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Abstract-Scalar optical diffraction between arbitrarily ori- 
ented planes for monochromatic waves is analyzed and a sim- 
ulator based on a discrete model is developed. The model is 
based directly on the Rayleigh-Sornmerfeld diffraction integral; 
there is no need for Fresnel and Fraunhofer approximations. 
Furthermore, the model permits to use of the FFT algorithm. 
The simulator results are satisfactory. 

1 .  INTRODUCTION 

Holography is a true three-dimensional visualization 
method. The method depends on duplication of information- 
carrying optical waves which come from a three dimensional 
environment in the absence of the original source. Therefore, 
an observer will see the same three-dimensional environment 
whether the observer looks at the light from the original or 
its duplicate. Therefore, all the optical properties of the three- 
dimensional environment can be displayed. 

Finding the scalar optical field over a plane is an important 
problem for years [3], [4], [ 5 ] ,  [7], [ l l ] ,  [12], [13]. Also, 
the bottleneck in digital holography is in computation of the 
underlying diffraction pattern due to an object. The diffrac- 
tion field can be calculated by using several well known 
methods like Fraunhofer, Fresnel, Rayleigh-Sommerfeld and 
Kirchoff diffraction integrals. However, the methods generated 
by Fresnel and Fraunhofer work properly when the spatial 
frequencies are much smaller than wave number [14]. The 
other two methods are time consuming because initial form of 
them can be implemented by using direct integration methods. 
Holography can be easily understood by using optical and 
mathematical principles [ 11, [2]. 

In this work, the scalar optical diffraction is obtained by 
using the plane wave spectrum approach [IO], [12]. The 
simulator has two parts. First part takes an image which is 
in raw format, and converts it to a complex data matrix. The 
obtained matrix is become our input field of which diffraction 
field will be calculated. An example of an input can be seen 
in figure 2. Second part calculates the diffraction pattern of 
the object on a predefined plane in the space. 

11. MATHEMATICAL MODEL 
The scalar diffraction theory for monochromatic coherent 

light is formulated not only in the spatial domain but also in 
the frequency domain [6]. In this work we deal with the latter 
case. Fourier analysis of the input field provides the complex 
amplitudes of the plane waves which propagate in different 

directions. We can represent the relation between a given field 
over two-dimensional plane, A( IC,, ICy), and three-dimensional 
field in space, $(z, y, z ) ,  as 

$(z, y, z )  = /A(IC,, / c , ) e j (kr"+kYy)  

dlc,dIC,. (1) e3 J k 2  - k r 2  - k V 2 z  

Moreover, we replace z = 0 into equation (I) ,  we obtain the 
field on a reference plane z = 0 and it is shown as 

f(z, y) $(z, y, 0 )  = / A ( & ,  ky)e3(k~s"+k~Y)dIC,dICy. (2) 

We observe from equation (2) that A(S,, ICy) is equal to the 
Fourier transform (FT) of the field on z = 0 plane. 

We define z = 0 plane as the input plane which is shown 
in figure 2. The input plane is spanned by 2 = (1,0,0) and 

= (0,1,0) unit vectors. The plane contains the diffraction 
field, which is called as the observation plane, is represented 
by 

2=RRZ+G (3) 

where R is a rotation matrix and 6 is the trans!ation vector 
in space. The observation plane is spanned by z' = R5 and 
y' = Ry vectors. Moving on input plane provides tracing 
on observation plane and it is shown in equation (3). By the 
substitution of equation (3) in equation (I), we obtain the 
diffraction field on the observation plane as 

H ( 2 ,  R, G)J(lc,, IC,')dkkdIC& (4) 

where = Rl? and IC' represents the propagation of the 
plane waves according to the observation plane. The function 
J(k , ,  I C z ' )  is the Jacobian and equals to $ [lo]. Please note 
that IC; is a function of IC; and IC&. Since i h 2  + ICh2 + l c L 2  = 
9. Moreover, ICz  is function of IC;, IC' and IC; through the 
relationship = RQ. The function H(IC', R, G) provides the 
kernel of the system and represented as 

y, 

H ( 2 ,  R, g)  = ejcT(RTg). (5) 
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The relation between f ( x ,  y) and g(z, y) can be obtained from 
equations (2) and (4) as 

H ( p , R , G ) k . )  (6)  

where F(k,, ky) is the FT of the f ( z ,  y). Please note that 47r2 
and &terms cancel each other and therefore not necessarily 
needed for the implementation of the algorithm. 

111. DISCRETE MODEL 
Discrete model of the system, which represents the scalar 

optical diffraction, is obtained by sampling equations (2) 
and (4). Since sampling a signal in space domain causes 
replications in its frequency domain representation, and vice 
versa, we deal only with periodic inputs and output. The 
implemented simulator displays only one period of the input 
and the output. By sampling the space and the frequency 
domains, we obtain 

x = Xn,, y = Xm,,  

(7) 

where X is the sampling period. N shows the size of the 
frame we deal with. The discrete variables n,, m,, n; and 
m; are integer numbers in the range [-N/2, N/2) [12], [13]. 
The discrete version of kk is 

where P is equal to y. 
The variables IC; and kh are uniformly sampled. Hence the 

angle between the consecutive plane wave components, as 
represented 9 the corresponding k;', which is the discrete 
version of k', becomes larger as the wave vector of the 
plane wave moves away from the observation-plane normal. 
Therefore there is a non-uniform sampling in k domain. This 
nonuniform sampling affects the weights of the samples in 
such a way to cancel the Jacobian in equation (4). Therefore, 
the Jacobian in equation (4) vanishes in the discrete version. 

