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ABSTRACT

Compressive sensing (CS) idea enables the reconstruction of
a sparse signal from a small set of measurements. CS ap-
proach has applications in many practical areas. One of the
areas is radar systems. In this article, the radar ambiguity
function is denoised within the CS framework. A new de-
noising method on the projection onto the epigraph set of the
convex function is also developed for this purpose. This ap-
proach is compared to the other CS reconstruction algorithms.
Experimental results are presented'.

Index Terms— Compressive Sensing, Ambiguity Func-
tion, Radar Signal Processing, Denoising.

1. INTRODUCTION

Compressive Sensing (CS) is a relatively recent approach
used in various signal processing applications [1], [2], [3].
In [4], CS is applied to pulse compression, radar imaging
and DoA estimation. One of the application areas is radar
target detection using the ambiguity function [5]. Radar sig-
nal processing is suitable for CS based denoising because
of inherently sparse nature of signals in range-Doppler do-
main [6], [7]. In many practical cases, the ambiguity function
turns out to be very noisy. In this paper, the radar ambiguity
function is denoised by using the CS framework. In Section
2, the CS framework is reviewed. In Section 3, the denoising
solution is presented. In Section 4, simulation examples are
presented.

2. COMPRESSIVE SENSING

CS framework is briefly reviewed below. Suppose that we
have a one-dimensional vector v with length N. Any vector
in N x 1 dimensions can be constructed using the a basis
matrix, ¥ = [¢1|¢2]...]1)n]. The vector v can be formed as
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follows [8]:

N

V= Z Si'(/)i or

i=1

v = Us. (D)

If it is enough to represent the vector v with K << N ba-
sis vectors, the signal is called K-sparse. In this case, mea-
surements obtained by random projections can be sufficient
to reconstruct the original signal.

y = ov, 2

where ® is a M x N measurement matrix containing zero
mean random numbers [2] and y represents the measure-
ments. As a result, K-sparse vector y is expressed as follows:

y=06s=0.Us, 3)

where © = ®.V is a matrix of size M x N. The vector v can
be reconstructed using vector y provided that K < M < N.
This problem can be solved as follows.

S=min ||s|1 suchthat y= Os. 4)
Numerical algorithms were developed for this optimization
problem. In addition, many other related optimization tech-
niques are posed to solve this problem. It is shown that min-
imizing the ¢; norm forces small amplitude coefficients of s
vector to zero and it leads to a sparse solution. This paper
uses the CS framework to denoise the Ambiguity Function
(AF) used in range-Doppler radar target detection.

Transform domain noise reduction and filtering are widely
used in practice. In this article, the AF is denoised using the
measurement vector, y. During the reconstruction process,
small amplitude AF values are forced to zero. As a result,
denoising is achieved. This leads to better target detection
results in radar signal processing.

3. AMBIGUITY FUNCTION AND RANGE-DOPPLER
TARGET DETECTION

Ambiguity function (AF) is generally used to determine sim-
ilarities between two signals [9]. In radar signal processing,



ambiguity function is a two-dimensional equation defined in
range-Doppler plane [10]. The position and velocity of targets
in the environment can be determined from this equation. The
AF is defined as follows:
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where Sgyrp 1] and ssyef[i — [] represent surveillance and ref-
erence signals, respectively. The index [ is the range axis and
p represents the Doppler axis. Let b;[i] = ssuro (]85, [0 — 1]
When b;[i] is inserted to AF, we obtain the following equa-
tion:

Jj2mip
Lpl =D bifile™ " ", (6)
0
for 1=0,1,...L, p=0,1,...N—1.

Ambiguity Function can be calculated by computing the FT
of b;[¢] using the FFT algorithm. Targets form peaks in 3-D
range-Doppler map as shown in Fig. 1. In Figures 2 and
3, Doppler frequencies and bistatic ranges of 6 targets are
shown. In this example, the sampling frequency, fs and in-
tegration time are 2 x 10° Hz and 1 sec., respectively. As
a result, the length of surveillance and reference signal is
2 x 10°. This discrete-time signal s decimated in time and
the length of signals is reduced to N = 4096. After this
point, Doppler frequency axis is focused between —500 and
500 Hz to show targets clearly. In Figures 1-3, the L = 150
and p = —500, ..., 500 are shown.

