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Abstract- Cemputerized Tonospheric Tomography {CIT) is a
method to reconstruct ionospheric electron density images by
using the Global Positioning System data collected by the earth
based receivers. In this study, Total Electron Content values
obtained from a model based ionesphere and tomographic
reconstruction techniques are used together to obtain
ionospheric  electron  density  distribution.  Algebraic
Reconstruction Technique (ART) is one of the most commonty
used reconstruction method in medical temography due to its
simplicity in implementation. The performance of ART is
independent of basis functions and very sensitive to the initial
state. Total Least Squares (TLS} algorithm assumes no
regufarization and produces the lowest error for Haar basis for
a given latitude iaterval. The performance of TLS is improved
with the number of receivers. If only one receiver is used, TLS
algorithm together with Haar basis functions produces a low
computational complexity and has a lower reconstruction error
compared to Regularized Least Squares Algorithm, When the
estimation by TLS is input as the initial state of ART, the averall
reconstructien error reduces significantly compared te the

reconstruction error of ART only or TLS with Haar basis only.

L. INTRODUCTION

Computerized lTonospheric Tomegraphy (CIT) is a method
to reconstruct tonospheric electron density images by using
the Global Positioning System (GPS) data collected by the
earth  based receivers, GPS satellites transmit two
simultaneous signals whose frequencies are 1575.42 MHz
and §227.60 MHz. Total Electron Content (TEC)} is defined
as the number of free electrons in a column of unit cross-
sectional area [1]. TEC can be obtained from pseudo range
and phase values recorded by the GPS receivers. TEC can
also be obtained from mode! ionosphere density distribution
such as International Reference lonosphere-95 (IRI-95)
model by taking the hne integral of electron density on the
path combining the satellite and receiver. In ionospheric
tomography, ionosphere is divided into pixels. Figure | is a
simplified example of ionospheric tomography system. Given
in Figure 1, N, indicates electron density in the pixel, di
indicates the length of ray in the % th pixel. For these
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parameters, X takes a value between 1 and 4, and TEC value
computed at the receiver can be given as

TEC=dc(leNl+d3 XN3+d4 XN4)+Cr (])

where d. is an estimate constant and e is the error term. In
general, ionosphere electron density 1s modeiled as a linear
combination of two dimensicnal basis functions obtained by
the product of the vertical and herizontal basis functions.
Most commonly used horizontal basis functions are Legendre
polynomials or Fourier polynomials [1-3].

The vertical basis functions are usually generated using the
vertical profiles from a selected forward model, such as IRI-
95 f3]. Computational complexity of these methods is
proportional the number of horizontal basis functions, so
selection of appropriate number of horizontal basis function
is a critical parameter.

In this paper, Total Least Squares (TLS) algorithm [3],
Algebraic Reconstruction Technique (ART) [4], Hybrid
Reconstruction Algorithm (HRA) which is combination of
TLS and ART, and Regulanized Least Squares (RLS) are
discussed as a reconstruction algorithms.

Figure 1. Sample [onospheric Tomography System

fonosphere electron density is modelled as the serial
expansion method in which the two dimensional basis
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functions are used. Two dimensional basis functions are
obtzined from the vertical basis functions and horizontal
basis functions. Vertical basis functions are generated from
the Singular Value Decomposition (SVD) of the electron
density matrix of forward ionosphere model (IRI-95) and
horizontal basis functions are modelled from the Haar
wavelets, It is observed that, due to the fact that TLS assumes
no regularization, its computational complexity is less than
the RLS, but RLS provides a more reliable result according to
TLS. To improve the performance of TLS, ART is
considered instead of the regularization methed. The
reconstructed electron density profile from TLS is input as
the initial state of ART and a Hybrid Reconstruction
Algorithm (HRA) 1s obtained. In HRA, although the
computational complexity is increased compared to TLS
alone due to addition of the ART algorithm, the
implementation is still simpler and the overall error is lower
than using ART or TLS alone.

II. MODEL IONOSPHERE AND BASIS FUNCTIONS

In this paper, IR1-95 is selected as a reference ionosphere
model and ionasphere cross-section for [-28° 287] latirude
interval is provided in Figure 2 using the parameter set given
in TABLE 1. Vertical basis functions given in Figure 3, are
calculated by using the Singular Value Decomposition
(SVD). Each vertical profile represents the variations
according to height for a fixed latitude. Horizontal basis
functions are selected as Haar basis functions given in Figure
4. Haar basis functions are mapped to [-28° 287 latitude
interval and x-axis is modelled as a distance between 28
and 28 latitudes in which the one degree is equal to 111 km.

