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Abssrract- Computerized Ionospheric Tomography (CIT) is a 
method to reconstruct ionospheric electron density images by 
using the Global Positioning System data collected by the earth 
based receivers. In this study, Total Electron Content values 
obtained from a model based ionosphere and tomographic 
reconstruction techniques are used together to obtain 
ionospheric electron density distribution. Algebraic 
Reconstruction Technique (ART) is one o f  the most commonly 
used reconstruction method in medics1 tomugraphy due to i t s  
simplicity in implementation. The performance of ART is 
independent of .basis functions nnd very sensitive to the initial 
state. Total Least Squares (TLS) algorithm assumes no 
regularization and produces the lowest error for Haar basis for 
a given Latitude interval. The performance of TLS is improved 
with the number of receivers. If only one receiver is used, TLS 
algorithm together with Haar basis functions produces B low 
computational complexity and has a lower reconstruction error 
compared to Regularized Least Squares Algorithm. When the 
estimation by TLS is input as the initial state o f  ART, the overah 
reconstruction error reduces significantly compared to the 
reconstruction error of ART only or TLS with Haar basis only. 

I .  INTRODUCT~ON 

Computerized Ionospheric Tomography (CIT) is a method 
to reconstruct ionospheric electron density images by using 
the Global Positioning System (GPS) data collected by the 
earrh based receivers. GPS satellites transmit W O  

simultaneous signals whose frequencies are 3575.42 MHz 
and 1227.60 MHz. Total Electron Content (TEC) is defined 
as the number of free electrons in a column of unit cross- 
sectional area [I]. TEC can be obtained from pseudo range 
and phase values recorded by the GPS receivers. TEC can 
also be obtained from model ionosphere density distribution 
such as  International Reference Ionosphere-95 (IRI-95) 
model by taking the line integral of elegron density on the 
path combining the satellite and receiver. In ionospheric 
tomography, ionosphere is divided into pixels. Figure 1 is a 
simplified example of ionospheric tomography system. Given 
in Figure I ,  NI, indicates electron density in the pixel, dk 
indicates the length of ray in the k th pixel. For rhese 

parameters, k takes a value between 1 and 4, and TEC value 
computed at the receiver can be given as 

where d, is an estimate constant and er is  the error term. In 
general, ionosphere electron d e n s q  IS modeiled as a linear 
combination of two dimensional basis functions obtained by 
the product of the vertical and horizontal basis functions. 
Most commonly used horizontal basis functions are Legendre 
polynomials or Fourier polynomials [ 1-31. 

The vertical basis functions are usually generated using the 
vertical profiles from a selected forward model, such as ]RI- 
95 [3]. Computational complexity of these methods is 
proportional the number of horizontal basis functions, so 
selection of appropriate number of horizontal basis function 
is a critical parameter. 

In this paper, Total Least Squares (TLS) algorithm [ 5 ] ,  
Algebraic Reconstruction Technique (ART) 141, Hybrid 
Reconshuction Algorithm (HRA) which is combination of 
T t S  and ART, and Regularized Least Squares (RLS) are 
discussed as a reconstruction algorithms. 

Receiver 
Figure 1. Sample Ionospheric Tomography System 

Ionosphere electron density is modelled as the serial -. - 
expansion method in which the two dimensional basis 
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functions are used. Two dimensional basis functions are 
obtained from the vertical basis hnctions and horizontal 
basis hncrions. Vertical basis functions are generated from 
the Singular Value Decomposition (SVD) of the electron 
density matrix of forward ionosphere model (IRI-95) and 
horizontal basis functions are modelled from the Haar 
wavelets. It is observed that, due to the fact that TLS assumes 
no regularization, its computational complexity is less than 
the RLS, but RLS provides a more reliable result according to 
TLS. To improve the performance of T U ,  ART i s  
considered instead of the regularization method. Tbe 
reconstructed electron density profile from TLS is input as 
the initial state of ART and a Hybrid Reconstruction 
Algorithm (HRA) is obtained. In HRA, although the 
computational complexity is increased compared to TLS 
alone due to addition of the A R T  algorithm. the 
implementation is still simpler and the overall error is lower 
than using ART or TLS alone. 

