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Abstract-Modeling and boundary control for Burgers Equa- 
tion is studied in  this paper. Modeling has been done via 
processing of numerical observations through singular value 
decomposition with Galerkin projection. This results in a set of 
spatial basis functions together with a set of Ordinar?. Differential 
Equations (ODEs) describing the temporal evolution. Since the 
dynamics described by Burgers equation is nonlinear, the corre- 
sponding reduced order dynamics turn out to be nonlinear. The 
presented analysis explains how boundary condition appears as a 
control input in the ODEs. The controller design is based on the 
linearization of the dynamic model. It has been demonstrated 
that an integral controller, whose gain is a function of the 
spatial variable, is sufficient to observe reasonably high tracking 
performance with a high degree of robustness. 

I .  IN’I‘RODUCTION 

Modeling and control of infinite dimensional systems con- 
tain three major issues that need to be studied carefully. First 
issue is the modeling, i.e. collecting the representative data 
and exploiting several techniques to come up with a set of 
ODEs. The second issue is to separate the effect of extemal 
stimuli from the other terms by using the boundary conditions. 
The third issue is to design a controller that meets a set of 
prescribed performance criteria. 

One should notice that the process under investigation is 
described over a physical domain (Z), the boundaries of which 
are the possible cntries of external stimuli. When the content 
of the obsen8ed data, say u(x, t j ,  is decomposed into spatial 
and temporal constituents (U(., t )  Y (@!(x),g(t))), the essence 
of spatial behavior appears as a vector of gains @(x)), which 
are functions of the spatial variable x E E, and the essence 
of temporal evolution appears as ODEs after utilizing the 
orthogonality properties of the spatial basis functions. Having 
this picture in front of us, the goal is to observe a predefined 
behavior at a set of physical locations by altering the boundary 
condition(s) appropriately. 

Although we have roughly described the overall picture, 
when the problem is visualized for aerodynamic flows, a 
familiar difficulty is the presence of nonlinearity and strong 
couplings between the variables involved since the process 
is characterized by Navier-Stokes equations. Such a physical 
process reveals the entire richness of behavioral diversity 
through very strong nonlinear intemal interactions. A one- 

dimensional “cartoon” of Navier-Stokes equations is the well- 
known Burgers equation studied extensively in the literature, 

When the modeling issue is taken into consideration, Proper 
Orthogonal Decomposition (POD) or Singular Value Decom- 
position (SVD) in cooperation with Galerkin projection are 
the popular approaches utilized several times in the literature, 
[9 ] ,  [IO], [ I l l .  The methods mentioned here use a library of 
solutions from the process, and separate the content of the 
data such that the spatial components (basis functions) reveal 
certain orthogonality properties and the temporal components 
synthesize the time evolution over those spatial basis functions. 
The decomposition yields meaningful information as long as 
the data contains coherent modes. One has to know that the 
result of POD or SVD schemes will be a set of basis functions 
accompanied by a set of autonomous ODEs. 

Apparently the next issue, which is the separation of hound- 
ary condition(s) (or the control input(s)) from the remaining 
terms, plays a key role. For example Krstic describcs a neatly 
selected Lyapunov function in [SI, and the expression in its 
time derivative lets us apply integration by parts, then the 
boundary condition emerges in an explicit manner. Although 
the approach lets us manipulate DirichEt and Neumann type 
boundary conditions on Burgers equation, it is still tedious 
to follow the same procedure for Navier-Stokes equations. 
This is because of the high dimensionality and difficulty in 
finding an appropriate Lyapunov function. Therefore, utilizing 
the numerical techniques is a practical alternative to symbolic 
manipulation of variables. One major contribution of this paper 
is to explain how the issue of control separation is handled in 
numerical-data-based modeling approaches. 

The third stage is the design of a suitable controller. In [ I ] ,  
a receding horizon optimal control approach is studied for 
Burgers equation with control input explicitly available in the 
Partial Differential Equation (PDE). The work presented by 
Bums et al [2], [3] demonstrates the stabilization by feedback 
control. More explicitly, if ~ ( z ,  t )  is thc variable of interest, a 
control signal of the form y ( t )  = -so k(z)u(z,tjdz is sug- 
gested in [2], [3]  to minimize a particularly defined quadratic 
cost function. It will later be discussed that the form of the 
control signal in this paper is y ( t )  = Ki(z,) Ji(ud(z,,p) ~ 

