
A Database Model for Querying Visual

Surveillance Videos by Integrating Semantic and
Low-Level Features�

Ediz Şaykol, Uğur Güdükbay, and Özgür Ulusoy

Department of Computer Engineering, Bilkent University,
06800 Bilkent, Ankara, Turkey

{ediz, gudukbay, oulusoy}@cs.bilkent.edu.tr

Abstract. Automated visual surveillance has emerged as a trendy ap-
plication domain in recent years. Many approaches have been developed
on video processing and understanding. Content-based access to surveil-
lance video has become a challenging research area. The results of a
considerable amount of work dealing with automated access to visual
surveillance have appeared in the literature. However, the event models
and the content-based querying and retrieval components have significant
gaps remaining unfilled. To narrow these gaps, we propose a database
model for querying surveillance videos by integrating semantic and low-
level features. In this paper, the initial design of the database model, the
query types, and the specifications of its query language are presented.

1 Introduction

In a traditional surveillance system, human operators monitor multiple guarded
environments simultaneously to detect, and possibly prevent, a dangerous situa-
tion. As a matter of fact, human perception and reasoning are limited to process
the amount of spatial data perceived by human senses. These limits may vary
depending on the complexity of the events and their time instants. The acceler-
ation in communication capabilities and automatic video processing techniques,
and the reasonable cost of the technical devices have increased the interest in
visual surveillance applications in the recent years. Many approaches related
with content-based retrieval and automatic video processing and understanding
(e.g., automatic video shot detection, event classification, low-level feature based
querying, etc.) have been developed in the mean time with the advances in visual
surveillance technology. These advances have led to the integration of automatic
video processing and content-based retrieval with visual surveillance systems.
Due to the highly variable nature of visual surveillance videos, a need has arisen
for robust scene processing and event recognition.

� This work is supported in part by Turkish State Planning Organization (DPT) under
grant number 2004K120720, and European Commission 6th Framework Program
MUSCLE Network of Excellence Project with grant number FP6-507752.

K.S. Candan and A. Celentano (Eds.): MIS 2005, LNCS 3665, pp. 163–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

164 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

In our work, the main focus is on indoor monitoring, and a framework for
querying surveillance videos by integrating semantic and low-level features is de-
veloped. Regarding this issue, some powerful systems (e.g., [1,2,3,4]) exist in the
literature. Besides system-level integration, some methods have been proposed
for smaller units (e.g., detecting scene changes [5,6], moving object detection
and tracking [7]). As far as the database indexing and retrieval parts are con-
cerned, the researchers generally designed simple database structures for events.
The event descriptors stored in a database generally contain the start and finish
times, and the salient object labels. Indexing at the object feature level is not as
frequent as the event level. In [8], the authors proposed an approach for traffic
surveillance and stored object motion in the database. There are also some ap-
proaches that deal with the color information of the video objects (e.g., [2,4]).
However, their use is either to keep track of the video objects or to classify the
video objects.

The main contribution of the proposed framework is the querying capability
by integrating semantic features (i.e., events, sub-events, and salient objects) and
low-level object features (i.e., color, shape, and texture) for surveillance videos.
To the best of our knowledge, no systems exist that are embedding object-based
low-level features (e.g., color, shape, and texture) to the indexing and retrieval
module in visual surveillance domain. Moreover, the framework provides sup-
port for effective query specification (e.g., query-by-example, query-by-sketch)
and retrieval as opposed to keyword-based database searches. In the following,
we describe our motivations and the basic assumptions we made in our work.

– Enriching the querying module with low-level object features (color, shape,
texture) is more meaningful for indoor surveillance. We might need to query
an event to detect an intruder in a supermarket by specifying the color of
his coat, texture on his shirt, etc. This low-level feature enrichment would
possibly decrease the rate of false alarms. For the intruder detection example,
it is possible that there exist many innocent people making the same type
of actions (events) in the supermarket at that time, causing a significant
post-processing for the retrieved persons to find the intruder, or generate
false alarms.

– Static camera and constant light source are assumed for the sake of simplicity
in terms of database modeling. These assumptions fit most to indoor environ-
ments than the other categories. Although there are some recent approaches
assuming inputs from two fixed cameras for indoor environments [9], the way
of processing object motions is very different and sophisticated (e.g., contour
matching and tracking in 3D) for multi-camera surveillance approaches.