11. MODEL IONOSPHERE AND BASIS FUNCTIONS 

In this paper, IR1-95 is selected as a reference iposphere 
model and ionosphere cross-section for [-28 28 ] latitude 
interval is provided in Figure 2 using the parameter set given 
in TABLE 1. Vertical basis functions given in Figure 3, are 
calculated by using the Singular Value Decomposition 
(SVD). Each vertical profile represents the variations 
according to height for a fixed latitude. Horizontal basis 
functions are selected as  Haar basis functions given in Figure 
4. Haar basis functions are mapped to [-28' 28-1 latitude 
interval and x-axis is modelled 3s a distance between -28' 
and 28' latitudes in which the one degree is equal to I 1  I km. 

TABLE I 
IRI-95 MODEL PARAMETERS ' DATE; year, month. day I 2033, D8. 5 

In this study, ionosphere i s  divided into 95 pixels on the 
vertical direction and 29 pixels on the horizontal direction, 
Height of each pixel is IO km, and the width of each pixel is 
two degrees. It  is assumed that the satellite travels on the flat 
line for a given latitude interval and the distance between 
each satellite position is equal to 0.5 degree I r  is assumed 
that the ionosphere IS  time invariant for each sareklite 
positions and for each TEC calculations and electron density 
in each pixel has a uniform distribution. 

111. RECONSTRUCTION METHODS 

Ionospheric electron density over height-latitude plane 
given in Figure 2, is expressed as a serial expansion of 
horizontal and vertical basis functions as given below: 

K 
(4) 

where#k(r.8) is a two dimensional basis hnction and 
u , ( r )  is the vertical basis function obtained from IRI-95 
model by SVD and v , ( O )  is the horizontal basis function 
chosen as Haar wavelets. In these expressions, K is number 
of total basis hnctions, M is number of vertical basis 
functions and N is number of horizontal basis functions. r is 
the height from sea level and it varies between 60 km to 1000 
km, Height is divided in ffR E 95 pixels, each of I D  km O is 
any angle between -28' to 28 latitude. Latitude is divided in 
NO= 29 pixels each of 2'. 

Vertical Basis Furidions 
a 6 y I I  , . , , .  , , I . . . . . . . 

0. '-28 

Figure 2 IRI-95 Model Parameters 

Heigh( km 

Figure 3.  Vertical Basis Functions from IR1-95 Model. 

783 



nldrnsr. k m  Dhtance. km 

Figure 4. Haar Basis Functions. 

Expression given in (4) is similar to the expression given in 
( I ) .  In ( I ) ,  equation is based on the TEC values and the 
expression given in (4) is based on the ionospheric electron 
density. Electron density, g(,;B), is given in matrix notation 
in (6) and the two dimensional basis function for is also given 
in the matrix notation in (7). 

] (6)  
g01.qj : g(11,%) i ... : g(q,@@) 

. .  . ... . . . .  . .  . .  . .  

,drxJ$qli g(rhilE4) ." drNFE&I ++ + 
91 92 gho 

For simpliciry, the calculations are continued with the 
given in (8). vector form of G and 

. 1  1 

In vector g,  g(rl.Q1) represents the sample of electron 
density obtained from IRI-95 model at the height of 1000 km 
and the latitude of -25' degree. In CIT, TEC values are 
computed from GPS signals. In this study, TEC calculations 
are obtained from the scenario discussed in the previous 
sections using the IR1 model. The measurement TEC vector 
can be expressed 

Px4 (9 )  
1, If ( p ,  q )  th  pixel is on the I th ray. 

p l , p . q  = i 0, Otherwise 

In (9j, 1 represents the index of ray from the satellite such 
as Ith ray (or index for satellite position, such as lth satellite 
position) 2nd d ,  is the TEC value which is calculated for Ith 
ray (Ith satellite positiofl. ( 9 )  can be rewritrcn bv using the 
vector, g , as foilows 

dl = P 1 . k  g ( k ) ,  

Pi 'k  = i 0,Othenvise 

k 
f , I f ( p , q ) t h p i x c l  isonthc I t h  ray ( IO)  

k = p + ( q - I ) M  

Equation (IO) is given in matrix notation by using the 
scenario matrix E and the vector g as follow: 

