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This paper explores feedback controller design for cavity flows based on reduced-order
models derived using Proper Orthogonal Decomposition (POD) along with Galerkin pro-
jection method. Our preliminary analysis shows that the equilibrium of the POD model
is unstable and a static output feedback controller cannot stabilize it. We develop Linear
Quadratic (LQ) optimal state feedback controllers and LQ optimal observers for the lin-
earized models. The linear controllers and observers are applied to the nonlinear system
using simulations. The controller robustness is numerically tested with respect to different
POD models generated at different forcing frequencies. An estimation for the region of
attraction of the linear controllers is also provided.

I. Introduction

The flow control group within the Collaborative Center of Control Science at The Ohio State University
has been working on a collaborative approach towards the design of reduced-order model-based feedback
control of cavity flows.'2 The components include obtaining detailed data using numerical simulation of or
experimental work in the cavity flow, derivation of reduced-order model of the flow dynamics,® controller
design,*® and experimental implementation of the controller.>” Cavity flow control problem has received
significant attention in recent years.®® Particularly, closed-loop control approaches have begun to gain
popularity within the fluid dynamics community.'®'* From the system-theory point of view, the most
outstanding difficulty in approaching cavity flow control comes from the nature of the governing Navier-
Stokes equations, resulting in an intractable nonlinear infinite dimensional system. Physical-based linear
models'! have provided a certain degree of physical insight, useful for controller design and analysis. However,
linear controllers designed from these classes of models have met limited success in experiment.® Typically,
controllers designed based on linear models are capable of suppressing an oscillation mode in the cavity, but
lead to the generation of other modes. It is fair to say that in the case of cavity flows, linear models may
not be that useful to be employed in the design of feedback controller. It is also clear that the derivation of
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a low-order, finite-dimensional model of the cavity flow dynamics is essential in any successful development
of a feedback control strategy.

In recent years, Proper Orthogonal Decomposition (POD) along with Galerkin projection method has
been increasingly used in many flow problems.'® ' By means of POD and Galerkin projection method,
a system described by partial differential equations can be reduced to a finite set of ordinary differential
equations. By a boundary control separation method, it is possible to incorporate the control input explicitly
in the reduced order model, which is desirable from the point of view of the control design. Feedback control
techniques seem to offer a considerable advantage over approaches based on open-loop forcing in terms of
robustness; however, the effects of the control on the flow dynamics in closed-loop are not well understood
yet. As a result, the systematic design of feedback controllers for cavity flows is still a widely open problem.

In this paper, we focus present preliminary results on feedback control design using POD-based models for
cavity flows. Starting with basic equilibrium analysis of forced low dimensional models, we consider the role
of linear static output feedback controller and linear-quadratic optimal state feedback controller /observer.
The goal is to gain insight into the intrinsic limitations of linear feedback methodologies when applied to
the specific nonlinear POD model, in particular with respect to the achievable regions of attraction and the
robustness under parametric uncertainties.

This paper is organized as follows: a description of the POD based reduced-order model is given in
Section II. Equilibrium analysis and static output feedback controller design are presented and discussed
in Section III. In Section IV, optimal LQ controllers and observers are presented. Simulations are given
in Section V, where robustness is investigated, and the regions of the attraction are estimated numerically.
Finally concluding remarks are given in Section VI.

II. Reduced Order POD Modeling

The Navier-Stokes equations governing the flow dynamics are a set of highly nonlinear partial differential
equations which are not suitable for feedback controller design. To obtain a low dimensional model of
the flow where the control input appears explicitly,'® Proper Orthogonal Decomposition (POD), Galerkin
projection as well as a control separation method?® were adopted. The nonlinear POD based model of the
flow dynamics used in this paper is the one derived in Samimy et al,? which reads as

N N N N
ak(t):bk+2djkaj(t)+zz IR QI ()a™ () + )+ (FF T (t), 1<k<N, (1)
j=1m=1 Jj=1

=1

being a’(t) the time coefficient associated with the i-th POD mode. The constant scalar coefficients b*, d7*,
g™k and the constant vectors eF and f7* are obtained from Galerkin projection, while

I(t) = | Tu(t) (2)

ro) :{ V(t)sin(a) V(t) >0 } )

where o = /6. The reader is referred to Samimy et al? for details. The coefficients of the POD model have
been derived from CFD simulations conducted in absence of external input (V' (¢) = 0, i.e., the baseline case)
and in presence of an external sinusoidal excitation of the form V(¢t) = Asin(27 f.t), with f. = 500 Hz and
fe =900 Hz respectively. The nonsmooth nonlinearity in T, () results from the numerical computations. For
the purpose of simplifying the subsequent analysis, we approximate I',,(¢) by ', (t) = V (¢) sin(«). Simulation
results show that this simplification has no significant impact on the output pressure, as seen in Figure 1,
which compares simulations of the output pressure for the forced cavity flow at Mach 0.38. Also, note that
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Figure 1. Output pressure at Mach 0.38 with and without nonlinearities in the forcing flow.