– The pre-processing steps for event/object indexing into the database for
querying are more straightforward in indoor monitoring.Complex
background scenes are rare and the object motions (e.g., motions of hu-
mans) are generally expectable. This is basically because of the fact that
indoor environments are generally simpler than others.

A Database Model for Querying Visual Surveillance Videos 165

The rest of this paper is organized as follows: Section 2 summarizes some
related studies. The proposed database model is presented in Section 3. Finally,
Section 4 concludes the paper.

2 Related Work

Video Surveillance and Monitoring (VSAM) system presented in [3] is one of the
complete prototypes for object detection, object tracking and classification, as
well as calibrating a network of sensors for a surveillance environment. In that
work, a hybrid algorithm was developed, which is based on an adaptive back-
ground subtraction by three-frame differencing. The background update scheme
is based on a classification of pixels (either moving or non-moving) performed by
a simple threshold test. A model is provided on temporal layers for pixels and
pixel regions in order to be robust for detection of stop-and-go type of object
motions. The background maintenance scheme we employ is similar to that of
VSAM. However, in our framework, the extracted background is also used for
both event annotation and object tracking.

Stringa and Regazzoni [1,10,11] proposed a real-time surveillance system em-
ploying semantic video-shot detection and indexing. Lost objects are detected by
the help of temporal rank order filtering. The interesting video shots are detected
by a hybrid approach based on low-level (color) and semantic features. The au-
thors have adapted a change-detection module that processes the background
image and the current image to detect the stationary object regions. Retrieving
all the clips related to an alarm is the basic way of querying the system. The
authors also mention about more complex query types including color and/or
shape properties of the dangerous object. However, no details are provided for
the storage of these low-level object features and their indexing and usage within
complex queries. In our framework, we extract object-based low-level features,
and provide a scenario-based querying scheme for complex querying including
color and shape descriptors of the objects.

In [12,13], an object-based video abstraction model was proposed. The au-
thors employed a moving-edge detection scheme for video frames. The edge map
of a frame is extracted first by using Canny edge-detector [14]. The extracted
edge map is compared with the background edge map and the moving edges
and regions are detected at the end of this process. They employed a semantic
shot detection scheme to select object-based keyframes. When a change occurs
in the number of moving regions, the current frame is declared as a keyframe
indicating that an important event has occurred. This scheme also facilitates
the detection of important events. If the number of moving objects remains the
same for the next frame, then a shape-based change detector is applied to the
consecutive frames. A frame-based similarity metric is also defined to detect the
distance between two frames. Our framework employs the strategy of moving
object counting mentioned in [12] with rule-based extensions to help the event
annotation process.

166 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

In [8], Jung et al. proposed a content-based event retrieval framework for
traffic surveillance videos using semantic scene interpretation techniques. They
employed an adaptive background subtraction and update mechanism, where
the background image eventually contains the temporal median values of pixels.
One of the important aspects of the work is that they designed the database
indexing and retrieval in an object-based manner. However, since their primary
concern is traffic surveillance, the object trajectories and motion descriptors are
stored in the database. Their query interface supports query-by-example, query-
by-sketch, and query-by-weighting on the trajectory descriptors. The database is
searched exhaustively to find the best matches for a given query. Our framework
also includes object-based querying by providing examples or sketches. However,
our querying module also enables specification of more complex queries including
low-level and directional descriptors.

Lyons et al. [15] developed video content analyzer (VCA), the main com-
ponents of which are background subtraction, object tracking, event reasoning,
graphical user interface, indexing, and retrieval. They adapted a non-parametric
background subtraction approach based on [16]. A finite state model was de-
signed for object tracking. VCA discriminates people from objects and the main
events recognized are as follows: entering scene, leaving scene, splitting, merg-
ing, and depositing/picking-up. The retrieval component was designed to retrieve
video sequences based on event queries. The event categories are very similar to
those we use in our framework. However, as an additional feature, our framework
also enables object-based querying that can be refined by providing low-level
and/or directional descriptors.

