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Abstract

A systematic design‘method is proposed for simple low-
order decentralized controllers in the cascaded form of
proportional-integral and first-order blocks. The plant
is linear, time-invariant and has two channels, each
with a single-input and single-output; there may be
any number of poles in the region of stability, but the
unstable poles can only occur at the origin.

1 Imtroduction

We consider simple, low order decentralized controller
design with integral-action for linear, time-invariant
(LTT) plants, whose unstable poles can only be at the
origin. These plant models are common particularly in
process control problems [1, 2]. The main result is the
completely systematic design procedure for decentral-
ized controllers with integral-action explicitly (Theo-
rem 1). The proposed design method characterizes a
class of controllers with one parameter completely free.
In each of its two channels, the “nominal controller”
has no unstable poles other than at s = 0 to satisfy the
integral-action requirement. The stable poles are com-
pletely arbitrary. The nominal controller in each of the
two channels is in the form of one proportional-integral
(PI} block cascaded with first-order blocks (lead or lag
controllers). The number of these cascaded blocks de-
pends on the number of integrators in the plant. The
nominal controller is low-order, with order independent
of the number of stable plant poles. Decentralized con-
trollers without integral-action can be obtained as a
specialization of the result leading to stable controllers.

The results apply also to discrete-time systems with
appropriate modifications. Notation: Let I/ be the
extended closed right-half-plane. Real numbers, proper
rational functions with real coefficients, proper rational
functions with no unstable poles are denoted by IR, Ry,
S; M(8) denotes matrices with all entries in S; M
is stable iff M € M(S); M € M(S) is unimodular iff
M~! € M(S). A diagonal matrix whose entries are N
and N, is denoted by diag[N;, N;]. For M € M(S),
the norm || - |} is defined as |[M|| = sup,cay (M {s)),
where & denotes the maximum singular value and 9
denotes the boundary of I{. The variable s is dropped
from rational functions such as F(s).
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2 Main Results

Consider the LTI, MIMO, 2-channel decentralized feed-
back system T(P,Cp): P,Cp € R,*** are the
transfer-functions of the plant and the decentralized
controller, Cp = diag[C;,Cz]. It is assumed that
2(P,Cp) is well-posed and P and Cp have no hidden
modes corresponding to eigenvalues in i; P may have
poles at s = {; it does not have any other I{-poles. Let
a > 0 be an arbitrary but fixed real number and define
Z = Jja € S. Since the only U-poles are at s = 0, P
has a left-coprime-factorization (LCF) P = D™!N as:

[Pu Pe|_[2zm' 0 ]‘1[N11 Ml oy
Pn Py Dy Z¥7? Nyy Nayp |’
where m > 1, w > 1 are integers, N, D¢ M(S), D is
in lower-triangular Hermite-form [4].

* A decentralized Cp = diag[C1, Ca) is an integral-action

contreller iff Cp stabilizes P and D.(0) = 0 for any
RCF Cp = N.D.' |4, 3, 2. Therefore, Cp is an
integral-action controller if and only if D, = ZD,
for some D, := diag[Dy, D3] € M(S). The decen-
tralized integral-action controller Cp = diag[C1, Cal,
Cj = N;(ZD;)7! stabilizes P if and only if T :=
Z Ddiag[Dy, D;] + Ndiag[Ny, Ny] is unimodular.
Lemma 1: An integral-action controller exists for P =
D™1N if and only if N(0) is nonsingular.

Lemma 2: Let G € S, For any integer ¢ > 1, there
exists X € 8°*" such that Z97 + X is unimodular if

and only if rankG(0) = r. A
The necessary condition rankN(0) = 2, ie., P has
no transmission-zeros at s = 0, implies (Ny3 Noo —

ngNgl)(D) -',é 0. If N11 = O, then NH = Z"Gl for
some (7 € 8, (1{0) # 0, where n > 0 is an integer; if
Ni1(0) # 0, then G| = Ny;. The proposed controller
design is stated as two cases depending on the number
of zeros of V11 at s = 0. If Ny; =0, then define §:=m
and G; = 0. If Ny # 0, then let N7; =: Z"G; for some
G1 € 8, G((0) # 0. Define 3 := min{n,m}. Let ¢ :=
m — 8 and qu := w+ B. Define Ny, D, € S as follows:
DIfB=mie,if Ny =0orifm<n,let Ny :=Q1,
Dy = (1~ 2Z0=™GQ,), for some @; € S such that
Q1(0) £0, and Q1(00) # Gi{co) L ) U f=n < m,
let X7 € 8§ be such that M; := Z% + G, X, is a unit
and let Ny = X1 M7!, Dy = M[!. With Ny, D, de-
fined as above depending on 8 = m or 8 = n, define
G € 8 as Gy = Z‘@Nzg - le(ZDle + Nlel).
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Let Xo € S be such that My = Z% + G:Xs is
a unit; let ¥ = N12(2D21G1 - Z(m_n)Nzl) € S.
The design procedure in Theorein 1 uses the follow-
ing: Step (1): 1) If § = m, choose any Q1 €S
such that @.1(0} # 0, and Ql(oo) # Gi(o0)~!. Define

=0, D =(1-2Z20r™FQ,). ii) Ifﬁ_n, con-
struct X = 5 +QhuH1 1‘[ i*—:;jl as in X; below.
Let Ni := X M[! = MY Step (2): Choose

any f; € R; define H]- = fi5 + G;(0)"L. Choose
hji € IR satisfying 0 < hj; < ||871(GjHj -7t If
g; > 1, for v = 2,...,q;, choose h;,U € R satisfying
0 < hju < 571+ G Hyo TS (s + hia)) 7Y
let X; —s+ah31H | M= Z""J+G']XJ.

