parameters will be 
extensively investigated. For this purpose, a series of scattering problems of various 
sizes (at different frequencies) containing different numbers of unknowns will be used 
as a testbed.  
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2. Preconditioner Choices 

In order to investigate the effect of the preconditioners to the efficiency of the solution, 
variations in the other parameters are minimized and the solution is obtained with a 
number of different preconditioners. For this purpose, two scattering-from-sphere 
problems with 1302 and 8364 unknowns are formulated with the EFIE and solved using 
the CGS and BiCG iterative methods. The following preconditioners are employed for 
the solutions: 

1. No preconditioner 
2. Diagonal preconditioner: Only the diagonal elements of the impedance matrix 

are retained and used as the preconditioner. 
3. Block-diagonal preconditioner: The diagonal partitions of the impedance matrix 

are retained and used as the preconditioner. The partitions are based on the 
clustering of the geometry. 

4. NF preconditioner: The sparse matrix based on the NF interactions of the FMM 
is used as the preconditioner. This is a block matrix with the partitions formed 
in accordance with the clustering of the geometry.  

5. Filtered NF preconditioner: Sparsity of the NF matrix is increased by 
eliminating the smaller elements of the matrix and by keeping those elements 
exceeding a preset threshhold. [3]  

Figures 1 and 2 display the convergence characteristics (in terms of the residual versus 
the number of iterations) of the two scattering problems with 1302 and 8364 unknowns, 
respectively, with various preconditioners. We note that BiCG method consistently 
outperforms the CGS method in these results. We also note that the convergence is 
accelerated as the sparsity of the preconditioner matrix reduces. Even though this 
general behavior is expected, we note that the block-diagonal preconditioner constitutes 
an important exception to this behavior. The importance of this exception is due to the 
suitability of this preconditioner for parallel programming. 

 
3. Integral Equation Formulation 
Figure 3 compares the convergence characteristics of four different scattering-from-
sphere problems with different numbers of unknowns. The three formulations 
compared in these results are EFIE, MFIE, and CFIE with α = 0.2. The iterative 
solution is obtained with the CGS method utilizing a block-diagonal preconditioner. 
Failure of convergence for the EFIE formulation is expected from the results presented 
in Figures 1 and 2. The same behavior is observed for the EFIE in Figure 3, too. 
However, we note that the MFIE and CFIE formulations converge rapidly with the 
block-diagonal preconditioner. Furthermore, we note that the number of iterations 
required for the convergence of the CFIE is almost independed of the number of 
unknowns, whereas the number of iterations required by the MFIE increases 
significantly for larger problems. This trend is tested by solving much larger problems 
with 36,862 and 132,003 unknowns. Both problems are solved using an MLFMA 
implementation employing the CFIE formulation, CGS solver, and block-diagonal  
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Figure 1.  Convergence characterictics of 
a 1302 unknown scattering problem 
formulated with the EFIE and solved with 
BiCG and CGS employing various 
preconditioners. 

 
Figure 2.  Convergence characterictics of a 8364 
unknown scattering problem formulated with the EFIE 
and solved with BiCG and CGS employing various 
preconditioners. 
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preconditioner. In these two problems, the residual error is reduced to 10-6 in 20 and 24 
iterations, respectively. 
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Figure 3.  Comparison of the convergence characteristics of the EFIE, MFIE, and CFIE formulations of 
scattering problems of various sizes solved with CGS and block-diagonal preconditioner. 
 

4. Conclusions 
We compare the performances of various single-level FMM and MLFMA 
implementations. Choices of the integral-equation formulations, iterative solvers, 
preconditioners, and initial guesses are considered as parameters in order to determine 
the most favorable combination for a given type pf the problem. 
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