Brodsky et al. [4] designed a system for indoor visual surveillance especially
in the retail stores and in the houses. They assumed a stationary camera and
used background subtraction technique described in [15]. The pixels detected as
foreground are grouped into connected components and tracked throughout the
scene. Object tracking module handles merging and splitting of moving objects
by making use of a color model extracted for each moving object. A list of
events that the object is participated are stored for each object, where the events
are simply entering, leaving, merging, and splitting. The system also includes a
classification module to distinguish people, pets, and other objects. One of the
distinctions of this system and our framework is the use of color feature. In this
system, the color feature of the objects is mainly used for reassigning labels
for moving connected components, whereas, as an extension, we also provide
object-based querying based on color and/or shape features.

Haritaoğlu et al. [17] proposed a real-time analysis of people activities. Their
model uses a stationary camera and background subtraction to detect the regions
corresponding to person(s). Their system, called W 4, uses shape information to
locate people and their body parts (head, hands, feet, and torso). The system
operates on monocular gray-scale video data, and no color cues are used. The
creation of models of the appearance of person(s) helps the tracking process
through people interaction (e.g., occlusions), and simultaneous activities of mul-
tiple people. The system uses a statistical background model holding bimodal

A Database Model for Querying Visual Surveillance Videos 167

distribution of intensity at each pixel to locate people. The system is capable of
detecting single person, multiple persons, and multiple person groups in various
postures.

In the literature, most of the systems have focused on (unattended) object
detection and tracking moving object. Extracted event information, based on
the object tracking and shot detection modules, is generally stored in a database
and exhaustively searched when a query is submitted based on event information
(e.g., [15]). From another perspective, retrieving the video sequences related to
a generated alarm is the basic way of querying the system (e.g., [1]). In [1], the
authors also mentioned more complex query types including color and/or shape
properties of the salient objects. The querying module of [8] supports query-by-
example, query-by-sketch, and query-by-weighting on the trajectory descriptors
of moving objects.

3 A Database Framework for an Integrated Querying of
Visual Surveillance

We propose a framework which provides an integrated environment for querying
indoor surveillance videos by semantic (event-based) and low-level (object-based)
features. The overall architecture of the framework is shown in Figure 1. The
queries are handled by query processing module, which communicates with both
the feature database and the content-based retrieval module. The database con-
tains event and object features extracted by automated tools. The visual query
interface is used to submit queries to the system and to visualize the query re-
sults. The users should be able to specify event queries enriched with low-level
features for objects and directional descriptors for events.

3.1 Object Extraction and Tracking Module

A fully-automatic object detection and tracking module is designed and imple-
mented, which employs an adaptive background maintenance scheme, similar to
the one proposed in [3]. At the pixel-level, the algorithm tries to identify the mov-
ing object pixels. The adaptive background subtraction technique is combined
with a three-frame differencing technique to determine the moving object pixels
as a region and also to detect stop-and-go type of object motions. According to
the three-frame differencing algorithm, an object is assumed to be moving if the
intensities of the object have changed between current and previous frames, and
between current and next-to-previous frames.

Video data can be considered as a sequence of frames. Let If (x, y) denote
the intensity value of a pixel at (x, y) at frame f . Hence, Mf (x, y) = 1 if (x, y) is
moving at frame f , where Mf (x, y) is a vector holding moving pixels. A threshold
vector Tf (x, y) for a frame f is needed for detecting pixel motions. The basic
test condition to detect moving pixels with respect to Tf (x, y) can be formulated
as follows: Mf(x, y) = 1 if (|If (x, y) − If−1(x, y)| > Tf(x, y)) and (|If (x, y) −
If−2(x, y)| > Tf(x, y)).

