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Abstract-Modeling issues of infinite dimensional systems is 
studied in this paper. Although the modeling problem has been 
solved to some extent, use of decomposition techniques still pose 
several difficulties. A prime one of this is the amount of data to be 
processed. Method of  snapshots integrated with POD is a remedy. 
The second difficulty is the fact that the decomposition followed 
by a projection yields an autonomous set of finite dimensional 
ODEs that is not useful for developing a concise understanding of 
the input operator of the system. A numerical approach to handle 
this issue is presented in this paper. As the example, we study 2D 
heat flow problem. The results obtained confirm the theoretical 
claims of the paper and emphasize that the technique presented 
here is not only applicable to infinite dimensional linear systems 
hut also to nonlinear ones. 

1. INTRODUCTION 

Although the applications of  Proper Orthogonal Decomposi- 
tion (POD) particularly focus on the extraction o f  coherent and 
dominant modes available in aerodynamic flows, the problem 
of tackling with huge amounts of data and technical difficulties 
in the obtained modcl constitute bamers between the stipulated 
efforts and the thorough understanding of the process, [1-6]. 
For this reason, we study the modeling problem that addresses 
the above mentioned difficulties appropriately on a 2D, simple, 
and a linear dynamics, namely the heat flow. The goal of  
the paper is to introduce how the data is obtained, how the 
external stimuli enter into the dynamics, and how the data set is 
processed so as to obtain a set of orthogonal basis, and finally, 
how the external stimuli is made explicit in an autonomous set 
o f  ODES. 

Modeling of systems displaying spatial continuum requires 
a careful consideration since the physical process under in- 
vestigation is an infinite dimensional one due to the spatial 
continuity. Efforts in understanding the behavior of such 
systems have particularly focused on the low dimensional 
models capturing the essential behavioral properties with a few 
Ordinary Differential Equations (ODEs). This has been done 
by using modal decompositions such as Proper Orthogonal 
Decomposition (POD) and Singular Value Decomposition 
(SVD). Although neither the decomposition techniques nor the 
infinite dimensionality are new issues in this field, obtaining 
a model having the boundary conditions as extemal inputs 
is a major problem in the POD and SVD methods. More 

explicitly, these approaches result in models where extemal 
control input appears in the dynamical equations implicitly, 
and this is not very useful for controller design. Another 
difficulty is the presence o f  modeling uncertainties, which 
stem from varying internal parameters or hypotheses that are 
not thoroughly valid. For the heat transport process, imprecise 
knowledge on thermal ditksivity parameter is a good example 
to study uncertainties. 

The use of decomposition techniques in modeling of spa- 
tially continuous systems has extensively been studied in the 
field o f  aerodynamic flow control problems, [1-4]. Since the 
dynamics of the process under investigation is governed by 
Navier-Stokes equations, obtaining closed form solutions are 
very difficult and the modeling studies particularly focus on the 
real timc observations from the process. For systems having 
two or more spatial dimensions, the POD technique has been 
utilized with the aid of snapshots method, [I-21. Altematively, 
for single dimensional processes, the same modeling procedure 
can be followed by exploiting the SVD technique. 

Procedurally, in both of  them, if the numerical data contains 
coherent modes, the expansion accurately describes the tem- 
poral modes and the spatial components distributing them over 
the physical domain of  the process. Furthermore, the orthogo- 
nality of  the basis functions, which describe the spatial proper- 
ties, helps in finding a set o f  ODEs synthesizing the temporal 
modes. Although the algorithmic part seems straightforward, 
the final form of the ODES depicts an autonomous system 
having no extemal input. At this point, several modifications 
are needed to separate the effect of boundary conditions, which 
constitute the inputs exciting the process. 2D heat transport 
problem is therefore a good candidate to study how modeling 
issues are addressed. 

A number of variations of this problem has been taken 
into consideration in former studies, [5-71. Atwell et al [S-61, 
have considered 2D heat transport problem with control input 
explicitly available in the Partial Differential Equation (PDE). 
The thermal diffusivity parameter has been taken as a known 
constant and several control strategies have been assessed with 
the modeling results of  POD approach. In [6], the design has 
been discussed from the computational point of  view. 

Another work focusing on ID heat transport problem re- 
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ports the design of time-optimal boundary control, [7]. It is 
emphasized in [7] that the tinie-optimal control has the bang- 
bang property, and the solution has been postulated by the 
techniques of Hilbert spaces. Rosch [8], views the character- 
ization of boundary condition as an identification problem, 
and presents an iterative approach to meet the conditions of 
optimality. 

