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ABSTRACT 

Shell-kernel weight ratio is the main determinate of 
quality and price of hazelnuts. Empty hazelnuts and nuts 
containing undeveloped kernels may also contain 
mycotoxin producing molds, which can cause cancer. A 
prototype system was set up to detect empty hazelnuts by 
dropping them onto a steel plate and processing the 
acoustic signal generated when kernels impact the plate. 
The acoustic signal was processed by five different 
methods: 1) modeling of the signal in the time domain, 2) 
computing time domain signal variances in short time 
windows, 3) analysis of the frequency spectra magnitudes, 
4) maximum amplitude values in short time windows, and 
5) line spectral frequencies (LSFs). Support Vector 
Machines (SVMs) were used to select a subset of features 
and perform classification. 98% of fully developed 
kernels and 97% of empty kernels were correctly 
classified. 

1. INTRODUCTION 
Hazelnuts are widely used in chocolate and flavored 
coffee production. The ratio of kernel weight to shell 
weight of bulk hazelnuts determines the price that a 
farmer receives from food processing plants. Empty 
hazelnuts and hazelnuts containing undeveloped kernels 
negatively affect this ratio. Occasionally, a physiological 
disorder such as plant stress from dehydration or lack of 
nutrients allow a hazelnuts shell to develop without a 
kernel. Also, a physical disorder such as insect damage 
can stunt the maturation process and prevent a kernel from 
being fully developed at harvest time. As shown in Figure 
1, a nut with undeveloped kernel appears like a normal 
hazelnut. Currently, a farmer’s hazelnut lot is processed 
by an “airleg” which is a mechanical device having a fan 
to separate empty hazelnuts from fully developed ones. 
However, these devices have a high classification error 
rate. Upon delivery of hazelnuts to a processor, the ratio 
of kernel weight to shell weight is determined by 
sampling a few kilos of hazelnuts from the lot and the 
price is determined from this calculation. There remains a 
need for an additional machine to improve upon the 
segregation of empty and full hazelnuts. 
A prototype system was set up to detect empty hazelnuts 
by dropping them onto a steel plate and processing the 
acoustic signal generated when kernels impact the plate. 
The schematic diagram of the system is shown in  
Figure 2. It is possible to process 40 nuts per second by 
the proposed system, which can be used in practice to 
estimate the ratio of kernel weight to shell weight by 
processing large sums of hazelnuts, and to further classify 
the nuts processed by the mechanical separation device. If 

the ratio of kernel weight to gross weight is less than 0.5 
then some buyers reject the produce. 
Therefore, it may be important for some farmers to 
increase the kernel weight to shell weight ratio by 
accurately classifying its produce. Alternatively, hazelnuts 
classified as empty can be further processed to find 
misclassified fully developed hazelnuts. In addition, 
empty hazelnuts and hazelnuts containing undeveloped 
kernels may also contain a certain mold which produces 
aflatoxin, a cancer causing material. Therefore a more 
accurate classification of hazelnuts will be useful in 
practice. 

 

Figure 1: Samples from Empty and Full Hazelnuts 

In order to find fully developed hazelnuts among the 
misclassified ones, one can weigh them one by one or 
shell them but, obviously, this is not an economically 
viable practice. It is proposed that fully developed 
hazelnuts can be discriminated from empty hazelnuts by 
means of impact acoustic emissions. A high-throughput, 
low cost acoustical system for sorting pistachio nuts has 
been developed to separate pistachio nuts with closed 
shells from those with cracked shells [5-7]. In this system, 
pistachio nuts are dropped onto a steel plate and the sound 
of the impact is analyzed in real time. Pistachio nuts with 
closed shells produce a different sound than those with 
cracked shells, as expected. Classification accuracy of this 
system is approximately 96%, with a throughput rate of 
approximately 40 nuts/second and it works reliably in a 
food processing environment with little maintenance or 
skill required to operate. A similar prototype system for 
hazelnuts is proposed in this paper. The cost of the overall 
system will be very low because of its simple mechanical 
components and the signal processing can be carried out 
in an ordinary PC or a microprocessor based system with 
a 44 kHz sound sampling capability. 

 



2. MATERIALS AND METHODS 
In this paper, “Levant” type hazelnuts from Akcakoca, 
Duzce region of Turkey is used in our experiments 

Experimental apparatus: A schematic of the 
experimental apparatus for simulating hazelnuts, dropping 
them onto the impact plate, then collecting the acoustic 
emissions from the impact are shown in  
Figure 2. The impact plate was a polished block of 
stainless steel with dimensions 7.5 x 15 cm and depth of 2 
cm. The mass of the impact plate is much larger than the 
hazelnuts in order to minimize vibrations from the plate 
interfering with acoustic emissions from kernels.  