168 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

Object
Extraction
and Tracking

Module

Shot
Boundary
Detection
Module

Event
Information
Extraction
Module

Event and
Object

Database

Database Population Process

Querying & Retrieval Process

Video

Visual
Query

Interface

Query
Processing

Module

Content-
based

Retrieval
Module

Fig. 1. The overall architecture of the framework

The (moving) pixel intensities that are larger than the background intensities
(Bf (x, y)) are used to fill the region of a moving object. This step requires
a background maintenance task based on the previous intensity values of the
pixels. Similarly, the threshold is to be updated based on the observed moving
pixel information at the current frame. A statistical background and threshold
maintenance scheme is employed in the module as follows:

B0(x, y) = 0, (1)

Bf (x, y) =

{
αBf−1(x, y) + (1 − α)If−1(x, y), Mf (x, y) = 0,
Bf−1(x, y), Mf (x, y) = 1,

(2)

T0(x, y) = 1, (3)

Tf (x, y) =

{
αTf−1(x, y) + (1 − α)(k × |If−1(x, y) − Bf−1(x, y)|), Mf (x, y) = 0,
Tf−1(x, y), Mf (x, y) = 1,

(4)

where k is set to 5 in Eq. 4. As argued in [3], Bf (x, y) is analogous to local
temporal average of pixel intensities, and Tf (x, y) is analogous to k times the
local temporal standard deviation of pixel intensities computed with an infinite
impulse (IIR) filter. A snapshot of object extraction and tracking module is
shown in Figure 2.

3.2 Shot Boundary Detection Module

Object tracking and event classification tasks directly benefit from the extracted
video shots. Moving objects generally enter or leave the scene at shot boundaries.
Hence, the shot boundary detection module is particularly designed for detecting

A Database Model for Querying Visual Surveillance Videos 169

Fig. 2. Object extraction and tracking module user interface. Top-left image is the
original image, top-right is the intensity layer image, bottom-left is the background
layer image, and bottom-right is the object layer image where moving object pixel
region can be seen.

video shot boundaries, hence cuts. The shot boundary detection algorithm em-
ployed canbe summarized as follows: Let fi and fi−1 denote two consecutive frames
in a video clip. Let If denote the intensity histogram of a frame f . For a consecutive
frame pair (fi−1, fi), let di denote the histogram intersection [18] distance between
Ifi−1 and Ifi . By using histogram intersection technique, di can be found by

di = 1 − SIfi
,Ifi−1

= 1 −
∑n

i min(Ifi [i], Ifi−1 [i])

min(|Ifi |, |Ifi−1 |)
, (5)

where |Ifi | denotes the L1-norm (i.e., length) of an histogram Ifi . If di ≥ t1, then i
is introduced as a shot boundary, or a cut.The value for t1 is estimatedby trial-error
technique and it is found that 0.3763 gives best results for the video clips tested so
far. A further improvement is made on the algorithm to increase the success rate.
The algorithm starts with a lower t1 value and extracts shot boundary candidates
first. Then, it computes pixel-wise distance dp

i between fi−1 and fi, where i is a
shot boundary candidate. If dp

i ≥ t2, then i is introduced as a shot boundary. The
experiments show that t1 = 0.3 and t2 = 0.13 give promising results.

3.3 Event Information Extraction Module

This module is intended to ‘annotate’ video frame intervals based on event la-
bels, objects appearing within the interval, and low-level feature descriptions for

170 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

the event objects. There are some specific types of events, which are important
for indoor visual surveillance to detect suspicious events. A person depositing or
picking up an object and two people crossing over are examples for two impor-
tant events. People/object entering or leaving the scene, people/object joining or
splitting can be considered as sub-events to detect suspicious events [15].

The inputs to this module are the moving objects (or moving object groups)
at a frame. Our object tracking module identifies a moving object group as
a single moving object until the objects in the group are separated, as de-
scribed in [7]. Counting the number of moving objects also gives an impor-
tant clue for detecting the events, since the number of moving objects changes
at the time of the events. We also keep track of spatial (directional and topo-
logical) relations among the moving objects within the event detection algo-
rithm.

Figure 3 illustrates the detection of events. For example, deposit event is
detected as follows: The object tracking module detects A and B as a moving
object group first at time T1. Then, they are identified as two separate mov-
ing objects by the same module through some algorithms used in [7]. Hence, at
time T2, the objects A and B are detected as they are moving separately. At
time T2+1, the only detected moving object is A. Therefore, a potential deposit
event is detected at frame T2. The spatial relations among the moving objects
are determined in addition to the tracking of the moving objects, which increases
the accuracy of the event detection process. The detection process for the other
types of events is similar to that of the deposit event. Refinements on this event
detection algorithm have been carried out continuously to end up with a better
scheme.