The AF is a sparse function of [ and p. For instance, there
are 6 targets with different velocities in Fig. 1. There is no
other important values other than these 6 range-Doppler target
locations. Because of this reason, AF has an ideal structure
for compressive sensing based denoising. Suppose that our
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Fig. 1: 3-D range-Doppler frequency graph obtained using AF
computed using FFT as in Equation 5.

measurement matrix, © is an M x N matrix. In this case, the
compressed measurements can be calculated for each row of
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Fig. 2: Doppler frequency graph obtained using AF computed
using FFT as in Equation 5.
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Fig. 3: Bistatic range graph obtained using AF computed us-
ing FFT as in Equation 5.

the AF as follows:

y, =06, @)
for 1=0,1,..., L.

where the vector, £, is the I-th row of (I, p) and its size is
N = 4096, which is also the size of FFT in (5) and (6); the
vector y, is of size M, which is much smaller than N because
the measurement matrix © is an M x N. In this article, M is
approximately selected as M = 400 = 0.1 x NV and the CS
problem is posed as reconstruction of £[l, p] from y, vectors.
Since sparsity assumption is used, denoising is also achieved
during the CS reconstruction.

In this paper, various optimization algorithms are used
for denoising. These are Basis Pursuit (BP) [11], Orthog-
onal Matching Pursuit (OMP) [12], Compressive Sampling
Matched Pursuit (CoSAMP) [13], and Projections onto Epi-
graph Set of a Convex cost function (PES-¢;) based denois-
ing [14].

3.1. Basis Pursuit (BP)

Basis Pursuit (BP) tries to find signal representations with
convex optimization. Each measurement vector, y, is used
in the following minimization problem:

min ||y, — 0& I3 +X || & |1, (8)

where ) is the regularization parameter determining the spar-
sity level of the solution. The above CS reconstruction prob-



lem is solved for each row of the AF function! =0, 1, ..., L =
150.

3.2. Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP) is a greedy algorithm
that also determines a sparse solution to the CS problem. It is
an extension of the Matching Pursuit (MP) algorithm. Ad-
vantages of this algorithm are its speed and computational
efficiency. It is also used at the output of the matched filter
to find the strongest target [15]. To reconstruct the vector &;,
this algorithm first tries to find which columns of © contribut-
ing most to the observation vector y;. During each iteration,
columns of © are picked and correlated with the remaining
parts of y;. Contribution of y; is subtracted and iterated on
the residual. After M iterations, this algorithm finds a set of
columns from the basis set representing the vector &;.

3.3. Compressive Sampling Matched Pursuit (CoSAMP)

Compressive Sampling Matched Pursuit (CoSAMP) is an it-
erative greedy algorithm that recovers a compressible signal
from its noisy samples. It is efficient for same problems. It
requires a measurement vector ©, observation matrix y;, a
sample of noisy vectors &; and a stopping criterion. The fol-
lowing Algorithm 1 is implemented to solve the CS problem:

Algorithm 1 CoSAMP

1: Inputs:
0,y;. &, k, stopping criterion

2: Initialize:

r=y,& =0k=0,T=0
While: not converged
Proxy: v = O*r
Identify: Q = Sp(v,2k)
Merge: T'=QUTI
Update: € — argming ||y, — 06|
r=Q= SQ(ﬁl,%)

7T = Pré,
10: =y, — Q&
1mn: k=k+1
12: End while:
13: Output: ¢, = Ef

D A A

3.4. Projections Onto Epigraph Set Of A Convex Cost
Function (PES-/;)

Projections Onto Epigraph Set Of A Convex Cost Function
(PES-/7) is a new signal processing framework described in
[16,17]. In this new denoising method, each row of the mag-
nitude of AF data: v;[p] = |£[l,p]] is first filtered by a high-
pass filter with cut-off 7/4 (normalized angular frequency)
and subtracted from the original data producing a low-pass

filtered version v;,,,[p]. Let the high-pass filtered version
be vpign[p]. The signal vpgn[p] is projected onto the epi-
graph set of /;-norm function. The output of the projec-
tion operation v, [p] is combined with the low-pass signal
|viow|[l, p]| to obtain the denoised version of |£[l, p]| as dis-
cussed in [18-20]. This denoising method takes advantage of
the sparse nature of data and it does not require any measure-
ment matrix. The block diagram of the denoising structure is
shown in Figure 4.

