
Distributed Construction and Maintenance of
Bandwidth-Efficient Bluetooth Scatternets

Metin Tekkalmaz, Hasan Sözer, İbrahim Körpeoğlu
Department of Computer Engineering

Bilkent University, Ankara, Turkey
{metint, hsozer, korpe}@cs.bilkent.edu.tr

Abstract— Bluetooth networks can be constructed as piconets
or scatternets depending on the number of nodes in the network.
Although piconet construction is a well-defined process specified
in Bluetooth standards, scatternet construction policies and
algorithms are not well specified. Among many solution proposals
for this problem, only a few of them focus on efficient usage of
bandwidth in the resulting scatternets. In this paper, we propose
a distributed algorithm for scatternet construction problem,
that dynamically constructs and maintains a scatternet based
on estimated traffic flow rates between nodes. The algorithm
is adaptive to changes and maintains a constructed scatternet
for bandwidth-efficiency when nodes come and go or when
traffic flow rates change. Based on simulations, the paper also
presents the improvements in bandwidth-efficiency provided by
the proposed algorithm.

I. INTRODUCTION

Bluetooth [1] is a short range wireless RF technology
designed initially for cable replacement at indoor places, but
also supports usage scenarios for personal area or local area
networking. Its low cost, low power consumption and ad-hoc
connectivity features make it a good wireless connectivity
choice for mobile devices due to their anytime-anywhere
connection requirement and limited battery power.

Bluetooth devices are able to form small networks, which
are called piconets, with up to eight nodes. A piconet consists
of a master node and one or more slave nodes. The scheduling
of packets into the common FHSS radio channel in a piconet
is coordinated by the master node via a polling based TDMA
scheme. No direct communication between any two slave
nodes is allowed. Data traffic among slave nodes has to go
through the master node.

Bluetooth standards also specify some set of mechanisms
to construct larger networks called scatternets. A scatternet is
actually nothing but a network consisting of multiple piconets
with common nodes between them, called bridges, to forward
traffic between those piconets. Since all members of a piconet
follows the same pseudorandom hopping sequence over some
set of predefined RF channels specified in Bluetooth standards,
and since each piconet has a different hopping sequence,
a bridge node follows the hopping sequence of different
piconets, which it belongs to, at different times.

Although piconet construction is a well-defined process de-
scribed in current Bluetooth standards, scatternet construction

This work is supported by The Scientific and Research Council of Turkey
(TÜBİTAK), grant number 103E014.

algorithms and policies are not specified in detail. Therefore,
this is an open research area and many methods have been
proposed so far for scatternet construction problem. Once
the scatternet is constructed, maintaining it in case of new
node arrivals and node departures is another issue, which
is not addressed much in the literature. Additionally, despite
numerous works on scatternet construction, there is only a few
studies ([2], [3] and [4]) that focus on constructing a scatternet
with the aim of having the bandwidth capacity of the resulting
scatternet utilized as efficiently as possible considering the
traffic demands of nodes. These studies all propose static (i.e.
does not handle new node arrivals and node departures) and
centralized solutions.

In this paper, we provide an algorithm that dynamically
constructs a scatternet and concurrently modifies it to make it
more bandwidth-efficient. In order to reduce the traffic load on
a scatternet and thereby effectively utilize the capacity of the
scatternet, our approach is based on reducing the path lengths
between highly communicating nodes as in [4]. Different
from [4], our algorithm works in a distributed manner with no
central coordination and without requiring the availability of
global topology and traffic demand information. Furthermore,
it is dynamic (i.e. new node arrivals and node departures are
handled appropriately), and it can adapt to changes in the
number of traffic flows and their rates, consequently preserve
bandwidth-efficiency. Moreover, messaging overhead imposed
by the algorithm is kept as low as possible.

The remainder of this paper is organized as follows. In
the next section, related previous studies are summarized. In
Section III, scatternet construction algorithm is described. In
Section IV, evaluation criteria for bandwidth efficiency are
explained and simulation results, based on these criteria, are
presented. Finally, some future work issues are discussed and
the paper is concluded in Section V.