Although the techniques of functional analysis suggest 
several solutions to the problem at hand [9], the presented 
technique here can be generalized to a variety of systems dis- 
playing arbitrarily complicated behavior. This fact is intimately 
related to the observation-based nature of the approach. 

The way this paper differs from what have been appeared in 
the literature is to demonstrate how a low-order model having 
an external control input is derived. In the sequel, the details 
will be presented in the following organization: The second 
section presents the POD technique and its relevance to the 
modeling strategy. In the third section, development of the 
reduced order model for the 2D beat flow is analyzed. The 
fourth section presents the results and the concluding remarks 
are given at the end of the paper. 

11. PROPER ORTHOGONAL DECOMPOSITION 
Consider the ensemblc Ui(z, y) i = 1 , 2 , .  . . , N .  Appar- 

ently, every element of this set corresponds to a snapshot 
observed from a process, say for example, the 2D heat 
equation ut(z;  y, 1)  : c2 (uZz(z, y, t )  t uY,,(z; y? t ) ) ,  where 
c is constant. 

The goal is to find an orthogonal basis set letting us to write 
the solution as 

A' 

u(z:y,t) = X%(t)d&>U)> (1) 
z = 1  

where at( t )  is the temporal part, and &(z, U) i s  the spatial 
part. It will later be clear that if the basis set {$i(z,y)}t*J=l is 
an orthogonal set, then the modeling task can exploit Galerkin 
projection technique. 

Step 1. Start calculating the N x iV correlation matrix L, the 
( i j ) 'h  entry of which is Lij  := (Ui ,Uj)n,  where (., .)n is the 
inner product operator defined over the spatial domain (0) of 
the process. 
Step 2. Find the eigenvectors (denoted by vi) and the associ- 
ated eigenvalues ( X i ) .  Sort them in a descending order in terms 
of the magnitudes of Xi. Note that every ut is an N x 1 vector 
satisfying $vi = k, here, for simplicity of the exposition we 
assume that the eigenvalues are distinct. 
Step 3. Construct the basis set by using 

Let us summarize the POD procedure. 

N 

d i h Y )  = CUtjU,(Z,Y), ( 2 )  
j-1 

where w i j  is the j t h  entry of the eigenvector wi,  and i = 
1 ,2 ,  ..., rank(L). It can be shown that ($,(z,y),$j(z,y))n = 
6, with 6, being the Kronecker delta function. 

Remark 1 .  Notice that the basis functions are admixtures 
of the snapshots. 
Step 4. Calculate the temporal coefficients. Taking the inner 
product of both sides of ( I )  with $i(z,y), the orthogonality 
lets us have 

adto) = ($J.r,Y),u(z,Y,to))n 

= ($ i (Z ,Y) :  Ut,)n, (3) 
Without loss of generality, an element of the ensemble 
{ U i ( % > y ) } z l  may be U(z,y,to). Therefore, to generate the 
temporal gain ( s ( t ) )  of tbe  spatial basis &(z,y), one would 
take the inner product with the elements of the ensemble with 
sampled forms of the basis functions. 

Remark 2. Notice that the following hold true: 

N M 

i=l i=l 

= Xk 

Apparently, the temporal coefficients satisfy orthogonality 
properties over t E {tl, tz,  . . . , t N }  

In the next section, we demonstrate how the boundary 
condition is transformed to an explicit control input in the 
ODES. 

111. REDUCED O R D E R  MODELING 

Consider the heat conduction problem over the spatial 
domain Cl := (z,y) E ( O , l ]  x [O , l ] .  Truncate the sum in 
( I )  after some certain integer, say M ,  and assume that the 
modes from M + 1 to w are reasonably small in magnitude 
such that we can write the following: 

M 

U ( Z , Y , t )  = Cni( t )$ i (s>Y).  (4) 
i= l  

The solution above must satisfy the PDE, i.e. we get 

2=1 ,=1 

where <,(z,y) = $ $ ( ~ , y ) , ~  t $2(z,y)yy. Clearly taking the 
inner product of both sides with &(r, y) yields 

M 

where k = 1: 2 , .  . . , M .  Apparently no matter what the 
boundary conditions, the above representation contains the 
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effect of them implicitly. To overcome this problem, denote the 
set of points, at which boundary excitations are independently 
suecified, bv 8R. The underlvinr idea in develouine the .~ . I  . -  

- dynamic model is the following fact: 

(&(z,Y);Ci(z,y))n = ( h ( z , ~ ) , C t ( ~ ; ~ ) ) a n  + 
( 4 k  (z, Y 1, c (2, Y) h\an I (7) 

which basically corresponds to the repartitioning of the domain 
by changing limits of a Riemann integral computed over a non- 
intersecting subdomains embodying the domain of the original 
integral when they are united. 

