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Abstract 

A systematic design method is proposed for simple low- 
order decentralized controllers in the cascaded form of 
proportional-integral and first-order blocks. The plant 
is linear, time-invariant and has two channels, each 
with a single-input and single-output; there may be 
any number of poles in the region of stability, but the 
unstable poles can only occur at the origin. 

1 Introduction 

We consider simple, low order decentralized controller 
design with integral-action for linear, time-invariant 
(LTI) plants, whose unstable poles can only be at the 
origin. These plant models are common particularly in 
process control problems [l, 21. The main result is the 
completely systematic design procedure for decentral- 
ized controllers with integral-action explicitly (Theo- 
rem 1) .  The proposed design method characterizes a 
class of controllers with one parameter completely free. 
In each of its two channels, the "nominal controller" 
has no unstable poles other than at s = 0 to satisfy the 
integral-action requirement. The stable poles are com- 
pletely arbitrary. The nominal controller in each of the 
two channels is in the form of one proportional-integral 
(PI) block cascaded with first-order blocks (lead or lag 
controllers). The number of these cascaded blocks de- 
pends on the number of integrators in the plant. The 
nominal controller is low-order, with order independent 
of the number of stable plant poles. Decentralized con- 
trollers wzthout integral-action can be obtained as a 
specialization of the result leading to stable controllers. 
The results apply also to discrete-time systems with 
appropriat,e modifications. Notation: Let U be the 
extended closed right-half-plane. Real numbers, proper 
rational functions with real coefficients, proper rational 
functions with no unstable poles are denoted by IR, R,, 
S ;  M ( S )  denotes matrices with all entries in S ;  M 
is stable iff M E M ( S ) ;  M E M ( S )  is unimodular iff 
M-' E M ( S ) .  A diagonal matrix whose entries are NI 
and NZ is denoted by diag[N~,Nz].  For M E M ( S ) ,  
the norm 1 ) .  11 is defined as liMll = ~ u p , ~ ~ ~ b ( M ( s ) ) ,  
where U denotes the maximum singular value and 8U 
denotes the boundary of U. The variablc s is dropped 
from rational functions such as P(s) .  
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2 Main Results 
Consider the LTI, MIMO, 2-channel decentralized feed- 
back system E(P,CD): P,CD E RpZx2 are the 
transfer-functions of the plant and the decentralized 
controller, CD = diag[Cl,Cz].  It is assumed that 
E(P,CD) is well-posed and P and CD have no hidden 
modes corresponding to eigenvalues in U; P may have 
poles a t  s = 0; it does not have any other U-poles. Let 
a > 0 be an arbitrary but fixed real number and define 
Z = & E S. Since the only U-poles are at s = 0, P 
has a left-coprime-factorization (LCF) P = D-IN as: 

[P,, Pzz] = [ Dzl Z"-']-'[ Nzl N z z ]  ' (') 