II. RELATED WORK

There have been many solution proposals for Bluetooth
scatternet formation problem. Most of these proposals focus
on the efficiency of the scatternet formation algorithm, consid-
ering the duration of the construction process and number of
messages exchanged during the construction as it is the case
in [5], [6] and [7]. Some of them also apply heuristics in order
to make the constructed scatternet efficient in terms of some
metrics. One such heuristic that is followed by some studies

3223
0-7803-8938-7/05/$20.00 (C) 2005 IEEE

is to keep the number of piconets as small as possible in the
resulting scatternet with the goal of decreasing the amount of
inter-piconet traffic and interference. There exist other studies,
which focus on different aspects of the problem. In [8] and [9],
for instance, tree-shaped topologies are formed for the ease of
routing. Some studies like [10], on the other hand, aim to form
fault-tolerant topologies by means of constructing alternative
paths between nodes.

Although various proposals have been made to form scat-
ternets with various objectives, algorithms that favor efficient
usage of bandwidth are not widely studied. In [11], as one
of the earliest studies, traffic patterns among the piconet
members is taken into consideration while selecting the master
of the piconet. Some studies on constructing efficient scatternet
topologies exist also: [2], [3] and [4]. All these three proposals
are single-hop, centralized, and static solutions. [2] proposes
a graph theoretical solution which uses 1-factors to construct
a scatternet. [3] approaches to the problem as a min-max
optimization. [4], on the other hand, uses a set of heuristics to
designate the locations and the roles of the nodes, assuming
that the traffic flow information is known a priori.

Along with the scatternet construction proposals considering
the relation between topology and efficiency, there are studies
that try to reveal the relation between them such as [12],
[13] and [14]. [13] applies an analytical approach where [14]
tries to establish a mathematical background to determine the
relations between the topology and network capacity. On the
other hand, [12] applies a statistical approach in order to
investigate the effects of topology on performance.

III. THE CONSTRUCTION ALGORITHM

Two concurrently executed main procedures constituting
the algorithm are Maintenance and Link Establishment proce-
dures. The Maintenance procedure maintains the bandwidth-
efficiency of a scatternet by modifying a given topology. On
the other hand, the Link Establishment procedure handles
new connections and constructs a base topology that the
Maintenance procedure can work on.

The Maintenance procedure constantly collects traffic flow
information and runs a set of operations based on this informa-
tion when significant changes in traffic patterns are observed.
These operations are performed in order to modify the scat-
ternet topology so that the node pairs whose communication
demands between each other are relatively higher are placed
closer to each other in the scatternet.

The Maintenance procedure depends on some assumptions.
The first assumption is that all the nodes, which are going to
be part of the scatternet, are in the communication range of
each other. Another assumption is that the topology which the
Maintenance procedure works on can only contain slave/slave
bridges, where a slave/slave bridge connects at most two
piconets together. The topology cannot contain any other type
of bridge, such as master/slave bridge. The Link Establishment
procedure takes these restrictions into account, while establish-
ing new links. The Maintenance procedure also preserves these
properties. The restrictions on the properties of the topology

can be eliminated with slight modifications on the operations
of the Maintenance procedure. However, they are preferred
to exist for the efficiency of the resulting scatternet topology.
As studied in [15], master/slave bridges constitute a burden
for the load balancing and simultaneous communication in
different piconets. When a bridge master node switches to be
a slave, all its slaves become stalled and their resources are
wasted. On the other hand, switching time of bridges cannot
be underestimated and sharing a bridge’s time for more than
two piconets would make that bridge a bottleneck. We also
assume that the routing protocol that is run over the scatternet
uses shortest paths between any two communicating nodes.
The proposed algorithm can still work with a routing protocol
that does not satisfy this condition, but such a routing protocol
contradicts with the basic approach of the algorithm and cost
metrics used for evaluation.

The method to estimate the flow patterns is explained in the
next section. Section III-B explains how the operations use the
traffic flow information, once it is acquired and Section III-C
describes how the operations are combined to construct the
Maintenance procedure. Section III-D provides the details of
Link Establishment procedure.

A. Estimating the Traffic Patterns

Since the scatternet topology is modified according to the
communication demands between nodes, traffic flow patterns
must be estimated. There exist three types of traffic in a piconet
about which information is collected:

• Intra-piconet: Traffic between members of the piconet
(i.e. master-slave and slave-slave communication).