A microphone, which is sensitive to frequencies up to 
20 kHz, was used to capture the impact sounds. 

 
Figure 2: Schematic of experimental apparatus for 
collecting acoustic emissions from hazelnuts 
2.1 Signal processing: Feature parameters were extracted 
from the recorded sound signal of the impact. 
Subsequently, classification was performed using Support 
Vector Machines (SVM) using the features. Features were 
extracted from the impact sound signal by three different 
methods: 1) modeling of the signal in the time domain, 2) 
computing time domain signal variances in short time 
windows, 3) analysis of the frequency spectra magnitudes, 
4) maximum amplitude values in short time windows, and 
5) line spectral frequencies (LSFs). Each of these methods 
will be discussed separately below. 

Time Domain Signal Modeling: Typical signals from 
a regular hazelnut and an empty hazelnut are shown in 
Figure 3. The maximum amplitude of the signals is quite 
variable but in general the maximum amplitude of regular 
hazelnuts is higher than the empty ones. To characterize 
this type of signal response, we modeled the signal after 
transforming it in the following steps outlined below: (i) 
rectify the signal by taking the absolute value at all points, 
(ii) non-linearly filter the signal by replacing the center 
data point with the maximum value in a seven point 
window, and (iii) Non-linearly estimate the four 
parameters of the Weibull function, given by Equation 1, 

which has a shape similar to that of the processed time 
domain signal 
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otherwise Y(t) = 0. 
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Figure 3: Typical impact sound signals from a regular 
hazelnut (top) and an empty hazelnut (bottom). Note 
that the maximum amplitude of a regular hazelnut is 
usually higher than an empty hazelnut. 

Short Time Variance Window Processing: In addition 
to the time domain processing by modeling the signals 
with a Weibull function, variances of the signals are also 
computed in short time windows. Weibull function 
captures the shape of the recorded signal globally and the 
short-time variance information models the local time 
domain variations in the signal. The short time windows 
were 50 points in duration and incremented in steps of 30 
points so that each window overlapped by 20 points. The 
first window began 40 points in front of the maximum 
signal magnitude. A total of eight short time windows 
were computed to cover the entire duration of all signals. 
After all variances were computed, they were normalized 
by the sum of all eight variances as follows 
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where and  are the normalized and computed 

variances from window i with i=1 being the first window 
and i=8 being the last. This method captures the increased 
duration of the signals from empty hazelnuts. As can be 
seen from Figure 4, the average variance of the third 
window is greater than that from full hazelnuts. 
Additionally, the slope between the third and fourth 
variance is different.  
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Figure 4: Average variances from short time windows 
of time domain signals. 

Frequency Domain Processing: A 256 point discrete 
Fourier Transform (DFT) was computed from each signal 
using a Hamming window. The 256-point window covers 
the impact sound of hazelnut and it starts about 80 data 
points before the signal maximum slope, which 
corresponds to the impact moment of the kernel. The 
magnitude of each spectrum was computed and then low 
pass filtered using a 20 tap FIR filter applied to remove 
jagged spikes in the spectra. The low pass filter has a 
cutoff frequency of π/4 in the normalized DFT domain. 
As can be seen in Figure 5, the frequency spectrum of 
empty kernels has a single peak between 5 and 10 kHz. 
On the other hand regular hazelnuts have two major peaks 
in the same frequency range. In this example, peaks of the 
spectra of regular hazelnuts and empty nuts are clearly 
distinguishable but there are significant numbers of 
examples in which twin peaks of regular hazelnuts are not 
clearly visible, possibly due to noise. The frequency 
corresponding to the peak magnitude in the frequency 
spectra was saved as a potential discriminating feature. In 
addition, the 15 magnitude values before the peak and 15 
points after the peak were saved and normalized by the 
peak magnitude. 

Maximum Magnitude in Short Time Window 
Processing: 5 maximum values in 5 windows are used. 
First window starts from 10 samples before the maximum 
magnitude of the signal. Each window has length of 15 
samples. They were separated by 10 samples so that 5 
samples are overlapped for each window. 
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Figure 5: Example frequency spectra magnitudes for a 
regular (top) and empty hazelnuts (bottom). 

Line Spectral Frequency: Linear predictive modeling 
techniques are widely used in various speech coding, 
synthesis and recognition applications. Linear Minimum 
Mean Square Error (LMMSE) prediction based data 
analysis is equivalent to Auto-Regressive (AR) modeling 
of the data. Line Spectral Frequency (LSF) representation 
of the Linear Prediction (LP) filter is introduced by 
Itakura [9]. 