{s+h;i)
2 (sta)

Theorem 1: Let P € R,**?, P = D'N be an LCF

as (1), and rankN(0) = 2. A class of decentralized

integral-action controllers {Cp = diag{Ci,C3]} is ob-

tained as follows: If 8 = m, design C) as

s -
+aN1

O == 20,(1- 26 Q)Y (2)

where ¢ € § is such that (1(0) # 0, and Q:1(00) #
G1(o0)!. If B = n, design C; as in (3) below for j =
In both cases, design C; as in (3) below for j = 2:

Drl'=

c; =Lt iy, 1 790,01 - 6,0,
_Hihj ypsthi  s+a -
— HH; M;Qi(1-G,Q)™, (3)

i=2

where Q1, Q2 € S; Q; also satisfies W := 1+ Y{Xs+
Z9Q2)M; ' M'Q, is a unit. The controller C; is
proper if and only if @;(cc) # G;(00)~! for j =1,2.

1) Let Cj in (3) with QJ‘ = [) bhe
called the “nominal controller” Cj, He ¥,

H":” i ((s:_f ;3), which has important properties
justifying the significance and strength of the proposed
design. For j = 1,2, C}, is designed to have a pole at
s = () for the integral-action requirement; C;, has no
other unstable poles; it has (g; — 1) poles at s = —«
(a is free). If n < m, when g; = 1, €}, is a PI con-
troller. In general, Cj, is in the form of one PI block
Hjhjy /s = fihj+G;(0)" hji /s, cascaded with (g;—1)
first-order blocks (s + hj;) /(s + @), i = 2,...,¢;, de-
signed when ¢; > 1. The initial PI block is a pure
integral controller G;{0)~'hj, /s for f; = 0. Each sub-
sequent first-order block is minimum-phase, with a pole
at s = —a and a zero at —hy;; these may be interpreted
as lead or lag controllers depending on « and hj; (since
h;i are typically small and o can be chosen arbitrarily
large, they are all lead .controllers). The order of Cy,
is ¢ = m — n, which does not exceed the number of
plant poles at s = 0 in channel-one; the order of C; is
g2 = m+ 3, which does not exceed the total number of
plant poles at s = 0 in channel-one and channel-two.
2} The controllers in (3) are biproper for any Q; € S.
If3=m<n, Ciin (2} is strictly-proper if and only

Comments:

4988

if @1 € 8 is strictly-proper. Due to the integral-action
requirement, C; has poles at s = O for any @ € 8; Cj
has no other unstable poles if and only if @; € S is
such that {1 — G;Q;) is a unit; it is sufficient to take
151 < IIG,;]|~¢. In the case that § = m < n, C} in (2)
has no unstable poles other than at s = 0 if and only if
Q1 € 8 is such that (1 — Z(*~™G, Q) is a unit; it is
sufficient to take ||Gh|| < [iG1{|7!. 8) The choice of the
design parameter &2 € 8 for €z in (3) is completely
arbitrary {where C3 is proper if and only if Q2(oc0) #
Gz{o0)~!). This freedom may be used to satisfy other
design cobjectives. The choice of the design parameter
@1 € 8 for ¢ in (3) is restricted so that W is a unit
(where C is proper if and only if Q;{c0) # G1{o0)™1).
While Q; = 0 obviously makes W a unit, another
sufficient condition is to choose @; € § such that
N@1ll < ¥ (X2 + Z92Q2) M, M Y||~1. 4) Decentral-
ized controllers without integral-action can be obtained
from Theorem 1 simply by removing the Z~! term from
the controllers. In Theorem 1, substitute m by (m—1),
w by (w—1), and re-define G5 := Z8 Nog—N12(Day D +
NglNl) Y = NIZ(D21G1 -—Z(m i= n)NQI) Ifﬁ m—
1, design () = NlD_ = Q1(1 — Zn=(m=-1@G Q)!
with Q1 € S, (1(0) # 0, Q1(c0) # Gale)~'. If
B8 = n, design C; as C; below. In both cases, de-
sign Cy as in C; = (X- + ZU Q) (1 — Gij)"l =

%;rhé—; g’ 2 ((s;:ha)) + M;Q;(1 — G;Q;)', where, for

§i=1,2,Q;€8, Q;(c0) # Gj{c0)7!, @ € 8 also sat-
isfles W := 1 + V(X2 + Z9Q2) M, ‘M1 Y1 is a unit.
The nominal Cjo = X; is stable, with g; poles at —

3 Conclusions

The proposed design method achieves closed-loop sta-
bility and robust asymptotic tracking of step-input ref-
erences. The nominal controller for each of the two
channels has a pole at s = 0 but no other unstable
poles. It is designed as a low-order controller in the
form of one PI block cascaded with stable minimum-
phase first-order blocks. Unlike most standard full-
order observer-based controller designs, the controller
order is independent of the number of stable plant
poles. This low-order property and the simple explicit
definition of the controllers without any computation
makes this a very desirable straightforward design pro-
cedure. Other tractable extensions of this systematic
method include the case of decentralized systems with
more than two channels and multiple inputs and out-
puts in each channel.
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