• Incoming/Outgoing: Traffic between members of the
piconet and neighboring piconets.

• Relayed: Traffic forwarded to a neighboring piconet,
which is received from another neighboring piconet.

Fig. 1. A sample piconet on which traffic data is gathered.

Consider the piconet shown in Figure 1. It consists of a total
of six members: A master node M ; two slave/slave bridges,
S0 and S2, connected to neighboring piconets P0 and P1,
respectively; and three slave nodes, S1, S3 and S4. For such a
piconet, a traffic table, as illustrated in Figure 2, is constructed
and maintained at the master node M .

Each cell in this table represents the amount of traffic flow
rate observed between the entities that match the correspond-
ing row and column. As indicated with the shaded cells in
the figure, half of the table is used, since we are interested in
sum of two one-way traffic demands between any two nodes.

3224

Fig. 2. Traffic table that is maintained at the master node of a piconet.

Also, the three types of traffic that are previously introduced
are indicated with different shadings.

Traffic flow inside a piconet passes through the master node
and therefore, almost all information required to generate the
traffic table is available without extra messaging. Information
exchange is only needed for traffic flow between bridge nodes
and corresponding neighboring piconets. In the case shown in
Figure 1, for instance, S0 and S2 should send traffic flow
information between themselves and piconets P0 and P1,
respectively, to the master node M .

The rate of traffic flow may change rapidly, which would
lead to constant alteration of the scatternet topology. In order
to prevent that, a discrete-time aging method shown in Equa-
tion 1 can be used while collecting traffic data. This method
smoothly integrates changes in the instantaneous traffic rate to
the average traffic rate, and the effect of instantaneous traffic
rate to the average traffic rate can be adjusted by varying the
α parameter between 0 and 1.

avgRate(t) = α×avgRate(t−1)+(1−α)×instRate(t) (1)

Please note that, as new nodes join or existing nodes leave,
the structure of the table should be changed. When a new node
joins or an existing slave connects to another master resulting
a new neighboring piconet, corresponding rows and columns
should be added to the traffic table, after which monitoring
related to the new entries begins. Similarly, when a node
leaves the piconet or one of the bridges looses its connection
to its other master, corresponding rows and columns should
be deleted from the table.

B. Operations

The Maintenance procedure is composed of a set of opera-
tions, which are explained in subsequent sections.

1) Master/Bridge Reassignment: This operation reassigns
master and bridge roles to the members of a piconet so that
the cost function introduced in Equation 2 is minimized. In the
equations, n is the number of slaves in the piconet (including
the bridges), and m is the number of piconets around the
piconet of interest.

Cp = Cintra−p + Cinter−p (2)

Cintra−p =
n−1∑

i=0

TSiM +
n−1∑

i=0

n−1∑

j=i+1

2 × TSiSj
(3)

Cinter−p =
m−1∑

i=0

TPiM +
m−1∑

i=0

n−1∑

j=0∧
Sj �=bridgetoPi

2 × TPiSj
(4)

The cost function has two components: cost of intra-piconet
traffic (Cintra−p) and cost of inter-piconet traffic (Cinter−p).
T represents the traffic table, while subscripts identify row
and column indices. In order to calculate the cost, traffic flow
rates between communicating entities multiplied by the length
of corresponding communication paths are summed up. Since,
all traffic flow passes through the master node, traffic flow rates
of slave/slave and slave/piconet communication are multiplied
by two. Since, there is no cost of communication incurred on
the piconet of interest for traffic flowing between a neighboring
piconet and the corresponding bridge node (bridgetoP), such
traffic amounts are excluded in the calculation of Cinter−p.
The cost of relayed traffic is not affected by the selection
of different master and bridge nodes. Hence, it is also not
included in the cost function.

Although this operation rearranges roles inside a piconet,
it has a global effect as illustrated in Figure 3. Suppose that
nodes labeled as A and B in the figure communicate heavily
with each other. Master node of P0 will assign node A as the
bridge node for P1, since cost function will be minimized in
this way because of high traffic flow rate between node A and
piconet P1. Afterwards, master node of P1 will notice a high
traffic flow rate between the new bridge node A and piconet
P2. In result of the Master/Bridge Reassignment, node A will
now be given role as the bridge node between piconets P1

and P2. After node A becomes a member of piconet P2 and
master node of P2 executes the Master/Bridge Reassignment,
A will be the new master node in piconet P2, and the length
of the communication path between nodes A and B will be
reduced to one.