I'. can be approximated by a constant, which has been normalized to unity. We can further rewrite Eq. (1)
as Eq. (4), considering V' (t) as a scalar control input, in the form

al(t)Ha(t)

+PV(t) +

aT () HNa(t) (@ V() a(t)

where N is the number of modes, and the coefficient matrices of the system are defined by

Al an g2 gm gitk  gl2k  GINk
72 712 722 N2 21k =22k —9Nk
P b a— d d oo d 7 g g e g
pN JIN PN NN gNk  gN2k - GNNk
and
51 f_lk
52 72k
_ e _ f
P=| |, @
N

ka

The equation for the measured output is given by

p(t) = Ma(t), (5)

where p(t) is the output pressure at the central cavity floor and M is the coefficient matrix relating the
pressure and the time coefficients using stochastic estimation.?!

III. Static Output Feedback Control

In this section, an equilibrium analysis is first applied to the nonlinear POD based model described by
Eq. (4). The equilibrium points of the nonlinear system are calculated and then the system is linearized
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Figure 2. Time coefficients calculated by numerical simulation of the cavity flow at Mach 0.38: baseline

around the computed points. The effect of static output feedback control on the location of the equilibria is
analyzed and discussed. It turns out that the control has very limited authority to modify the closed-loop
equilibrium. Therefore, the POD model has been modified to shift the equilibrium to the origin of the state
space, which corresponds to singling out the mean flow. The analysis on the effect of static output feedback
control is then repeated for the modified model. All the computations and analysis have been performed
on the data obtained using large eddy simulation of the cavity flow at Mach 0.38. A total of three cases
have been studied: the baseline case and forced cases with the forcing sinusoidal signals at the frequency of
500 Hz and 900 Hz, respectively. For the sake of brevity, only the results of the baseline case are reported.

A. Equilibrium Analysis

In order to gain insight into the properties of the nonlinear POD model, we started with determining the
location of the equilibrium points of the unforced POD model. Since this task involves solving a nonlinear
algebraic matrix equation derived from Eq. (4) with V' = 0, an analytic solution is intractable, and numer-
ical methods must be sought. In our case, a Newton iterative method was implemented to calculate the
equilibrium points of Eq. (4), that is, the roots of the nonlinear equation f(a) = 0, where f(a) is the right
hand side of Eq. (4). The method implements the steepest descent iteration

app1 = ax —J 7 (ar) f(ar) (6)
where J(ay) is the Jacobian matrix
_ 9f(a)
J==5= (7)

It should be noticed that the solution of the Newton method of Eq. (6) depends on the initial conditions and
it is usually not unique. Evaluation of the time coefficients by numerical simulation shows that there exists
a feasible region for the time coefficients given by

|CL1‘ < 1.72
las| < 2.11
lag| < 1.42 (8)
las| < 1.23
las| < 0.65
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and so solutions obtained by means of the Newton algorithm that lie outside the feasible region need to be
discarded. An example of the time history of the coefficients a;(t) of the POD model (4), obtained by means
of computer simulations, is shown in Figure 2. The equilibrium solution ag relative to the baseline cavity
flow at Mach 0.38 is computed as

0.1457

0.1541

ap = | 0.0064 9)
0.0026
—0.1370

The POD model Eq. (4) is linearized around the equilibrium ag to obtain

a= 8{92&) a:aoa = J(ag)a (10)

where the Jacobian matrix J(ap) is given by

0.0739 —0.5392 -0.1266 —0.0188 0.0627
0.4714  0.0525 —0.3956 0.0808  0.0597
J(ao) = 0.0486  0.0545 —0.1943 1.0659  0.2010 (11)
0.0617  0.0221 —-0.7684 —0.1731  0.0075
—0.0451 —0.0555 —0.0730 0.0022 —0.2352

The set of eigenvalues of Jacobian matrix is

—0.1626 4 0.9363i
—0.1626 — 0.9363i
A(J(ag)) = | 0.0401 +0.4834i | . (12)
0.0401 — 0.4834i
—0.2312

Note the presence of two unstable eigenvalues in A(J(ap)). Very similar results have been obtained for the
forced cases with forcing frequencies at 500 Hz and 900 Hz.

B. Static Output Feedback Control

Static output feedback control, i.e, a control of the form V = Kp(t), is the simplest feedback law that can
be implemented. To investigate the performance that can be obtained by static output feedback for different
values of the gain K, we provide the plot of K vs. the equilibrium point and the corresponding root locus,
which shows how the location of the closed-loop eigenvalues change with respect to K. The first plot is
reported in Figure 3, while the root locus is shown in Figure 4. Note that for K € [—o0, 1058] U [2417, o0],
the equilibria of the closed-loop system change continuously and the eigenvalues change continuously as well.
On the contrary, the Newton algorithm fails to yield a converging solution within the feasible region for
K €[1059, 2416].