Electron Density Generaied From IR195 Model

coooodoocoodrees ool

Electyon Density / cm-3

Figure 2 IRI-95 Model Parameters

TABLEI,
IRI-83 MODEL PARAMETERS

DATE: year, month, day 2003, 08, 5
Time: Hour I155LT
Geographical Longitude 34

Solar Zenith Angle/degree 65.3

Dip (Magnetic [nclination)/degree -60.62
Modip {(Modified Dip)/degree -48.14
Solar Sunspot Number 52.3
lonospheric-Effective Solar Index 1G12 86.9

In this study, ionosphere is divided into 95 pixels on the
vertical direction and 29 pixels on the horizontal direction.
Height of each pixel is 10 km, and the width of each pixel is
two degrees. It is assumed that the satellite travels on the flat
line for a given latitude interval and the distance between
each satellite position is equal to 0.5 degree. It is assumed
that the icnosphere is time invariant for each sasellite
positions and for each TEC calculations and electron density
in each pixel has a uniform distribution.

111 RECONSTRUCTION METHODS

lonospheric electron density over height-latitude plane
given in Figure 2, is expressed as a serial expansion of
horizontal and vertical basis functions as given below:

X

BRONM)= ) apdi(r,6) @
k=1

B (.Y =iy () v, @) )

k=m+n-1)M m=1,.. . M: n=1,...N

where g, (.6) is a fwo dimensional basis function and
1, (r} 15 the vertical basis function obtained from IRI-95
model by SVD and v, (8) is the horizontal basis function
chosen as Haar wavelets, In these expressions, X is number
of total basis functions, M i1s number of vertical basis
functions and N is number of horizontal basis functions. r is
the height from sea level and it varies between 60 km to 1000
km. Height is divided in MR = 95 pixels, each of 10 km 8is
any angle between —28 to 28" latitude. Latitude is divided in
NE =29 pixels each of 2°,

Westical Basis Functions
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Figure 3. Vertical Basis Functions from IR1-95 Medel.
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Figure 4. Haar Basis Funciions.

Expression given in (4) is similar to the expression given in
(1). In {1}, equation is based on the TEC values and the
expression given in (4) is based on the ionospheric electron
density. Electron density, gfr. &), is given in matrix notation
in (6) and the two dimensional basis function for is also given
in the matrix notation in (7).

g8 : g01.6) ¢ g(1.6e)
GNM)=) 1 R )
givpB) i givph) - b glrvabhg)
91 92 e
#(n,6)  idkln, 6} - idi(n,Ong)
wi=| b : 0
# v, 01) 1klrng. 62) - By (rvgs One)
Y -
Pri Qi Prin

For simplicity, the calculations are continued with the
vector form of G and y given in (8).

(8

In vector g, gr,6) represents the sampie of electron

density obtained from IRI-95 model at the height of 1000 km
and the latitude of —28° degree. In CIT, TEC values are
computed from GPS signals. In this study, TEC calculations
are obtained from the scenario discussed in the previous
sections using the IR1 model. The measurement TEC vector
can be expressed

di= D Bpg Clpsa),

P.g 9)

5 _{LIf(p,g) th pixel is on the / th ray.
124 ™ 0, Otherwise

In (9), ! represents the index of ray from the satellite such
as fth ray (or index for satellite position, such as /th satellite
position) and 4, is the TEC value which is calculated for /th
ray (/th satellite position). (9) can be rewritten hv using the
vector, g , as follows

dp = Zﬁ:,k gk,
k

. = LIf (p,q) th pixel is onthe [th ray (10)
ik = 0, Otherwise

k:p+(q~l)M

Equation (10) is given in matrix notation by using the
scenario matrix B and the vector g as foltow:

d=Bg (11)

where d is the vector of TEC value from the measurement
dy ]T. L=57is
equal to total number of satellite positions. From the
configuration of satellite and receiver positions, the scenario
matrix, B , is calculated. The number of the columns of the
scenario matrix is equal to number of pixels in the horizontal
direction and the number of the rows of the scenario matrix is
equal to number of pixels in the vertical direction. The TEC
calculation procedure is iterated for all satellite positions and
glements of B are assigned with respect W pixel state given
in grid geometry. For the given satellite position, all of the
pixels on a satellite ray are determined and the elements of
scenarioc matrix which  corresponds to these pixels are
assigned one and the other elements of scenario matrix are
assigned zero.