The event information extraction module can be summarized as follows:
based on the above depositing event example, the event is detected at time
T2. Hence, the event information is stored based on the status at time T2. This
type of information storage is reasonable because the status at the time of the
suspicious event is of interest while querying. For each frame that an event is
identified, the objects appearing on that frame (A and B in this example) are
stored in Event and Object Database along with their low-level features and
the spatial relations among them. The low-level object features stored are color
vector and shape vector, which is a composition of angular span and distance
span [19].

3.4 Query Processing Module

One of the most important tasks in automated visual surveillance is the query
processing module. Basically textual searches for event queries are supported
in the existing systems. Some systems support object queries as well to some
extent. It is observed that there might be a need for enhancing object queries
with color and/or shape descriptions. In addition to this enhancement, allowing
directional relation specifications among objects within suspicious events might
be helpful in some domains.

A Database Model for Querying Visual Surveillance Videos 171

A

B

A

B

A

1 moving object group

…

 T1 T2 T2+1

2 moving objects 1 moving object

(a)

A A

B

A

1 moving object

…

 T1 T2 T2+1

2 moving objects 1 moving object group

A

B

(b)

A

B

A

B

A

B

2 moving objects

 T1 T2 T2+1

1 moving object group 2 moving objects

(c)

Fig. 3. Detection of Events. (a) Deposit, (b) Pick Up, and (c) Crossover.

Query Types: The main contribution of the querying module in our system is
providing support to a wide range of event and object queries. A classification
of the types of queries handled can be listed as follows:

– Single Object Queries,
• Object Entering/Leaving Scene,

– Multi-Object Queries,
• Object Depositing/Object Picking Up,
• Objects Crossing Over.

We plan to extend the framework to support queries based on suspicious
events in surveillance videos. By adding low-level and/or spatial sub-queries,
more complex queries can be submitted to the system. Spatial sub-queries are

172 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

more meaningful for queries involving multiple objects. However, low-level sub-
queries can be supplied for each object. In real-life applications, low-level sub-
query specification with high-level descriptors might be sufficient (e.g., a man
with a black coat entering scene).

Query Language: An SQL-based querying language, which we call Visual
Surveillance Query Language (VSQL), is designed to provide support for inte-
grated querying of indoor visual surveillance videos by spatial, semantic, and
low-level features. The query processing module extends the querying capability
by allowing low-level object feature specifications as well as spatial relationships
among the objects. In short, VSQL provides support for semantic (suspicious
event), spatial (relationships among objects), and low-level (object features at
a specific suspicious event) sub-queries for visual surveillance domain. Seman-
tic sub-queries can be coupled with either spatial or low-level, or both, to form
complex queries. A grammar for VSQL is presented in Appendix A.

VSQL identifies two single-object event conditions (enter, leave), and three
multi-object event conditions (deposit, pickup, and crossover) in a scenario. The
moving objects, detected by the system, are assigned semantic labels, namely
person, object, pet, other, from a pre-defined set of labels based on the similarity
of the contour polygons of the objects as described in [20]. The query processor
counts the number of moving objects specified in a query by tracing the enter
event conditions. A timegap value can be specified between event conditions.
The order of the events is considered to be unimportant if a timegap value is not
specified for an event condition pair of the same type (i.e., pair of single-object
conditions or pair of multi-object event conditions).

Query Processing: The event and object information stored in the database is
based on the frames at which an event is detected. This information includes the
low-level features of the objects appearing on that frame and the spatial relations
among them. By maintaining the directional relations among the objects, event
querying can be refined by specifying directional predicates in the query. For
example, while querying an event of ‘a person depositing an object’, the query
can be enriched by directional predicates so that ‘a person depositing an object
to his west’ can also be queried. Moreover, since the low-level features of moving
objects are also stored, more detailed queries can be submitted to the system
effectively.