Since very high gain solutions are of no practical use due to unavoidable limitations in the control
authority, we restricted the analysis to a reasonable range of the feedback gain K. As shown in Figure 3, the
sensitivity of the equilibrium solution is very small for K € [-100,100]. Moreover, it is clear from Figure 4
that stabilization can not be achieved using proportional feedback. The forced cases show no significant
difference from the baseline case, and similar conclusions can be drawn.

Since the presence of feedback control does not alter the location of the equilibrium, it makes sense
to shift the coordinates of the state space to the unique equilibrium point ag. Shifting the equilibrium of
Eq. (4) to the origin corresponds to singling out the effect of the mean flow from the low order model, and
considering the local behavior of the system around the mean flow. Letting

a=a— ag, (13)
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Figure 3. Equilibrium points vs. K € [—o0,1058] U [2417, o0]

we obtain
(@+ ao)TH (@ + ao) (@V)" (@ + ao)
a=F+G(a+ap) + : + PV + : . (14)
(@+ ao)THN (@ + ao) (@VV)" (@ + ao)

Recalling that ag is the equilibrium solution of the unforced system, that is,

agf_llao
F + Gag + : =0 (15)
ol 7N aq
the model in the new set of coordinates a reads as
al H'a @'V)"a
a=Ga+ : + PV + : : (16)
a"HVa @QVv)'a

Similarly, letting p = p — po, the output equation (5) can be rewritten as
p=p—po=Ma— May= Ma. (17)

The new modified model has the same structure as (4) and (5) but with the equilibrium transformed to the
origin, which is more convenient for controller design and stability analysis.

The static output feedback V' = —Kp, which is the most appropriate for the model (16)—(17), does not
alter the equilibrium at ag for the original POD model (4) even in presence of high-gain feedback, as opposite
to the feedback law V' = —Kp considered previously. The analysis reveals that the origin of (16) cannot
be stabilized by the static output feedback V' = —K7p, as the root locus of the compensated system (shown
in Figure 5) possesses two branches which remain inside the open right-half complex plane for all values of
the gain K. It is quite obvious that static output feedback controllers are inadequate for the POD model
(16)—(17), and that the use of state feedback or dynamic output feedback controllers is required.
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IV. Optimal State Feedback Control

The jacobian linearization of (16) and (17) at the origin is readily obtained as

{ &=Ga+ PV (18)

M

=
Il
Q

It has been verified that the system (18) is controllable and observable for all considered cases. This allows
standard state-space methodologies to be implemented to develop a controller (either by full state feedback
or dynamic output feedback) to stabilize the origin of (18). This, in turn, yields a controller that locally
stabilizes the origin of the nonlinear system (16). A convenient and well-established methodology for the
controller design is offered by linear-quadratic optimal control. Let the cost function J. be

J, = / (@’ Qua +VTR,V)dt (19)
0

where @, > 0 and R,, > 0 are the positive definite state weighting matrix and the scalar control weight,
respectively. In our design, the weights have been chosen as ., = I5x5 and R,, = 1. The solution of optimal
state feedback controllers V' = —K; a, where the subscript i = 0, 1,2 stands for the baseline case, forced
case with f. = 500 Hz and f. = 900 Hz respectively, have been obtained from the solution of the associated
Riccati equations, and read as

T
Ko:[—1.6888 —0.4917 —0.0314 1.0509 —0.2101} x 10°  (baseline)

Ky

T
[16.8 —188.3 85.6 83.8 50.8} (fc = 500Hz) (20)

Ks

T
[ 120 —1412 642 569 435 | (f, = 900Hz)

Similarly we design a full state observer in the form given by Eq. (21)

= Ga+ PV + L(p—p) (21)
= Ma

IS

3>
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Figure 5. Root locus for the modified model with equilibrium at the origin.

where a, p are respectively the estimated state and estimated output, and L is optimal output-injection gain
obtained by minimizing the cost function of the same form for the dual system. Choosing again the weights
as identity matrices, the optimal L; for each case are given as follows,

T
Lo=| -13 13 08 —02 —06| (baseline)

Ly

[71.3 16 —08 —04 —0.9}T (f. = 500Hz) (22)

T
Ly [—1.2 1.3 —0.7 —0.2 —0.7} (fo = 900Hz) .

V. Simulation Results

In this section, we show simulation results of the application of the optimal state feedback controllers
and observer designed in Section IV to the nonlinear model described by Eq. (14). For all the three cases
the robustness of the controllers to parameter variations has been evaluated. Since the controllers have been
designed on the basis of the linearized models, their validity for the nonlinear model may be restricted to
a possibly small neighborhood of the equilibrium. For this reason, estimates of the regions of attraction of
each case have been obtained numerically.