see e.g. P I ,  PI, 131, PI, PI, [61, VI, [SI. 
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u(z,>p))dp, which will be obtained upon linearization. The 
aim is the tracking based on the information obtained from a 
given measurement point x,. The way we set the gain Ki(z,) 
is based on the gain margin analysis. An alternative approach 
to the design of an optimal controller for Burgers equation is 
presented in [4]. This reference demonstrates the Cole-Hopf 
transformation to obtain a linear diffusion type problem. The 
drawback of this approach is twofold: First it converts the cost 
function into an equivalent but a complicated one, second, 
the applicability of the technique is highly dependent on the 
structure of the goveming PDE. For this reason, approaches 
such as the one in [5 ]  are developed to extract valuable 
information from numerical data. A quadratic cost function is 
defined and the process of minimization is achieved through 
conjugate gradient method. KrstiC [7] presents a backstepping 
control by assuming actuators at the boundaries. In [6],  the 
viscosity coefficient is assumed to be unknown, and an adap- 
tive control scheme has been presented with particularly for 
Burgers equation. 

This paper is organized as follows: The second section 
presents briefly the SVD technique and its relevance to the 
modeling strategy. In the third section, development of the 
reduced .order model for the Burgers equation is analyzed. 
Section 4 describes the control problem. The fifth section 
presents the simulation results and the concluding remarks are 
given at the end of the paper. 

11. SINGULAR VALUE DECOMPOSITION 

Consider d(tt i)  = (2L(o,t,),2L(Azlth), . . . ,  u((lY- l)Az,th)), 
which constitutes a snapshot containing the data (U(., t h ) )  

observed from a process at time t = t h .  If the data is recorded 
over a grid having S time points and N spatial locations, the 
ensemble, D, will be a matrix of dimensions S x N; and 
dth) - will be a row of D (or a snapshot from the process) for 
the observation at time t = t i .  Singular value decomposition 
separates the content of D as follows: 

D = CIA@, (1) 

where denotes the transpose. In (I) ,  U is an Sx S orthogonal 
matrix, A is an S x  N matrix containing the singular values in 
the diagonal with rest of the entries being equal to zero, and 
V is an N x N orthogonal matrix. The rows of A contain the 
singular values in decreasing order, i.e. U I  2 uz 2 . . . 2 UN. 

Defining fl:=UA lets us rewrite ( I )  as follows 

where and g k  correspond to the kth  columns of the 
matrices Cl and V respectively. The representation in (2) 
contains the full set of modes existing in the ensemble D,  
if however the expansion is performed utilizing M modes, 
where M < N, one can obtain an approximate reconstruction 
of the information content of D ;  and (2) can be rewritten 
as D Y C E 1 g k g i .  The accuracy of this representation 

is given by the percent energy captured. This measure is 
described as E = 100(Ck=, rk)/(Cf=, ub) The most useful 
aspect of the representation in (2) is the fact that it contains 
the temporal information in 0 and spatial information in V 
matrices. Therefore, one can set desired energy percentage 
(E),  determine the required number of modes ( M )  and identify 
the corresponding columns of fl and V to obtain a reduced 
order model given below: 

M 

M 

u(z,t) ak( t )@k(z) ,  (3) 
P = l  

where O k ( t )  is a function oftime, whose value at t imet = iAt 
is is equal to the value seen in the ith entry of gk, where 
i = 1,2, .  . . ,S. Similarly, Gk(z)  is a function of x, and 
it synthesizes the entries seen in 2: at every spatial grid 
point, say x = jAz, where j = 1 , 2 , .  . . , N .  Therefore, 
one can visualize the relation between the observed data and 
these new variablesas (D)ij Y E,"=, cuk(iAt)@&'Az). This 
representation is useful for modeling purposes due to the 
orthonormality of the columns of the matrix V. 

Note that, a major issue in the field of reduced order mod- 
eling of infinite dimensional systems is to examine the nature 
of error introduced by equating the both sides of (3). Although 
in terms of preserving the energy, one may approximate the 
original dynamics fairy well, the nature of lost information is 
still an open question. In what follows, obtaining the reduced 
order models based on the approximation in (3) is discussed 
by assuming the equality. 