Define an := {(0 ,0)~(0 ,1) , (1~0)~(1 ,1)} .  Thismeans that 
the external stimuli enter from the comers of the domain. In 
other words, the dynamic input will have four inputs denoted 
by yoo,yo1,ylo and 711. Clearly, in this notation the first index 
stands for z and the second stands for y. 

Denote the solution observed when */oo(t)=goo(t) with other 
inputs are equal to zero as uoo(z7 y: t )  with goo(t)  being an 
arbitrarily chosen test signal. Perform the POD procedure to 
obtain a solution in the form of (4). Repeating the same 
procedure till every element of the set a R  is contained, one 
would end up with the following solution when each input 
assumes arbitrarily chosen values, 

p=o q=o i=l 

which is the result of the superposition principle. Note that for 
nonlinear PDEs, this expansion would not bc valid. 

Now assume that the system is excited only from ( x ;  y) = 
(0,O) entry. Since the solution in (4) must be satisfied also on 
8R, this lets us write the following, 

i=l  

where p and q assume values either zero or one. Notice that 
the manipulations in (9)-(11) are for the single excitation from 
(z, y)  = (0,O). Therefore if p = 0, q = 0, the expressions 
(10) and (I 1) become identical. However, other combinations 
o f p  and q stipulate that ypq(t) may have a nonzero spatial gain 
(See ( I t ) )  although the ypq(t) is identically equal to zero. 

Considering (7) in (6) and using the above equation for 
every p and q would result in the dynamical system corre- 
sponding to the described excitation configuration. 

where 

p=o q=o 

The model above can he written in the well known state 
space form, 

- koo(t) = AoOqoo(t) + Booy(t)  - 

(13) 

where y = ( 700 701 710 YII ) , and Biy = c2Cio(p, U) 
with i = 2p t q t 1. The row vector C(z, y)  is apparently the 
vector of 2D basis functions calculated at given points z and 
y and for given excitation conditions, i.e. 00 for this case. 

Clearly, the above model bas M states and four inputs. In 
order to obtain the full representation, the procedure described 
in (9)-(13) must be repeated for every ypq( t )  to obtain the 
individual components of (8). 

Remark 3. Considering (12) and (13), it is apparent how 
the dynamical model is affected from the uncertainties on the 
thermal diffusivity parameter e. 

Let U ( z , y l s )  := C {u(z,y,s)}, UPq(z,y;s) := L 
{P(z ,y , s )}  and rpq( s )  := L {ypp(S)} with C being 
the Laplace transform operator. In the view of the analysis 
presented, the total system can be expressed as follows 

no 
(z:Y,t) = COO(z>Y)cPo(t), 

T 

1 1  

where 
In a similar fashion, one should investigate the spa- 

{ ( O , l ) ,  ( l , O ) ,  (l,l)}. Performing this would simply let us 
tial gain associated with other inputs, i.e. (z,y) E 1 1  

generalize (10) as follows: 
Umn(z,y>s) = ~ l G ~ ( z , y , s ) T p q ( s ) .  (15) 

p=o q=o 

1275 



IV. MODELING RESULTS 

According to the described procedure, several tests have 
been done. The PDE has been solved by using Crank- 
Nicholson method (See [IO] for details), with a step size 
of 5 msec. The initial thermal distribution is taken as zero 
everywhere and the thermal diffusivity constant is set as c = 
0.4. In order to form the solution, a linear grid having N,  = 
Nu = 25 points in 2-direction and y-direction respectively. 
According to the above parameter values, a total of 201 
snapshots embody the entire numerical solution, among which 
a linearly sampled Ai = 21 snapshots have been used for 
the POD scheme. Although one may use the entire set of 
snapshots, it has been shown that a reasonably descriptive 
subset of them can he used. In the literature, this approach 
is called method of snapshots, which significantly reduce the 
computational intensity of the overall scheme, [I-21. Once 
the modes have been obtained, we truncated the solution at 
hf = 5,  which represents (in average) 

According to the above settings, the inner product seen in 
(6) is calculated as follows: 

f 

in which we calculate the derivatives numerically. 
The system has been stimulated from every comer, with 

one-at-a-time basis. For collecting data, we used several test 
signals given as 

g p 9 ( t )  = 0.1 t Pexp(-Gt) sin(8at) 
gp9( t )  = sin(2at) 
g,,(t) = 1 -exp(-6t) 

g*&) = 4' (1 7) 

where subscript p q  indicates the chosen comer. For each case. 
the basis surfaces change very slightly and this influences the 
content of the matrices in (13). Checking the eigenvalues of 
the matrix A is an indicator of the similarity between each 
case. This is illustrated in Figure 1, in which the eigenvalues 
form individual clusters. 