Fig. 3. Global effect of Master/Bridge Reassignment

This is just a sample scenario and it might have been the
case that B approaches to A, or they could have met at piconet
P1 depending on the order of execution of the Master/Bridge
Reassignment operation by the master nodes. At the end, how-
ever, A and B will be closer to each other in the scatternet as a
result of successive executions of Master/Bridge Reassignment
operation in different piconets.

2) Piconet Division: This operation splits a piconet into
two provided that the number of slaves of the piconet is
at least two more than the number of neighboring piconets
of that piconet. Such a constraint is necessary because as a

3225

result of the operation, there will be a need for a node to
be the master in the offspring piconet (number of piconets
increased from one to two) and a need for a node to be the
bridge to connect the two piconets. Other than these, there
must be enough number of slave nodes to communicate with
neighboring piconets. In Figure 4, a piconet is split into two
piconets.

(a)

(b)

Fig. 4. Piconet Division operation

Similar to Master/Bridge Reassignment, in Piconet Divi-
sion, for all possible role assignment configurations in a candi-
date resulting topology, the value of cost function is calculated
and the configuration minimizing the cost is selected. Cost
function in Piconet Division is similar to equations 3 and 4
in the sense that it sums up the end-to-end traffic flow rates
between node pairs multiplied by the corresponding commu-
nication path lengths for all such pairs. However, resulting
topology of Piconet Division may have either one-, two-, three-
or four-hop paths, whereas hop distances are either one or two
in Master/Bridge Reassignment.

3) Slave Transfer: This operation transfers a slave node of a
piconet to a neighboring piconet if it is beneficial to do so and
if the neighboring piconet can accept it. In order to determine
whether a transfer of a slave is beneficial or not, first, gain and
cost of the transfer have to be computed. Equations 5 and 6
shows how the gain, GST , and cost, CST , of a slave transfer
is calculated. In the equations, n denotes the number of slave
nodes in the piconet and m denotes the number of neighboring
piconets of that piconet.

GST = TSsPp
(5)

CST = TSsM +
m−1∑

i=0∧
i�=p

TSsPi
+

n−1∑

j=0∧
j �=s∧

j �=bridgetop

TSsSj
(6)

The gain and cost of transfer is calculated for each non-
bridge slave node of the piconet of interest, which we denote
as s, and for each neighboring piconet that has less than eight

members, which we denote as p. The gain, GST , is the traffic
flow rate between s and p. The cost of transferring a slave,
CST , is the summation of traffic flow rates between the slave
to be transferred and

• master node (of the piconet the slave belongs to before
the transfer),

• neighboring piconets other than the candidate piconet,
• other slave nodes except the bridge node connected to the

candidate piconet, which we denote as bridgetop.
In fact, GST and CST should be multiplied by two, because
transfer of a slave node increments or decrements routing paths
by two hops. Since this is the case for both cost and gain
however, they are omitted.

Transfer of s to a p for which GST − CST is positive, is
marked as a beneficial transfer. The greater this value is, the
more the transfer is beneficial. After determination of benefi-
cial transfers, each transfer is performed one by one starting
from the most beneficial one down to the least beneficial one. It
might be the case that a transfer cannot be performed because
p happens to have already eight members. Such cases may
occur when beneficial transfers with common p exist. In these
cases, transfers with more benefit are performed, others are
skipped.

Although this operation affects two piconets, successive
execution of it has a global effect as depicted in Figure 5.
Suppose nodes labeled as A and B communicate heavily with
each other. Master node of P0 will notice that A communicates
with P1 more than it communicates with piconet members, and
eventually it will transfer A to P1. After that, P1 will notice
a high traffic flow rate between A and P2. At the end, A will
be transferred to P2, where B is also located.