111. REDUCED ORDER MODELING OF BURGERS SYSTEM 

In this section, we apply the SVD technique to the viscous 
Burgers equation described by 

where E = 1 is a known process parameter, z E 2 and 
Z = [0,1]. The problem is specified with the initial condition 
u(z, 0) = 0 Vx, the homogeneous boundary condition at z = 0 
as u(0, t )  = 0 and Dirichlet boundaly condition at z = 1 as 
u(1, t )  = y(t), where y ( t )  is the extemal input of the system. 
Since the SVD scheme yields the decomposition 

inserting this into (4) results in 

Since VT=V-', (G1(z),G3(z)) = So, where ~ 5 % ~  is the 
well-known Kronecker delta function. Taking the inner product 
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where * denotes the elementwise product operator. 
Since the extemal inputs are not seen explicitly in (S), in 

what follows, the terms will be manipulated such that the two 
dynamics, namely the one enters directly with the boundary 
condition and the one inherent in the spatial behavior caused 
by the boundary condition are separated properly. The driving 
point is to notice that the soluion in (5) must be satisfied at 
the boundaries as well. This gives the following information; 

h1 

U ( 1 , t )  =y(t) = C(Yi(t)@i(l). (9) 
%=I 

Or a l ; ( t ) @ k ( ~ )  = y(t) - cffl(l - & k ) c ~ i ( t ) * ~ ( l ) .  Inserting 
this into the second summation in (8) yields 
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in the linearizcd system's state space representation, (18), and 
the controller gain is likely t o  be a function ofthe measurement T - B(a)  = ( nTBia (~'Bzg . . . ~ u ~ B 8 . r ~  ) : (15) point, %,,,, 

where ( B k ) i j  = @i(zo)(@i(zo) *&(z")). Rewrite (19) as 

(20) 
N(zm, 3) (C)k = &(l)> (16) H ( s )  = -, 

V ( s )  
and 

(D)ki = D i ( 1 ) W ) .  (17) 

IV. CONTROL PROBLEM 

Consider the feedback loop illustrated in Figure I .  The 
dynamic model in  (13) provides the tcmpurdl variables. Since 
the point of measurement, z = z,, is known, the output 
equation in (5) lets us calculate the solution of the PDE in 
(4). Therefore the observation is a point observation, and the 
desired signal (ud(z,  t ) )  is imposed for that particular location. 
Clearly the goal is to observe the desired behavior ud(z,, t )  
at an arbitrary 5 ,  t: (0,l). 

I I 

Fig. I. Block diagram ofthe control system 

If (13) is linearized around a = 13, one gets the linear 
dynamic model given by 

- iu = Ag + c y ,  (18) 

where A and _C are as defined in (14) and (16) respectively. 
With these quantities, one can calculate the transfer function 

where s is the Laplace transform variable and r(s) := 
L{y( t )}  and z, t (0,l) .  

The modeling studies results in a A matrix such that the 
eigenvalues of A have negative real parts. Therefore, a change 
in the point of measurement will affect the locations of the 
zeros of the transfer function above (due to the output vector 
- @(zm)), and the stability properties will be preserved for 

Although one can suggest many different kinds of control 
strategies for the linearized system, the simplest one i s  the 
integral control. Another encouraging factor is that it makes 
the open loop transfer function Type-I and constant values are 
tracked with zero steady state error. 

Once the control action is confined to pure integral action, 
the forthcoming issue is to set its gain X i .  Intuitively, one 
might guess that once the Dirichet boundary control is applied 
from the I-boundary, the distribution of it over 5 is realized by 
the basis functions (@(z)), which appear as the output vector 

vzm t (0; 1). 

The open loop transfer function without the gain parameter 
becomes 

In Figure 2 ,  the gain margin for the transfer function in (21) 
is drawn by a dashed line for z, E (0,l) .  The solid line in 
Figure 2 depicts the chosen controller gain, K,(z,) given by 

which is less than the critical gain for z, t (0.0375;l). 
Apparently, the control at the I-boundary has no effect on 
0-boundary since u(0, t )  is specified independently. The calcu- 
lated gain margin and the chosen one intersects in the relatively 
broad vicinity of 0-boundary, below this critical value, the 
closed loop system is unstable with the above selection of 
Ki (2,). 