and is equal to d = [di dy dy



Equatiion (5) can be written in an inverse problem form as

follows
6= o 0y
k

Measurement equation given in (11) can be rewritten in the
form of inverse problem by using the (12) as given below:

(12)

d=Bg =) B ¢, o (13)
&

In (I3),akis the reconstruction coefficient and is

calculated by using the reconstruction algorithm. This TEC
calculation method is considered for all two dimensional
basis functions to obtain the basis TEC values. In this step, all
of the two dimensional basis functions are assumed to be sub-
ionosphere models, so the measurement equations from the
basis TEC and the ionosphere TEC can be written in the form
of (14) as

d=B 9=Z Pri U
k

{14}

where p;, is the vector contains the TEC values obtzined

from the & th two dimensional basis functions for the / th
sateliite position. Each p, , can be written in the form of

TECI,kzMNl (15)

Pii™ [TEC!J::] TEG 1=2
In p,; ;. TEQ 4. represenis the obtained TEC value from
the first two dimensional basis function for the { th satellite
position. The equation given in (14) is similar to (1). Each
row of equations in (1) and {14) are based on the TEC values.
Equation (14) can be written in the matrix notation in (16)
and the inverse problem equation for ionosphere tomography

is obtained:
d=Pa (16)

where

H H H
P=[P:,k P2k p!,k]

e=fa; o, ap.nl

In ionospheric tomography, it is desired to find an
optimum coefficient set o, by using the reconstruction
algorithms. In the following, the method of determining ¢,
with the TLS is discussed. ART is also examined to find
reconstrucied image of ionosphere electron density.

A, Total Least Squares (TLS) Algorithm

In the least-squares problem, the solution for (16) is
obtained with the assumption that the matrix P is correct, and

any errors in the problem are in d which is projected onto
the range of P to find the solution. By the assumption, any
changes needed to find a solution must come by moedifying
only d However, in ionospheric tomography problem, P is
determined from the model TEC values, and may aiso have
errors. Thus, it may be of use to find a solution to the
problem given in (16) which allows for the fact that both P
and d may be in error. Problems of this sort are known as
TLS problems.

In TLS problem, d and P are augumented with possible
error vectors and matrices, respectively, and the solution of
the perturbed equation

(d +e)})=(P +E) a {17)

is investigated. Generally in applications of TLS, the
number of equations exceeds the number of unknowns.
However, TLS may also be applied to the problems in which
the number of unknowns are more than the number of
equations. In this case, an infinite solution set exists and the
TLS solution method points the one with the minimum norm.

The closed-form TLS sclution is given by the following

aTLs =(PHP-0'3+]I)’IPHd (18)

where o‘fﬂ is the smallest non-zero singular value of the
matrix C=[P|d], H represents Hermitian Transpose, and
L is the identity matrix [5}, {6], [7], [8], [9].

I [8], it is shown that when P has full column rank, the TLS
solution is related to the right singular vector V., of C

associated with the smallest singular value ¢ ,, under the

condition that the singular vaiue

Ty >0 py and vnﬂ,nﬂ 0

19)

Hereg, represents the nth largest singular value and

V, 410+ 18 the last component of the singular vector V.

Let vf+]=[v,?+1 "n+1,n+l] where the Vfﬂ is sub-

vector that contains the first N elements of V ;. By using

the \7,,“ and v ., ., the TLS solution for the full-rank

system is
1 .
Ons = -7 Vo (20)
n+ln+l
For rank-deficient systems and hence underdetermined
systems, the TLS solution can be given as follows
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s {(21)

2

in+l
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i=r+1

where
g >0 _,.=.=0__=0and V x[v‘f-' V; ]H
P gt n+l i i in+l

are singular values and singular vector of C, respectively.
From the previous discussion, TLS solution can be obtained
with the SVD of C {5], [6], [7], [8], [9].

A, Algebraic Reconstruction Technique (ART)

As shown in Figure 1, a square grid is superimposed on the
image g(r. &) and is assumed that the in each cell, g+ &) is
constant, g; denotes this constant value in j th cell and the
total number of cell in square grid is equal to M.