Fig. 5. Global effect of Slave Transfer operation

4) Piconet Merge: This operation can be thought as the
reverse operation of Piconet Division. The topology shown
in Figure 4(b), for example, turns into the topology shown
in Figure 4(a) as a result of the execution of this operation.
Piconet Merge tests all neighbors for merge feasibility until
one such piconet is found. If total number of nodes does not
exceed 8 and if total traffic flow rate does not exceed the raw
capacity of 1 Mbps (or a practical upper bound that is set) of
a Bluetooth piconet, two piconets are merged.

As the first action, traffic tables are merged. Actually, this
is not a straightforward task because the traffic table of the
resulting piconet cannot be generated out of the traffic tables
of two neighboring piconets. As an example, in Figure 4(b),
traffic flow rate between nodes 1 and 5 cannot be obtained

3226

from traffic tables stored at nodes 2 and 4. Such information
could be obtained by keeping and maintaining extra informa-
tion and by exchanging extra messages. However, we apply
a heuristic for completing the unknown parts of the merged
traffic table. Envision two neighboring piconets P0 and P1 that
are going to merge. From the traffic table of P1, we know the
amount of traffic flow between P1 and P0. However, we do
not know how much of it is destined to (or originated from)
P0, and how much of it is relayed at P0. But, from the traffic
table of P0, we also know what ratio of traffic flow between
P0 and P1 is generated or consumed by the members of P0.
Combining these information we can estimate the amount of
traffic flow between P1 and the members of P0 assuming the
traffic is equally shared by the piconet members.

After traffic tables are merged, if total traffic flow rate does
not exceed 1 Mbps, all nodes of the neighboring piconet are
assigned as slave nodes to the master node executing the
operation. Master/Bridge Reassignment is executed according
to the traffic table thereafter in order to assign roles in the
newly constructed piconet.

C. Maintenance Procedure

As indicated in the previous sections, the Maintenance
Procedure is a combination of a set of operations which we
have described already. In this section, we present a fusion
algorithm that combines these operations and establishes an
execution priority among them.

Algorithm 1 The Fusion Algorithm
1: Execute Master/Bridge Reassignment operation
2: if Current node is still master then
3: Execute Slave Transfer operation
4: if Total piconet traffic > 1 Mbps then
5: Execute Piconet Division operation
6: else
7: Execute Piconet Merge operation
8: end if
9: end if

The fusion algorithm, shown in Algorithm 1, is executed
at a master node whenever a significant change is observed
in the traffic table maintained at that master node or the total
traffic that has to flow in the piconet of that master exceeds
1 Mbps. Such a bound is necessary because the capacity of
a piconet is 1 Mbps. When total traffic demand in a piconet
is more than 1 Mbps, the piconet should be split into two
in order to increase the capacity. When this is not the case,
however, merging piconets as much as possible is beneficial
for the sake of shortening paths and decreasing the number of
bridges that switch between piconets.

Significant change is supposed to occur when the value of
totalDiff calculated as in Equation 7 exceeds a threshold value.
Adjustment of the threshold would affect the sensitivity of the

Maintenance procedure to the changes in the traffic flow rate.

totalDiff =
t−1∑

i=0

t−1∑

j=i+1

∣∣Tij − Tlastij

∣∣ (7)

This equation gives the sum of differences between traffic
flow rates for each pair of communicating entities (i.e. master
node, slave nodes and piconets) represented in the current
traffic table and the traffic table that was used in the last
execution of the fusion algorithm. Initial execution of the
algorithm at a master node is performed after a warmup period
when enough information is ready in the traffic table of the
master node.

D. Link Establishment Procedure

The links in Bluetooth are established after inquiry and
page steps. Inquiry and inquiry-scan modes of inquiry step
play a key role for device discovery and determination of
master/slave roles. Link Establishment procedure in our pro-
posal basically specifies whether a node having a certain
role (i.e. master, bridge, slave, or free-node) can switch to
inquiry or inquiry-scan modes. This specification controls the
discoverability of nodes, and in this way the established links
are forced to meet the restrictions described in Section III.
Table I shows which modes of inquiry step are allowed in
which roles of nodes in a scatternet.