Vi [p] N Viow [p] fden[l' P]

+v
20

Vout [p]

PES-1,

Fig. 4: The block diagram of PES-/; algorithm.

4. EXPERIMENTAL RESULTS

In this section, simulation examples using BP, OMP, CoOSAMP,
and PES-/; are presented and they are compared to each
other. Reference and surveillance stereo FM signals are cre-
ated for passive radar scenario and it contains 6 targets as
summarized in Table 1. In radar signal processing, surveil-
lance and reference signals are first passed through an LMS
adaptive filter to suppress the clutters. Range-Doppler map is
obtained after LMS filtering in all cases. The M x N mea-

Table 1: System Scenario

Target 1 | Target2 | Target2 | Target2 | Target2 | Target 6

Bistatic Range(Km) 20,25 60 60 99,75 110,25 129,75
Doppler Frequency(Hz) 150 -250 50 300 -150 -300
SNR(dB) 4,1 -3.8 -20,8 -21,1 -21,6 -22,1

surement matrix © is constructed from randomly weighted
Fourier coefficients in all cases as discussed in [2]. In all the
examples, the N = 4096 and M = 400, respectively.

size. For all the reconstruction methods, randomly
weighted Fourier coefficients are used because the mea-
surement matrix contains random numbers. In general, signal
length and length of the compressed data are N = 4096 and
M = 400, respectively. This means that a vector of size 4096
is represented by 400 and this vector is sufficient to represent
each row of each AF data.

In Figure 5 (6, 7 and 8), the range-Doppler map for BP
(OMP, CoSAMP and PES-{;) methods are shown, respec-
tively. Generally, targets with higher SNR at 150 and —250
Hz are clearly detected for all of cases, but low SNR targets
are not visible in Figure 5, 6 and 7. PES-/¢; algorithm is the
only method that can detect all targets shown in Figure 8. In
Figure 9, the receiver operating characteristics (ROC) curves
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Fig. 5: Range-Doppler map for BP algorithm.
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Fig. 6: Range-Doppler map for OMP algorithm.
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Fig. 7: Range-Doppler map for CoSAMP algorithm.

for all the methods are shown. The ROC curve is plotted by
using the Constant False Alarm Rate (CFAR) algorithm with
different thresholds. The parameters of the CFAR algorithm
are training cell size=10, guard cell size=10 and the probabil-
ity false alarm Pfa=0.1. As can be seen from Figure 9, PES-
{1 outperforms other reconstruction algorithms. In Figure 9,
FFT based method computed using Equation 5 and 6 denotes
the observed noisy data shown in Figure 1. In addition, an-
other set of measures used in denoising is the PSNR and SNR.
PSNR and SNR values are calculated by using range-Doppler
map and presented in Table 2. As shown in Table 2, PES-¢;
has higher PSNR and SNR values with 48,71 dB and 9, 16
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Fig. 8: Range-Doppler map for PES-¢; algorithm.

Table 2: PSNR and SNR values of reconstruction methods.

PSNR (dB) | SNR (dB)
CoSAMP 48,65 8,93
PES-/, 48,71 9,16
OMP 4227 237
BP 44,83 0,96
FFT 43,54 20,79

dB, respectively. Some algorithms, such as OM P have even
less PSNR and SNR values than FFT method.
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Fig. 9: Receiver operating characteristics (ROC) curve with
different thresholds.

5. CONCLUSION

In this paper, radar ambiguity function used in a passive
bistatic radar scenario is denoised using various CS recon-
struction algorithms (BP, OMP, CoOSAMP and PES-/;). It is
experimentally observed that CS based denoising removes
noise and helps the detection of process of targets. The most
successful denoising results are obtained using the PES-/;
method.
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