Based on the observation that rule-based model is effective for querying
video databases [21,22], a rule-based model has been designed for querying vi-
sual surveillance videos. Our framework is to provide support for scenario-based
queries which are very difficult to handle in real-time systems. The submitted
queries are sent to Prolog, which processes the extracted event, and object in-
formation is stored in the database (i.e., knowledge-base) based on a set of rules.
Prior to the processing by Prolog, the query string is passed through lexical an-
alyzer and a parse tree is created. We are planning to embed a similarity-based
metric in this querying process, which will be used as a confidence value for
the user.

A Database Model for Querying Visual Surveillance Videos 173

3.5 Content-Based Retrieval Module

In this section, some real-life querying scenarios are provided. We assumed a
lobby of a hotel as our indoor environment for these scenarios. Since our system
focuses on database querying and retrieval issues, it is assumed that there is a
need to query the suspicious situation given in the scenarios. A real-time visual
surveillance system has to detect such cases and inform the human operator
for more security. It is also possible that the human operator does not see any
danger in the situation at the time of the event. However, he may be informed
later on that a dangerous situation has happened in one of the events triggered
by the system. Based on this argument, the assumption of the need to query
suspicious situations is not superficial.

Scenario 1: A person with a black coat enters a lobby.

select objectA from 1 where
objectA = objdata(class = person, color = black) and enter(objectA)

The event is a simple object appearance type of query. It is assumed that the
dominant color of the person is black, which is the color of his coat.

Scenario 2: A person enters a lobby with a bag, deposits his bag, and leaves the
lobby.

select segment from 1 where
objectA = objdata(class = person), objectB = objdata(class = object)
and enter(objectA) enter(objectB) deposit(objectA,objectB) leave(objectA)

The event described in this scenario is very crucial because unattended bags are
one of the primary sources of suspicious situations in indoor environments. Ad-
ditional descriptors for both person and bag improve the quality of the retrieval.
Directional descriptors can be added as well since the directional relations are
stored. Hence, the query phrase ‘deposits his bag’ can be refined by ‘deposits his
bag to his west’, which might give better results. Then, the deposit condition
will be as follows:

deposit(objectA,objectB,west)

Scenario 3: A person enters a lobby with a bag, after 3 seconds another person
enters the lobby, two persons meet and exchange the bag, then they leave the
lobby.

select segment from 1 where
objectA = objdata(class = person), objectB = objdata(class = object),
objectC = objdata(class = person) and
enter(objectA) enter(objectB) 3 enter(objectC)
crossover(objectA,objectC) deposit(objectA,objectB)
pickup(objectC,objectB) leave(objectA) leave(objectC)

This scenario is an example of a ‘cross-over’, and generally real-time systems
detect such events and inform human operators. If we consider a quite crowded
lobby, the number of crossovers is relatively large. Hence, providing additional

174 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

descriptors for persons and/or bag (both low-level and directional) decreases the
number of possible results of querying. This directly shortens the time and helps
the security persons to catch the intruders.

Scenario 4: A person with a black coat enters a lobby with a yellow bag, deposits
the bag, another person with a white coat enters the lobby, picks up the bag.

select segment from 1 where
objectA = objdata(class = person, color = black),
objectB = objdata(class = object, color = yellow),
objectC = objdata(class = person, color = white) and
enter(objectA) enter(objectB) deposit(objectA,objectB)
enter(objectC) pickup(objectC,objectB)

This scenario describes a sequence of deposit and pickup events without
crossover. Color descriptors are added for all of the objects acting in the sce-
nario. The leaving times of the persons are not of interest for the querying of
the event.

As mentioned in the scenarios, the suspicious events can be queried by adding
low-level features to (moving) objects and/or directional relations for the event.
This type of querying improves the retrieval quality and decreases the search
space. These gains are more meaningful when the number of events to be searched
in the database is relatively large.

4 Conclusion

In this paper, we propose a database model for an integrated querying of visual
surveillance videos by semantic and low-level features. The application domain
chosen is indoor monitoring environment video, which fits most into our assump-
tions and which is simpler than other complex environments. The system has
a database population process that extracts necessary event and object infor-
mation for effective querying. An SQL-based querying language is designed to
express the query types. A wide range of event and object queries including
semantic, spatial, and low-level is supported.

As the database modeling process is evolving, improvements will be made
both in terms of database population and querying-and-retrieval processes. The
design and implementation of the query processing module is an ongoing project,
hence the above improvements will be employed accordingly to handle a wide
range of query set effectively.