TABLE I

MODES ASSIGNED TO ROLES AT INQUIRY STEP

Role Inquiry Inquiry-Scan
Free-Node Yes Yes
Master Yes No
Slave No Yes
Bridge No No

Because of the mode assignments shown in Table I, link
establishments are restricted to happen only between pairs of
nodes having the following role combinations: master/slave,
where slave becomes bridge; master/free-node, where free-
node becomes slave; slave/free-node, where free-node be-
comes master; and free-node/free-node, where one of them
becomes master and the other becomes slave. Bridge nodes
cannot establish new links. As a result, there is no master/slave
bridges and a bridge node has exactly two masters as required
by the Maintenance procedure.

Unlike Maintenance procedure, Link Establishment proce-
dure runs on any node. Nodes, except bridges and masters that
already have seven slaves, are scheduled to enter one or both
of the inquiry and inquiry-scan modes, which is determined
by the rules listed above, at certain intervals. These intervals
are determined by the master node for itself and for its
slaves. Once a new node is discovered in accordance with the
restrictions on the topology of scatternet, Link Establishment
procedure further decides to establish the link or not to.
Link establishment can be restricted in order to limit the
average node degrees. One such restriction would be to prevent

3227

establishing links between a slave and the master of a one-
hop distance piconet. This information can be passed to slave
nodes each time they are instructed to enter inquiry-scan
mode by the master, which already have one-hop distance
master information in its traffic table. Other controls can be
imposed whether to continue with page/page-scan mode after
the discovery, using probabilistic approaches or acquiring 2-,
3-hop information by extra messaging if desired.

Link Establishment procedure enables dynamic handling of
new link establishments. Hence, a scatternet topology, that can
further be modified by Maintenance procedure for bandwidth-
efficiency, is constructed on the fly. During Maintenance pro-
cedure the set of nodes constituting the piconet should not be
changed, requiring coordination between Link Establishment
and Maintenance procedures. This can be achieved if the
masters do not schedule slave nodes for device discovery
before starting a Maintenance procedure.

IV. SIMULATION RESULTS

In this section, we present the evaluation for our proposed
algorithm. For evaluation we use a performance metric called
weighted average shortest path (WASP) proposed in [4].
WASP aims to reflect the load on the network for a given net-
work topology and traffic demand distribution among nodes.
WASP relates the end-to-end traffic demand to the traffic load
imposed on a network with a given topology. The amount
of end-to-end traffic demand between two nodes is expressed
as the sum of two one-way traffic that has to flow between
these two nodes. The load imposed on the network due to the
traffic demand between two nodes is computed by multiplying
the amount of traffic demand by the number of hops between
the two nodes. Equation 8 shows how to compute the WASP
of a flow between a node-pair x (WASPx), where dx is the
traffic demand of node pair x, Lx is the number of hops
between these two nodes, and n is the number of all node-pairs
demanding some amount of traffic to flow in between:

WASPx = (dx × Lx) /

n∑

i=1

di (8)

The WASP of a network is defined as the sum of WASPs
of all end-to-end flows demanded in the network:

WASP =
n∑

i=1

(di × Li) /

n∑

i=1

di (9)

The WASP value in a network will be equal to one when
communicating nodes in the network are separated from each
other by direct links (i.e. single-hop communication). In this
case, the traffic load imposed on the network by a certain
traffic demand pattern will be minimum. WASP value gets
closer to one as the traffic load on the network decreases,
meaning that pairs with higher traffic demands are getting
closer.

In order to test the performance of the proposed algorithm, a
simulation environment, which uses WASP as the performance
metric, is developed. Simulations are run for different traffic
characteristics and for scatternet sizes varying between 10 and

100 nodes. For each scatternet size, 100 different initial scat-
ternet topologies are generated and the proposed algorithm is
run on arbitrary master nodes until no significant improvement
on total bandwidth usage is obtained. Numerically speaking,
if the improvement is less than 1% compared to the previous
topology, the scatternet is assumed to be stabilized. For each
scatternet size, the WASP values for each of 100 initial and
final topologies are gathered and their average is calculated.

Three different traffic characteristics are used in simulations.
In the first type of traffic characteristic (TC-1), given a pair of
nodes (out of all possible pairs of nodes), the nodes

• do not communicate with a probability of 0.3,
• communicate at 5 Kbps with a probability of 0.2,
• communicate at 10 Kbps with a probability of 0.2,
• communicate at 15 Kbps with a probability of 0.2,
• communicate at 20 Kbps with a probability of 0.1.