D.yIPdcmiia,"al".~~lld C"0r.n Gain 

1 I\. ... . . . . . . . . ... . . . . 

I v 

0 0, 02 0 1  0 4  0 5  D I  0, O B  0 s  , 1 00 

R g  2 Gain margin (Dashed line) and the chosen controller gain (Solid line) 

In the next section, the details concerning the simulations 
are presented in detail. 

v. SIMULATIONS A N D  DISCUSSION 

A. Modeling Results 
For obtaining a set of ODES characterizing the dominant 

dynamics, the PDE in (4) has been solved by using Crank- 
Nicholson method (See [121) for a set of  boundary conditions 
according to the procedure discussed. The solution has been 
obtained over a grid with N = 100 (Az = 1/99) spatial 
locations, and the time interval (At) has been chosen as lmsec 
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(S = 1001). As the test inputs, we have considered constant, 
increasing, decreasing and periodic functions while applying 
these from I-boundary and holding the 0-boundary at zero. 
Since these are the likely cases in the time behavior of an 
external stimulus, the result is expected to capture all of them 
to some extent. Having obtained the solutions, SVD procedure 
is applied for each case. We have observed that keeping five 
modes (A4 = 5) captured in average 99.84% of  the total energy 
described in the second section. 

The obtained basis functions have been approximated by Sth 
order polynomials of z. The coefficients of these polynomials 
are found by utilizing least mean squares approach. In all 
test cases. we observed a very good similarity between the 
basis functions, and to generalize the basis set, we used the 
averagc o f  them. Use of  these polynomials in (14) through 
(17) has let us obtain the system matrices and uncertainty 
terms. 1r1 Figure 3, modeling results for an exemplar case 
are illustrated. The arbitrarily chosen boundary conditions are 

y(t) = { sga(sin(5st)), 0.5s 5 t 5 Is. 
As seen from Figure 3, the numerical solution illustrated 

on the left subplot is reasonably similar to the approximate 
solution obtained through the reduced order modeling scheme 
discussed in the second section. 

sin(4?rt), 0 5 t 5 0.5s 

N u " ,  SOlYlm 

: . i J4 , . 1  

Fig. 3. A comparison of the numerical solution and appmnimate solution 

B. Cuntrul Sludies 
In order to demonstrate the control performance of the 

proposed control scheme, we study two different regimes in 
the course of a single control trial. According to this 

0.75, 0 5 t 5 30s 
0.25, t > 30s. ' 

As the reference signal, we choose a repeating train of 
pulses given as 

The obtained results have been depicted in Figure 4. The 
upper left subplot shows both the reference signal and the 
observed output together. The upper right subplot illustrates 
the difference between them. Apparently the way the output 
approaches positive value displays an overdamped behavior 
while there are damped oscillations around the negative de- 
sired value. This is clearly due to the nonlinearity ofthe system 
dynamics. Qualitatively, the speed of  the response is not fast 
enough but the tracking capability is admissible. 

Fig. 4. Simulation resulls for an exemplar control trial 

The bottom left subplot of Figure 4 demonstrates the evolu- 
tion of the boundary control. Referring to (23) with u(0, t )  = 0 
boundary condition, the result stipulates that the same refer- 
ence signal can be tracked with small-magnitude boundary 
excitations. As the measurement point moves towards the 0- 
boundary, the same tracking task will require comparably high 
magnitude boundary excitations. 

The lower right subplot of Figure 4 illustrates the gain of  
the controller. The values of K,(z,) can approximately be 
justified also from Figure 2. 

It should also be noted that, due to the space limit, the 
presented test case is only one of the many such cases contain- 
ing different forms of mentioned difficulties, and the results 
are all very successful. The ultimate goal of this research is 
to demonstrate that an appropriate feedback control strategy 
can be devised for aerodynamic flows displaying turbulent 
behavior. 

which clearly suggests that the point of measurement (z,) 
undergocs a radical change at time t = 30sec. Therefore, 
alleviating the difficulty caused by such a large change when 
considered with the structural simplicity constitutes a design 
challenge. 

VI. CONCI.USIONS 
This paper discusses the modeling and control of Nonlinear 

Infinite Dimensional Systems (NIDS). The approach is based 
on the numerical observations, therefore it is applicable not 
only to Burgers equation but also to a class of NIDS, whose 
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solutions are, dominated by coherent modes, The modeling 
approach and the way how it constitutes an integral part of 
a feedback control strategy is discussed. SVD technique is 
used in the modeling stage, then the temporal and spatial 
information have appropriately been separated into ODES and 
spatial gains respectively. It has been observed that a spatially- 
variable-gain integral controller controls the linearized system 
reasonably well. Since the output equation given by (5) 
introduces spatially-variable terms, gain margin becomes a 
function of x. The chosen form of the controller gain is inside 
the admissible region, and results justify the theoretical claims. 
The structural simplicity of the controller is another prominent 
feature that should he highlighted. 

The major contribution of this paper is to clarify how control 
terms are separated if the numerical techniques, such as SVD 
or POD are utilized. 
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