where d is the vector of TEC value from the measutement 

and is equal to d = [dl d2  d3  r . .  d L ]  . L = 57 is 
equal to total number of satellite positions. From rhe 
configuration of satellite and receiver positions, the scenario 
matrix,B , is calculated. The number of the columns of rhe 
scenario matrix is equal to number of pixels in the horizontal 
direction and the number of the rows of the scenario matrix is 
equal to number of pix& in the vertical direction. The TEC 
calculation procedure is iterated for all satellite positions and 
elements of  B are assigned with respect tu pixel butt gi iw 
in grid geometry. For the given satellite position, all of the 
pixels on a satellite ray are determined and the elements of 
scenario matrix which corresponds to these pixels are 
assigned one and the other elements of scenario matrix are 
assigned zero. 

T 
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Equaiion ( 5 )  can be written in an inverse problem form as 
follows 

k 
Measurement equation given in (1 1) can be rewritten in the 

form of inverse problem by using the (12) as given below. 

In (13) ,ak  is the reconstruction coefficient and is 
calculated by using the recsnstruction algorithm This TEC 
calculation method is considered for all two dimensional 
basis functions to obtain the basis TEC values. In this step, all 
of the W O  dimensional basis finclions are assumed to be sub- 
ionosphere models, so the measurement equations from the 
basis TEC and the ionosphere TEC can be written in the form 
of (14) as 

any errors in the problem are in d which is projected onto 
the range of to find the solution. By the assumption, any 
changes needed to find a soluiion must come by modifying 
only d However, in ionospheric tomography problem, P is 
determined from the model TEC values, and may also have 
errors. Thus, it may be of use to find a sohtion to the 
problem given in (16) which allows for the fact that both P 
and d may be in error. Problems o f  this sort are known as 
TLS problems. 

In TLS problem, d and P are augumented with possible 
error vectors and matrices, respectively. and the solution of 
the perturbed equation 

( d  + e ) = ( P  + E )  a (17) 

is investigated. Generally in applications of TLS, the 
number of equations exceeds the number of unknowns. 
However, TLS may also be applied to the problems in which 
the number of unknowns are more than the number of 
equations. In this case, an infinite solution set exists and the 
TLS solution method points the one with the minimum nom. 

The closed-form TLS solution is given by the fol!owing 

QTLS =(PHP-a?+,  1)''P" d ( 1  8 )  
where P , . ~  is the vector contains the TEC values obtained 

from the k th two dimensional basis functions for the I th 
satellite position. Each P , , ~  can be written in the form of 

where 6:+, is the smallest non-zero singular value of the 

matrix C = [P/d] , H represents Hermitian Transpose, and 

I is the identity matrix [ 5 ] ,  [ 6 ] ,  [TI ,  [XI, [Y]. 
In P , , ~ ,  TEC!,k=, represents the obtained TEC value from 

the firsf M'O dimeflsional basis hnction for the I th satellite 
position. The equation given in (14) is similar to ( I ) .  Each 
row O f  FqUatiOnS in (1) and (14) are based on the TEC values. 

Equation (14) can be written in the matrix notation in ( I  6) 
and the inverse problem equaiion for ionosphere tomography 
is obtained: 

where 

In [XI, i t  is shown that when P has full column rank, the TLS 

solution i s  related to the right singular vector V,,+b of c 
associated with the smallest singular value onVl under the 
condition [hat ihe singuldr \aluc 

Hereo, represents the n th largest singular value and 

v , + ~ . ~ + ,  is the last component of the singular vector V n + l .  

Let c+l=[vf+l v ~ + ~ , ~ + I  3 where the cf+l is sub- 

ionospheric tomography, it is desired lo find an 
by using the reconstruction 

vector that contains the first N elements of Vn+l . By using 

the V,,, and v ~ + ~ , , + ! ,  the TLS solution for the full-rank 
- optimum coefficient set a 

a!gorithms. In the following, the method of determining a 
with the TLS is discussed. ART is also examined to find system is 

(20) 
reconsmicred image of ionosphere eIectron density. 1 /. - 

a,,, = -- " n + l  
yn+j  ,"+I A. Total Leusr Squares (TLS) Algorilhni 

In the 1east-square.s problem, the solution for (16) is 
obtained with the assumption that the matrix P is correct, and 

For rank-deficient systems and hence underdetermined 
systems, the TLS solution can be given as follows 
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where i = r + l  

where 

B oP > up+t =...= U"+, =O and V i  = v v r , n + l  . E 
are singular values and singular vector of C, respectively. 
From the previous discussion, TLS solution can be obtained 
with the SVD of c 151, [ 6 ] ,  [TI, [SI, [9]. 