In the second type of traffic characteristic (TC-2), given a pair
of nodes, they

• do not communicate with a probability of 0.4,
• communicate at 5 Kbps with a probability of 0.3,
• communicate at 30 Kbps with a probability of 0.3.

In the third type of traffic characteristic (TC-3), nodes are
grouped into three groups as Group-A, Group-B and Group-
C, which constitute 30%, 30% and 40% of all nodes in a
scatternet, respectively. Given a pair of nodes

• both from Group-A, they communicate at 20 Kbps with
a probability of 0.7;

• both from Group-B, they communicate at 15 Kbps with
a probability of 0.8;

• both from Group-C, they communicate at 15 Kbps with
a probability of 0.6;

• one from Group-A and one from Group-B, they commu-
nicate at 4 Kbps with a probability of 0.2;

• one from Group-A and one from Group-C, they commu-
nicate at 2 Kbps with a probability of 0.3;

• one from Group-B and one from Group-C, they commu-
nicate at 3 Kbps with a probability of 0.3.

In TC-1 and TC-2, although there are demands with differ-
ent communication rates, the demands are evenly distributed
among node pairs. Different from TC-1 and TC-2, in TC-3,
however, there are groups, where we have higher rate traffic
demands between the nodes belonging to the same group and
lower rate demands between the nodes belonging to different
groups. The initial and final WASP values for these three
different traffic characteristics on varying scatternet sizes are
listed in Table II. As it can be clearly seen, whatever the
traffic characteristics is, the initial WASP values are very sim-
ilar. However, as the scatternet-wide communication relations
among nodes get weaker, the final WASP values decrease.

In Figure 6, improvements in WASP for TC-1, TC-2 and
TC-3 are shown for varying scatternet sizes. For TC-3 the im-
provements are higher than TC-1 and TC-2, and improvements
up to 46% is reached, since heavily communicating nodes can
be grouped together in the scatternet for TC-3. On the other
hand, in TC-1 and TC-2 as a node is moved towards another

3228

TABLE II

INITIAL AND FINAL WASP VALUES FOR TC-1, TC-2 AND TC-3

Node
Count

TC-1
Initial

TC-1
Final

TC-2
Initial

TC-2
Final

TC-3
Initial

TC-3
Final

10 2.913 1.931 2.927 1.797 2.774 1.563
20 4.202 2.999 4.126 2.866 4.161 2.264
30 5.060 4.087 4.932 3.924 4.891 2.971
40 5.670 4.917 5.686 4.672 5.656 3.813
50 6.331 5.577 6.189 5.255 6.146 4.748
60 6.688 6.041 6.626 5.752 6.633 5.372
70 7.063 6.365 6.903 6.084 7.292 6.091
80 7.467 6.827 7.332 6.602 7.402 6.396
90 7.755 7.149 7.801 6.987 7.783 6.820
100 7.995 7.417 8.029 7.329 8.245 7.348

node it highly communicates, it gets further from the other
nodes it communicates at the same rate, because every node
has a similar probability of communication with another node
at certain rate. TC-2 has better improvement than TC-1, since
the ratio of non-communicating nodes is higher in TC-2 and
it has a more diverse traffic distribution than TC-1. Figure 6
also shows that as the scatternets get larger, the improvements
decrease. This is due to the higher load on the scatternets,
where piconets have to relay more traffic. According to the
proposed algorithm, a piconet is divided if the traffic flow rate
within the piconet exceeds 1 Mbps. Hence, as the scatternet
gets larger, the piconets tend to divide, which increases the
path lengths between communicating nodes and consequently
the value of WASP metric. Although improvement in WASP
decreases, since the average available bandwidth per piconet
on the way from source to destination increases, the data
packets are not dropped due to high congestion, which, in
fact, means improvement in general performance.