where m 2 1, w 2 1 are integers, N ,  D' E M ( S ) ,  D is 
in lower-triangular Hermite-form [4]. 
A decentralized CO = diag[C1,Cz] is an integral-action 
controller iff CDAstabilizes P and B,(O) = 0 for any 
RCF CD = NJJp' [4, 3, 21. Therefore, CO is an 
integral-action controller if and only if D, = ZD, 
for some D, := diag[D1,Dz] E M ( S ) .  The decen- 
tralized integral-action controller CO = diag[Cl, CZ], 
Cj = Nj(ZDj)- '  stabilizes P if and only if T := 
ZDdiag[DI ,,Dz] + Ndiag[Nl, Nz] is nnimodular. 
Lemma 1: An integral-action controller exists for P = 
D-'N if and only if N(0) is nonsingular. 
Lemma 2: Let G E Spxp.  For any integer q > 1, there 
exists X E Spx' such that Z'I + GX is unimodular if 
and only if rankG(0) = T .  A 
The necessary condition rankN(0) = 2, i.e., P has 
no transmission-zeros at s = 0, implies (N11Nzz - 
NdVz1)(0) # 0. If N11 = 0, then NI, = Z"G1 for 
some GI E S, G ( 0 )  # 0, where n 2 0 is an integer; if 
NII(O) # 0, then GI = NII. The proposed controller 
design is stated as two cases depending on the number 
of zeros of NI, at s = 0. If NI, = 0, then define B := m 
and GI = 0. If N I ,  # 0, then let Nll =: Z"G1 for some 
GI E S, Gl(0) # 0. Define := min{n,m}. Let q1 := 
m - 0 and q2 := w + B. Define f i l ,  01 E S as follows: 
i) If 0 = m, i.e., if NI, = 0 or if m 5 n, let 31 := QI , 
DI = (1 - Z("-")GIQ~),  for some 61 E S such that 
Ql(0) # 0, and QI (M)  # Gl(co)-'. ii) If B = n < m, 
let XI E S be such that MI := Zql + GIXl is a unit 
and let NI := XIM;', D, = M;' . With N1,D1 de- 
fined as above depending on 0 = m or B = n, define 
Gz E S as Gz := Z'Nzz - Niz(ZDziD1 + N ~ I N I ) .  
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Let XZ E S be such that Mz := Z'J2 + G Z X Z  is 
a unit; let Y := N ~ z ( Z D Z ~ G I  - Z("-")Nzl) E S. 
The design procedure in Theorem 1 uses the follow- 
ing: i) If fi =_ m, choose any 01 E S 
such that Ql(0)  # 0, and Ql(m)'# Gl(m)-'. Define 
Nl = Q 1 ,  hi = (1 - Z("-")G1Q1). ii) I fB = n, con- 
struct X I  = i h l l H l  s + a  nCZ as in X j  helow. 
Let NI := X I M ; ' ,  Dl := M;". Step  (2): Choose 
any f j  E IR; define Hj := f j s  + Gj(O)-'. Choose 
hj1 E R satisfying 0 < hjl < Ils-'(GjHj - 1)11-'. If 
qj > 1, for U = 2, . . . ,q j l  choose hj, E IR satisfying 
0 < hj, < [Is-'(l + G j H j S  ~;I;(S + hji))-'ll-'; 

Step  11):  

8 '  k?!d M .  .- Z8' + G . X .  let X j  := & h j i H j n i l z  , .- I 3 '  

The0re.m 1: Let P E RpZx2,  P = D- 'N he an LCF 
as ( l ) ,  and rankN(0) = 2. A class of decentralized 
integral-action controllers {CO = diag[Cl, CZ]} is oh- 
tained as follows: If fi = m, design C, as 

where Q1 E S is such that Ql(0) # 0, and Q1(m) # 
G l ( m ) - ' .  IfB = n, design C1 as in (3) below for j = 1. 
In both cases, design C, as in (3) helow for j = 2: 

Cj = w ( X j  + ZqjQj)( l  - GjQj)- '  

where Q1, QZ E S ;  Q1 also satisfies := 1 + Y(Xz + 
Z q Z Q ~ ) M ; l M ; l Q ~  is a unit. The controller Cj is 
proper if and only if Q j ( m )  # Gj(m)- '  for j = 1,2 .  
Comments: 1) Let C, in (3) with Q j  = 0 be 
called the "nominal controller" Cj, := + X j  = 