Let the m-th order inverse filter Am(z), 
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be obtained by LP analysis of the impact sound. The LSF 
polynomials of order m + 1, Pm+1(z) and Qm+1(z) can be 
constructed by setting the (m + 1)-st reflection coefficient 
to 1 or -1. In other words, the polynomials, Pm+1(z) and 
Qm+1(z) are defined as 
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The zeros of Pm+1(z) and Qm+1(z) are called the Line 
Spectral Frequencies (LSFs), and they uniquely 
characterize the LPC inverse filter Am(z). 

3. CLASSIFICATION AND RESULTS 
 All experiments are conducted using a total of 492 
impact sounds of 254 full and 238 empty hazelnuts as 
shown in Table 1. Test and train sets are constructed by 
randomly dividing each group into two halves. Support 

 



Vector Machines (SVMs) are used to classify the features 
which are obtained from impact sounds of hazelnuts.  

 Empty Full Overall 
Total Number of Sounds 238 254 492 
Number of Train Sounds 119 127 246 

Table 1: Train and Test Sets  
The impact sounds of hazelnuts are analyzed in both 

time and frequency domain, as described in Section 2.1. 
Classification of hazelnuts summarized in Tables 2-7 is 
obtained. In Table 2 classification results based on 
spectrum magnitude features are presented. In this case 
maximum magnitude value of each spectrum, 15 
coefficients before and after the maximum value are used 
as feature vector of the hazelnut impact sound. This vector 
leads to 87% recognition accuracy. 

 Empty Full Overall 
Ratio: Success/Test 106/119 108/127 214/246 
Percentage: Success 89.08 85.04 86.99 

Table 2: Spectrum Magnitudes Feature Results 
Classification results obtained using Weibull 

parameters alone are tabulated in Table 3. In this case 
Weibull parameters a, b, c, t0 and R2 (the coefficient of 
multiple determination for curve fitting) are used as 
features of the hazelnut impact sound. 

 Empty Full Overall 
Ratio: Success/Test 89/119 109/127 198/246 
Percentage: Success 74.79 85.83 80.49 

Table 3: Weibull Parameters Feature Results 
The method based on spectrum magnitude features 

classified empty hazelnuts more accurately than full 
hazelnuts. On the other hand, the method based on 
Weibull coefficients distinguished full hazelnuts more 
accurately than empty hazelnuts. It is clear that spectral 
features or time domain envelope by itself is not sufficient 
for accurate classification. 

In Table 4 classification results based on eight short-
time variances are presented. In this case, short time 
windows contain 50 samples in duration and incremented 
in steps of 30 time units so that each window overlapped 
by 20 samples. The first window began 40 points before 
the maximum signal magnitude. A total of eight short time 
windows were computed to cover the entire duration of all 
signals. Comparing with the previous results, window 
variance computation gives an increased performance in 
terms of accuracy in both full and empty sets.  

 Empty Full Overall 
Ratio: Success/Test 117/119 118/127 235/246 
Percentage: Success 98.32 92.91 95.53 

Table 4: Short-Time Variances Feature Results 
In Table 5 classification results based on the 

maximum magnitude in time domain are presented. In this 
case, 5 maximum values in 5 windows are used. First 
window starts from 10 samples before the maximum 
magnitude of the signal. Each window has length 15 
samples length. They were separated by 10 samples so 
that 5 samples overlap for each window. 

 

 Empty Full Overall 
Ratio: Success/Test 99/119  94/127  193/246 
Percentage: Success 83.19% 74.02% 78.46% 
Table 5: Time Domain Maximum Magnitude Feature 
Results 

If 20th order Line Spectral Frequencies (LSFs) is used 
then an overall recognition rate of 90% is achieved. 

All five classes of features discussed so far are 
combined in a single vector. We arrived at the following 
improved accuracy while reducing the success rate 
difference between two types that appeared in the 
previous tables. 97% of fully developed kernels and 98% 
of empty kernels are correctly classified. 

 Empty Full Overall 
Ratio: Success/Test 116/119  124/127 240/246 
Percentage: Success 97.48% 97.64% 97.56% 

Table 6: Combined Spectrum Magnitudes, Weibull 
Parameters, Short-Time Variances Features Results 

4. CONCLUSION 

 In this paper, an effective and low-cost classification 
system to distinguish full and empty hazelnuts is 
proposed. Five methods are presented to extract features 
of hazelnut impact sounds. These features allow us to 
classify the empty and full hazelnut by using Support 
Vector Machines (SVMs) based classifier with a simple 
system which can be implemented in real-time.  
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