.4. Algebraic Reconsrniction Technique {ART) B. Hybrid Reconstruction Algorithm (HRA) 

From this geometry, TEC value for the ray can be written 
TLS output can be written by using the a~~~ coefficients in the form given below: 

in the equation given in ( I  2) as follows 

(22) 

The reconstructed image obtained from (28) is used as the 
initial state of ART 

where upper bound for i Is equal to number of satellite 
position in interval of 1-2s" 28'1 latitude. w,, i s  the weight S O ' i T L S  (29) 
coefficient for the I I I  th pixel. In Equation (22), l i lt , , ,  and g, 

are Same as [he dL and N~ given in (1). ne 
measurement equation system for the algebraic 
reconstruction technique can be obtained by using (22). 

and then the reconstruction is performed with the ART 
given in (24) to ( 2 6 ) .  

IV. RESULTS 
The solution is calculated for the set of equations obtained 

by using rhe (22), but the initial value is needed as 

In ionospheric tomography, iterative solution algorithm can 
be Liven as follows 

This algorithm can also be expressed in a slightly different 
farm: 

The optimum number of basis functions is an important 
parameter in performance of the reconstruction algorirhms. 
Reconstntction error can be defined as 

where G is electron density matrix obtained from 1RI-95 
mode! for [-28' 28'1 latitude interval, and G is the 
reconstructed electron density matrix. The error with respecl 
IO the number of hurizonlal  basis runstion Vur TI-S .il;ui-itlii>i 

is given in Figure 5 for Haar Wavelets as horizontal basis 
functions. As can be observed from Figure 5, the optimum 
number of horizontal basis functions for TLS algorithm is 
determined as the point where error drops to a value-where 
increasing the number of basis functions do not reduce the 
error further. In TABLE 11, the error norm, E (Nop,  3), for 
TLS with Haar and RLS with Cut- Legendre which is 
generated from the Legendre polynomial for the given -. ~ 

latitude interval is given. Nop represents the optimum 
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number of horizontal basis hnclions. As seen from the 
TABLE 11, performance of RLS with Cut-Legendre is better 
than from the error of TLS with Haar, but the number of 
horizontal basis functions in TLS is lower than the number of 
horizontal basis functions in RLS, so the computational 
complexity i s  less in TLS. ART algorithm is independent of 
basis functions, so the computational complexity is 
important. In TABLE 111, reconstmction error obtained with 
the ART alone and that of HRA are given. With the new 
approach, the performance of TLS is improved and the 
reconstruction error is comparable to that of using RLS 
algorithm alone. In HRA, the computational complexity is 
increased due to addition of the ART algorithm. Yet, 
implementation of ART is still simpler than that of RLS. The 
reconstructed image for HRA algorithm is given in Figure 6 .  

TLS + Haar 

Figure 5. Error Variations for Haar Basis Functions in TLS 

RLS + Cul- 
Legendre 

Functions 
c (.top. 3) I 0.1823 i 0.1798 

TABLE 111 
ERROR NORM FOR RECONSTRUCTION ALGORITHMS 

1 TLS+Haar 1 ART 1 HRT 
E (.\lop. 3) I 0.1823 1 0.2279 I 0.1798 

Figure 6 .  Reconstructed Image for HRA 

V. CONCLUSlON 

In this study, TLS algorithm with Waar basis function and 
ART algorithm is investigated for ionospheric tomography. 
TLS algorithm as used by itself, assumes no regularization 
and produces the Iowest error for Waar basis for the given 
latitude interval. ART aIgorithm is independent of basis 
functions and very sensitive to the initial state. When the 
estimation by TLS is input as the initial state of ART, the 
overall reconstruction error reduces significantly compared to 
the reconstruction error of ART only or TLS with Haar basis 
only. The overall error for this scenario is comparable to 
using Regularized Least Squares algorithm together with Cut 
Legendre basis. Since the proposed method does nor include 
any regularization, it is more efficient in implementation. 
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