Fig. 6. Improvement in WASP

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a Bluetooth scatternet formation
and maintenance algorithm. The algorithm is different from
previous proposals due to its basic motivation, which is to min-
imize the bandwidth usage in the resulting scatternet topology.
The proposed algorithm works in a distributed fashion and it
is adaptive, that is, it preserves bandwidth efficiency as traffic
demands change. It is also dynamic so that it handles arrival of
new nodes and departures of existing nodes. As the bandwidth
usage is reduced in the scatternet, available bandwidth for

new communication demands increases. Furthermore, since
the average number of hops between communicating nodes
and traffic load on the links is reduced, the average end-to-
end latency is also reduced. Another benefit is that the average
power consumption per node is expected to decrease, since
the amount of traffic which is not directly related with a
node but still needs to be forwarded by that node is reduced.
The proposed algorithm is also evaluated and the results are
observed to be promising.

Although the proposed scatternet formation and mainte-
nance algorithm is designed to meet the requirements of
a practical solution for wireless ad-hoc networks, such as
distributed approach with as less messaging overhead as
possible and adaptivity to changing conditions, it has one
major restriction which is the assumption that all nodes are
in the Bluetooth range of each other. This assumption may
not be valid for some application scenarios. Therefore, as a
future work, we consider enhancing the proposed algorithm
to handle this kind of situations as well.

REFERENCES

[1] Bluetooth, Bluetooth Special Interest Group. [Online]. Available:
http://www.bluetooth.com

[2] S. Baatz, C. Bieschke, M. Frank, C. Kuhl, P. Martini, and C. Scholz,
“Building efficient bluetooth scatternet topologies from 1-factors,” in
Proceedings of the IASTED International Conference on Wireless and
Optical Communications, WOC 2002, 2002.

[3] M. A. Marsan, C. F. Chiasserini, A. Nucci, G. Carello, and L. D.
Giovanni, “Optimizing the topology of bluetooth wireless personal area
networks,” in IEEE INFOCOM 2002, 2002.

[4] T. Topal, “Constructing efficient bluetooth scatternets,” Master’s thesis,
Department of Computer Engineering, Bilkent University, 2004.

[5] C. Law, A. K. Mehta, and K. Y. Siu, “Performance of a new bluetooth
scatternet formation protocol,” in Proceedings of the ACM Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc, 2001.

[6] C. Law and K. Y. Siu, “A bluetooth scatternet formation algorithm,” in
Proceedings of the Symposium on Ad Hoc Wireless Networks. IEEE,
2001.

[7] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire, “Distributed
topology construction of bluetooth personal area networks,” in Proceed-
ings of the INFOCOM. IEEE, 2001.

[8] G. Tan, A. Miu, J. Guttag, H. Balakrishnan, T. Berners-Lee, L. Masinter,
and M. McCahill, “Forming scatternets from bluetooth personal area
networks,” MIT Laboratory for Computer Science, Tech. Rep. Mit-lcs-
tr-826, 2001.

[9] G. Zaruba, S. Basagni, and I. Chlamtac, “Bluetrees-scatternet formation
to enable bluetooth-based personal area networks,” in Proceedings of
the IEEE International Conference on Communications, 2001.

[10] C. Petrioli, S. Basagni, and I. Chlamtac, “Configuring bluestars: Mul-
tihop scatternet formation for bluetooth networks,” IEEE Transactions
on Computers, Special Issue on Wireless Internet, vol. 52, no. 6, pp.
779–790, 2003.

[11] D. Miorandi and A. Zanella, “On the optimal topology of bluetooth
piconets: Roles swapping algorithms,” in Proceedings of Mediterranean
Conference on Ad Hoc Networks, Med-Hoc-Net, 2002.

[12] G. Miklos, A. Racz, Z. Turanyi, A. Valko, and P. Johansson, “Per-
formance aspects of bluetooth scatternet formation,” in Proceedings of
the 1st ACM international symposium on Mobile ad hoc networking &
computing, 2000.

[13] R. Kapoor, M. Sanadidi, and M. Gerla, “An analysis of bluetooth
scatternet topologies,” in ICC 2003, 2003.

[14] D. Miorandi, A. Trainito, and A. Zanella, “On efficient topologies
for bluetooth scatternets,” Lecture Notes in Computer Science, vol.
2775/2003, pp. 726–740, 2003.

[15] M. Kalia, S.Garg, and R. Shorey, “Scatternet structure and inter-piconet
communication in the bluetooth system,” in IEEE National Conference
on Communications, 2000.

3229