A. Controller Robustness

Each controller given by Eq. (21) was designed for a fixed model, while it may be required to work under
uncertain conditions, under the presence of disturbances, or even for a model different from the nominal one
that the controller was designed for. Therefore, it is important to investigate the controller robustness. A
simple test is to check if a controller designed on a specific case works for the other two cases as well. Denote
the POD models obtained for the baseline case, the forced case with f. = 500 Hz and f. = 900 Hz by Fy, P,
P, and the controller designed for each model by Cy, C1, Cs, respectively. The result are given in Table 1,
where the entry ‘yes’ means that the controller can stabilize the corresponding linear model and the entry
‘no’ means that the controller can not stabilize that model.
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Table 1. Robustness of the optimal LQ controllers

Co C1 (O
Py | yes mno no

P, | no yes yes
P, | no yes yes

B. Region of Attraction

An important aspect of the design is to evaluate the region of attraction of the origin in closed loop provided
by each controller. As a matter of fact, since the design is based on linear control theory for the linearized
model, attractivity is guaranteed only for initial conditions within a (possibly small) neighborhood of the
origin of the nonlinear model. For the nonlinear system (16), a theoretical analysis of the region of attraction
is difficult and beyond the scope of the present paper. Instead, the region of attraction obtained by each
controller K; can be estimated numerically. For the sake of simplicity, we will discuss the estimation of
the region of attraction for the system in closed-loop with the state-feedback controller V' = —K;a only.
Since the region of attraction is the largest open invariant set which has the property that each point of
the set is asymptotically attracted to the origin, an estimate of the domain of attraction is obtained looking
for compact sets which contain the origin in their interior, are invariant under the flow of the closed-loop
system, and such that all the point at its boundary are attracted to the origin.

The obvious choice for the compact sets in question is given by the level sets of the Lyapunov functions
for each linearized closed-loop system, that is the functions

Vi(a)=a'Sa, 0<i<2, (23)
where S* is the solution of the Lyapunov equation
S (G — PK;) + (G — PK)TS" = —1 (24)
corresponding to the given choice for K;, 1 < 0 < 2. The level sets Q¢ are defined as
Q) = {a € RY such that V(a) < ¢} (25)

where c is a positive constant. The boundary of %, denoted by 92! is a closed N — 1-dimensional surface in
IRYN. Fix ¢ > 0, and consider, for the system (16) in closed-loop with the state feedback controller V = — K,
arbitrary initial conditions a(0) such that a(0) € 9Q%L. Integrating numerically the differential equations of
the closed-loop system allows to determine whether initial conditions in 99! are attracted to the origin or
not. The search is initialized with ¢ > 0 small enough so that the state trajectory with the corresponding
initial condition converges to the origin. We enlarge ¢ until we find cyax such that the state trajectory with
initial condition 92 diverges for any ¢ > cmax. Then, an estimate of the region of attraction is given by
the corresponding level set Qimax. Similarly to the analysis of the controller robustness, we apply a linearly
designed controller to the nonlinear model described by Eq. (16) for all three cases. The estimated region
of attraction represented by the value of cpax is given in Table 2, where a value c¢pax = 0 corresponds to
an unstable equilibrium at the origin in closed-loop, consistently with the results given in Table 1. Finally,

Table 2. Region of attraction of the optimal LQR state-feedback controllers

CO Cl 02
P | 4 0 0
P 0 09 11
Pl 0 7 11

an example of simulation results is given in Figure 6 and Figure 7, which show respectively the output p(t)
and the first time coefficient a;(¢) for each the closed-loop systems (Py — Cp), (P1 — C1), and (P, — Cb)
corresponding to the main diagonal in Table 1 and Table 2. For each case, the initial condition has been
selected within the estimated region of attraction, and the corresponding trajectory decays asymptotically
to the origin.
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Figure 6. Simulation results — Output pressure p(t).

VI. Conclusion

In this paper, we have reported preliminary studies on POD based low dimensional modeling and feedback
controller design for the control of cavity flows. It has been shown that the equilibrium of the nonlinear
POD model corresponding to the mean flow is exponentially unstable and cannot be stabilized using a
static output feedback controller. A modified model with the equilibrium transformed to the origin has
been derived and further analyzed. A Linear Quadratic (LQ) optimal state feedback controller and an LQ
optimal observer has been developed for the linearized models, and its effectiveness tested on the nonlinear
POD model. Numerical analysis has been used to test the controller robustness and give an estimate of the
region of attraction. We are currently investigating real time implementations of the proposed controllers in
our experimental setup.? An extension of this work will consider the design of nonlinear feedback controller
on the basis of the analytical nonlinear POD models to achieve better closed-loop performance in terms of
transient response, robustness and size of the domain of attraction.
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