From this geometry, TEC value for the ray can be written
in the form given below:

N
22)
TECE = Z Wim&m

m=1

where upper bound for i is equal to number of satellite
position in interval of [-28° 28°} latitude. w,, is the weight

coefficient for the m th pixel. In equation (22), w.

i and gn
are same as the parameters d, and N, given in (1). The
measurement  equation  system  for the algebraic

reconstruction technique can be obtained by using (22).

The solution is calculated for the set of equations obtained
by using the (22}, but the initial value is needed as

0= 4]
g9 [gf’=gz,...,gi,] (23)

In ionospheric tomography, iterative solution algorithm can
be given as follows

g =g - g™ w; - TEC W, Q4)
Wi W,
where
Wi :[Wil‘wils---awiN]
(25

[ i i i
g [gpgzs---agN}

This algorithm can also be expressed in a slightly different
form:

L G- +!TECi -TEC; )
gj =&

; - wi; (26)
2w
k=%
where
TEC, =g W
1 g 1 (27)

NoGi-n
=Zsk Wik
k=1

B.  Hybrid Reconstruction Algorithm (FIRA)

In this method, TLS algorithm and ART algorithm are
considered together to obtain the tomographic reconstruction
of ionospheric electron density images.Here, the output of the
TLS algorithm is used as the initial state for the ART.

TLS output can be written by using the @y g coefficients
in the equation given in (12) as follows

a71is = Z ars Pk
k
The reconstructed image obtained from (28) is used as the
initial state of ART

{28)

g%=dmns (29)
and then the reconstruction is performed with the ART
algorithm given in (24) to (26).

Iv. RESULTS

The optimum number of basis functions is an important
parameter in performance of the reconstruction algorithms.
Reconstruction error can be defined as

J6 0 a-]

il

where G is electron density matrix obtained from IRI-95
mode! for [-28" 28°) latitude interval, and G is the
reconstructed electron density matrix. The error with respect
to the number of hurizontal basis function for TLS algurithm
is given in Figure 5 for Haar Wavelets as horizontal basis
functions. As can be observed from Figure 5, the optimum
number of horizontal basis functions for TLS algorithm is
determined as the point where error drops to a value where
increasing the number of basis functions do not reduce the
error further. In TABLE II, the error norm, £ (Nop, 3), for
TLS with Haar and RLS with Cut- Legendre which is
generated from the Legendre polynomial for the given
latitude interval is given. Nop represents the optimum

(N M) = (30)
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number of horizontal basis functions. As seen from the
TABLE 1I, performance of RLS with Cut-Legendre is better
than from the error of TLS with Haar, but the number of
horizonal basis functions in TLS is lower than the number of
horizontal basis functions in RLS, so the computational
complexity is less in TLS. ART algorithm is independent of
basis functions, so the computational complexity is
important. In TABLE I11, reconstruction error obtained with
the ART alone and that of HRA are given. With the new
approach, the performance of TLS is improved and the
reconstruction error is comparable to that of using RLS
algorithm alone. In HRA, the computational complexity is
increased due to addition of the ART algorithm. Yet,
implementation of ART is still simpler than that of RLS. The
recenstructed image for HRA algorithm is given in Figure 6.

Errer Variations for Haar Basis Funciions
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Figure 5. Error Variations for Haar Basis Functions in TLS

TABLE
COMPARING THE PERFORMANCE OF TLS AND RLS
TLS + Haar | RLS + Cut-
Legendre
# of Horizontal Basis 28 M4
Functions
£ (Nop, 3) 0.1823 0.1798
TABLE Ll
ERROR NORM FOR RECONSTRUCTION ALGORITHMS
TLS + Haat ART HRT
£ {(Nop. 3) 0.1823 0.2279 0.1798

n
‘

L

<]
o
‘

Flec tryn Density f em3

Figure 6. Reconstructed Image for HRA

V., CONCLUSION

In this study, TLS algorithm with Haar basis function and
ART algorithm is investigated for ionospheric tomography.
TLS algorithm as used by itself, assumes no regularization
and produces the lowest error for Haar basis for the given
latitude interval, ART algorithm is independent of basis
functions and very sensitive to the initial state. When the
estimation by TLS is input as the initial state of ART, the
overall reconstruction error reduces significantly compared to
the reconstruction error of ART only or TLS with Haar basis
only. The overall error for this scenario is comparable to
using Regularized Least Squares algorithm together with Cut
Legendre basis. Since the proposed method does not include
any regularization, it is more efficient in implementation.
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