In order to construct the dynamic model, the matrices 
obtained for different test conditions at a chosen comer have 
been averaged. To compare the overall solution with the 
numerically obtained data, we choose the following boundary 
excitations, which are applied simultaneously: 

yoo(t) = sin(2at) 
yol ( t )  = -sin(3at) 
ylo( t )  = sgn(sin(2at)) 

y l l ( t )  = 1 - exp(-6t). (18) 

The results for this case are depicted in Figure 2. Every pair 
in this figure represent the numerical solution (on the left) and 

~ 
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Fig. I, Clusters of eigenvalues appear as  the procedure is repeated for 
different test conditions. A test signal is chosen and an input point is chosen 
to complete one experiment. The figure depicts 16 experiments and 80 data 
points. 

the reconstructed solution (on the right). The pairs in the first 
line stand f o r t  = 0.lsec. (on the lee) and t = O.2sec. (on the 
right) and the rest includes solutions sampled at the same rate 
till t = lsec. 

Fig. 2. A comparison of the solutions generated by the numerical solver and 
the low-order dynamic model. The frequency ranges of the test conditions 
and the validation are similar. 

It is clear from Figure 2 that the surfaces at every cell 
are reasonably similar to each other. This result confirms 
the analytical claims and validates the method described to 
separate the effect of control terms. 

Remark 4. It should be noted that the modes of the 
infinite dimensional system have been excited by a set of test 
signals (17), and the result has been validated on a similar 
set of boundary conditions (19). The answer to the immediate 
question "why" is as follows: The model is valid dominantly 
for the frequency range covered by the test signals. If one 
wants to cover a wide range of frequency spectrum, then this 
would first require smaller step size for the PDE solver and 
much longer time to obtain a representative set of snapshots. 



On the other hand, the POD procedure will filter out some 
of the high frequency content. The reader should notice that 
the underlying idea of the POD procedure is to reconstruct 
the solution from its samples (snapshots), however, a good 
reconstruction can be performed only when the solution is 
dominated by coherent modes, which implies relatively low 
frequency content of the entire solution. A good comparison 
is presented in Figure 4 for the following boundary conditions: 

roo(t) = sin(20rt) 
Tol(t) = sin(2rt)  
Tio(t) = sgn(sin(l4st)) 

n l ( t )  = -sin(30rt)> (19) 

in which the frequency range is increased approximately about 
ten times for all comers except rol(t), which is kept in the 
frequency range of the modeling stage so that the difference 
will be clear. Refemng to Figure 3, it is apparent that the 
evolution of the comer signals are so fast that the reduced order 
model cannot reconstruct the solution around them, however 
around the comer n o ( t ) ,  the reconstruction is unsurprisingly 
good. This result simply validates our remarks. 

Fig. 3. A comparison of  the solutions generated by the numerical solver and 
the low-order dynamic model. The frequency ranges of  the test conditions 
and the validation are not similar. 

Remark 5. The dissimilarity observed in the second case 
raises the following question: Does the percent energy de- 
scribed earlier depend upon the frequency content of the test 
signals? The answer is apparently yes. Basically, a model is 
valid in the frequency range of data that leads to the model. 
The degree of confidence decreases as the overlapping between 
the model derivation conditions and the operating conditions 
becomes dissimilar. Altematively, one can interpret this as 
follows: Fixing the number of modes (At) (or equivalently 
fixing the energy level) cannot lead to the reconstruction of 
the information hidden in the modes A4 + 1 to N .  

V. CONCLUSIONS 
I 

Many physical phenomena, such as areodynamic flows, flex- 
ible object dynamics, and heat transport have infinitely many 

dynamical modes describing the entire behavior when they are 
considered collectively. In this paper, the reduced order mod- 
eling of 2D heat equation is considered. The physical domain 
is a square plate, and the excitation enters into the system from 
the comers of the plate. The algorithmic approach has been 
shown to be capable of capturing the dynamically significant 
modes of the solution. Once the number of modes is decided, 
the procedure yields a set of autonomous ODEs. We present 
a method to separate the external stimuli from these ODEs. 
The described approach has been shown to be successful in 
terms of the similarity between the numerical solution and the 
solution based on the low-dimensional model. We observed 
that the widely accepted form of the realization performance, 
which is the percent energy captured is a frequency-variable 
quantity, and it does not constitute a globally valid measure of 
realization performance. As long as the data is a representative 
for the operating conditions, the results are highly promising in 
the sense of extending the modeling and separation techniques 
for more difficult and nonlinear cases, such as for aerodynamic 
flows, which constitute the ultimate goal of this research. 
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