The discrete simulation of the model is performed by the 
steps indicated below: 

An N x N  input array is given by the user (An example is 
shown in figure 2). This array represents the samples of a peri- 
odic f(z, y) which are taken in the range (x,y)e[-, y). 
Then, an N x N  array fD(n,,m,) is created which corre- 
sponds to samples in the range (2, y)e[O, N X )  of f (x, y) by 
periodically shifting the given input, accordingly. After that 

where (n;,m;) is in the range [F, g) and u(n;,m;) and 
v(n;, m;) are computed as 

u(n;, m;) = (n; + S ) T 1 1  + (m'f + t ) m  

+J,P - (nlf + s>2 - (m'f + t ) 2 r 2 3  (1 1) 

where s , t  are chosen to be equal to ~ 3 1 0  and r32P, respec- 
tively. This operation is needed to compute A(Rk')  given in 
equation (4). The rotation matrix is defined as 

r11 T12 r13 

R= (;;; ;;; %) (12) 

P is a function obtained from A ~ ( n f ,  m f )  by bilinear in- 
terpolation. The nearest 4 pixels to the location indicated by 
u(n;, mi) ,  w(n;, m;) are used in the bilinear interpolation 

The function f ( z ,  y) usually represents a base-band signal. 
Therefore, the frequency components of A(k,, ky)  are con- 
centrated around the origin. The transformation k' = R-lrc' 

yields conversion of the concentration in equation (4) from 
around ( k z , k y )  = (0,O) to around ( k ; , kh )  = ( T ~ I P , T ~ ~ P ) .  
Therefore, the signal in equation (4) whose inverse FT (IFT) 
is going to be taken, is usually a band-pass signal. To avoid 
unnecessarily large discrete FT (DFT) sizes, the band-pass 
signal is converted to a base-band signal by introducing the s 
and t in equation (1 1) during the dmrete computations. Please 
note that u(n;, m;) and v(n' m' ) are no longer integers for 
integer n;, m;. Then H D ( ~ ' ,  R, b )  is defined which is the 
discrete version of the kernel in equation ( 5 )  and it is given 
as 

(1  3) 

f '  f ,  

2 r  k>'. 6 ~ ~ ( 2 ,  R, b'> = e m  

- T  
where k~ 
discrete form of equation (4) is obtained as 

equals to ( n f ,  m f ,  Jp2 - n f 2  - mf2) .  Thus the 

N - 1  

g D ( n S , m S )  ' A1,D(n;7m)) 
n;?m;=O 

(14) ,j % (n,n;+m,m;)H D(P, R, G). 

The function gg(n,,m,) is the discrete form of 
+(R(z, y, O ) T  + b ) .  Consequently, the relation between 
f ~ ( n , ,  m,) and gg(n,, m,) is given as 

1 
N2 

gg(ns,  m,) = --DFT-l{A1,~(n;, m;)Ho(G', R, G)} .  
(15) 

Please note that N2 in equation (9) and & in the above 
equation cancels each other- and therefore they are not needed 
during the implementation. 

IV. SIMULATION RESULTS 
A computer simulation was carried out, and the algorithm 

used can be summarized as follows. A two-dimensional input 
array is generated or given by the user. The gray levels of 

(9) 

function 

(10) 
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the pixels represent the field strength. Due to discretization, 
the input array represents a rectangularly periodic optical 
field with a period N X .  Then Al,~(n;,rn;) is calculated 
as described in equation (10). After that, the discrete kernel 
of the system is obtained by using equation (1 3). Inverse DFT 
(IDFT) gives the scalar optical field on determined observation 
plane and we display its magnitude. 

The illustration of the implemented scenario is given in 
figure 1. In the simulations, the input is a 256 by 256 matrix. 
Therefore, N equals to 256. Computations are carried out using 
double precision arithmetic (4 bytes for the real and four bytes 
for imaginary parts of each pixel). Each pixel of the field is 
represented by 8 bytes. The variables of implemented model 
depend on A. Therefore, changing X causes some changes in 
physical values of the other parameters. In this simulation, 
it is assumed that the wavelength is taken as 633nm. In 
the given simulations the sampling period is cho_sen as 2X, 
therefore, ,O becomes 512. The translation vector b is chosen 
as (0,0,0.166) meters. The presented results in the figures 
correspond to 0, 15, 30, 45 and 60 degrees rotation around 
the y-axis. Moreover to improve the visibility of the peripheral 
fringes, we chose to display d m - .  

V. CONCLUSION 

Plane wave spectrum approach provides a fast numerical 
method for Rayleigh-Sommerfeld diffraction integral; there 
is no need for Fresnel and Fraunhofer approximations. The 
presented model and the associated simulations are for the 
monochromatic case. In our simulations, the direction of prop- 
agation is limited to be the along the positive z-direction; this 
fits well for most of the applications. If desired, this restriction 
can be easily removed. As usual in digital simulations, the 
results correspond to periodic input structures; in order to 
minimize the effect of the periodicity, larger DFT sizes which 
can accommodate the diverging diffraction pattern sizes are 
recommended. The simulator results are satisfactory. 
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Fig. 4. 
which has 15 degrees rotation around y-axis 
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Fig. 5. 
which has 30 degrees rotation around y-axis 
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Fig. 6. 
which has 45 degrees rotation around y-axis 

Square root of magnitude of diffracted field on observation plane 
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Fig. 7. 
which has 60 degrees rotation around y-axis 

Square root of magnitude of diffracted field on observation plane 
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