nq=, w, which has important propert,ies * 
justifying the significance and strength of the proposed 
design. For j = 1,2,  Cj, is designed to have a pole at 
s = 0 for the integral-action requirement; Cj, has no 
other unstable poles; it has ( q j  - 1) poles at s = -a 
(a is free). If n < rn, when qj = 1, Cj, is a PI con- 
troller. In general, Cj, is in the form of one PI block 
Hjhj, /s  = f jhj l+Gj(0)- lhj l /s ,  cascaded with ( q j - 1 )  
first-order blocks ( s  + h j i ) / ( s  + a ) ,  i = 2 , .  . . , q j ,  de- 
signed when qj  > l. The initial PI block is a pure 
integral controller Gj(0) - 'h j l / s  for f j  = 0. Each sub- 
sequent first-order block is minimum-phase, with a pole 
at s = -a and a zero at -hji;  these may he interpreted 
as lead or lag controllers depending on cy and hji (since 
hji are typically small and a can be chosen arbitrarily 
large, they are all lead,controllers). The order of C1, 
is q1 = m - 11, which does not exceed the number of 
plant poles a t  s = 0 in channel-one; the order of Cz is 
qz = m + fi, which does not exceed the total number of 
plant poles a t  s = 0 in channel-one and channel-two. 
2) The controllers in (3) are biproper for any Q j  E S. 
If fi = rn < n, Cl in (2) is strictly-proper if and only 
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if Q1 E S is strictly-proper. Due to  the integral-action 
requirement,, Cj has poles at s = 0 for any Q E S; Cj 
has no other unstable poles if and only if Q j  E S is 
such that (1 - G j Q j )  is a unit; it is sufficient to take 
llQjll < ~ ~ G j ~ ~ - ' .  In the case that fi = m < n, C1 in (2) 
has no unstable poles other than at s = 0 if and only if 
Q1 E S is such that (1 - Z("-")GIQ1) is a unit; it is 
sufficient to take 11Q111 < llG~\l-'. 3) The choice of the 
design parameter QZ E S for CZ in (3) is completely 
arbitrary (where CZ is proper if and only if Q z ( ~ )  # 
G z ( m ) - I ) ,  This freedom may he used to satisfy other 
design objectives. The choice of the design-parameter 
Q1 E S for C1 in (3) is restricted so that W is a unit 
(where CI is proper if and only ifQ1(co) # G ~ ( c o ) - ' ) .  
While Q1 = 0 obviously makes W a unit, another 
sufficient condition is to choose Q1 E S such that 
11Q111 < IIY(Xz + Z ' J 2 Q ~ ) M ; i M ~ 1 ~ ~ - 1 .  4 )  Decentral- 
ized controllers without integral-action can he obtained 
from Theorem 1 simply by removing the Z-' term from 
the controllers. In Theorem 1, substitute rn by (m:l), 
tu by (w-I), and re-define Gz := Z 4 N z z - N ~ z ( D z ~ D ~ +  

1, design C1 = NI&' = &l(l - Z"-("-')G i Q i ) - l ,  
with QI E S, &1(0) # 0, Ql(m) # Gl(m)-'. If 
fi = n, design Cl as Cj  below. In both cases, de- 
sign CZ as in Cj = ( X j  + z 9 j ~ ~ ) ( i  - GjQj)-' = 

(s+h'i) + M j Q j ( l  - G j Q j ) - ' ,  where, for 
j = 1,2,  Qj E S, Qj(co)  # G j ( m ) - ' ,  Q1 E S also sat- 
isfies I@ := 1 + Y ( X Z  + Z92Q2)M;'M;1Q1 is a unit. 
The nominal Cj,  = X j  is stablc, with qI poles at -a. 

3 Conclusions 
The proposed design method achieves closed-loop sta- 
bility and robust asymptotic tracking of step-input ref- 
erences. The nominal controller for each of the two 
channels has a pole at s = 0 but no other unstable 
poles. It is designed as a lom-order controller in the 
form of one PI block cascaded with stable minimum- 
phase first-order blocks. Unlike most standard full- 
order observer-based controller designs, the controller 
order is independent of the number of stable plant 
poles. This low-order property and the simple explicit 
definition of the controllers without any computation 
makes this a very desirable straightforward design pro- 
cedure. Other tractable extensions of this systematic 
method include the case of decentralized systems with 
more than two channels and multiple inputs and out- 
puts in each channel. 
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