References

1. Stringa, E., Regazzoni, C.: Real-time video-shot detection for scene surveillance
applications. IEEE Trans. on Image Processing 9 (2000) 69–79

2. Foresti, G., Marcenaro, L., Regazzoni, C.: Automatic detection and indexing of
video-event shots for surveillance applications. IEEE Trans. on Multimedia 4
(2002) 459–471

A Database Model for Querying Visual Surveillance Videos 175

3. Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tol-
liver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video
surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Carnegie Mel-
lon University, The Robotics Institute (2000)

4. Brodsky, T., Cohen, R., Cohen-Solal, E., Gutta, S., Lyons, D., Philomin, V., Tra-
jkovic, M.: Visual surveillance in retail stores and in the home. In: Video-Based
Surveillance Systems: Computer Vision and Distributed Processing, Kluwer Aca-
demic Pub. (2001) 51–65

5. Latecki, L., Wen, X., Ghubade, N.: Detection of changes in surveillance videos. In:
IEEE Conf. on Adv. Video and Signal Based Surv. (AVSS’03). (2003) 237–242

6. Stefano, L.D., Mattoccia, S., Mola, M.: A change-detection algorithm based on
structure and colour. In: IEEE Conf. on Adv. Video and Signal Based Surv.
(AVSS’03). (2003) 252–259

7. Töreyin, B., Çetin, A., Aksay, A., Akhan, M.: Moving object detection in wavelet
compressed video. Signal Processing: Image Communication 20 (2005) 255–264

8. Jung, Y., Lee, K., Ho, Y.: Content-based event retrieval using semantic scene in-
terpretation for automated traffic surveillance. IEEE Trans. on Intelligent Trans-
portation Systems 2 (2001) 151–163

9. Eaton, R., Scassellati, B.: ViSIT: Visual surveillance and interaction tracking. In:
http://zoo.cs.yale.edu/classes/cs490/02-03a/ross.eaton/. (Social Robotics
Laboratory, Yale University, accessed at February 27, 2005)

10. Stringa, E., Regazzoni, C.: Content-based retrieval and real time detection from
video sequences acquired by surveillance systems. In: Int. Conf. on Image Process-
ing. (1998) 138–142

11. Regazzoni, C., Sacchi, C., Stringa, E.: Remote detection of abandoned objects in
unattended railway stations by using a DS/CDMA video surveillance system. In
Regazzoni, C., Fabri, G., Vernezza, G., eds.: Advanced Video-Based Surveillance
System, Boston, MA: Kluwer (1998) 165–178

12. Kim, C., Hwang, J.: Fast and automatic video object segmentation and tracking
for content-based applications. IEEE Trans. on Circuits and Systems for Video
Technology 12 (2002) 122–129

13. Kim, C., Hwang, J.: Object-based video abstraction for video surveillance systems.
IEEE Trans. on Circuits and Systems for Video Technology 12 (2002) 1128–1138

14. Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern
Analysis and Machine Intelligence 8 (1986) 679–698

15. Lyons, D., Brodsky, T., Cohen-Solal, E., Elgammal, A.: Video content analysis for
surveillance applications. In: Philips Digital Video Technologies Workshop. (2000)

16. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background
subtraction. In: Int. Conf. on Computer Vision and Pattern Recognition, Workshop
on Motion. (1999)

17. Haritaoğlu, İ., Harwood, D., Davis, L.: W4: Real-time surveillance of people and
their activities. IEEE Trans. on Pattern Analysis and Machine Intelligence 22
(2000) 809–830

18. Swain, M., Ballard, D.: Color indexing. Int. J. of Comp. Vis. 7 (1991) 11–32
19. Şaykol, E., Sinop, A., Güdükbay, U., Ulusoy, Ö., Çetin, E.: Content-based retrieval

of historical Ottoman documents stored as textual images. IEEE Trans. on Image
Processing 13 (2004) 314–325

20. Dedeoğlu, Y.: Moving object detection, tracking and classification for smart video
surveillance. Technical Report BU-CE-0412, Bilkent University, Dept. of Computer
Eng., http://www.cs.bilkent.edu.tr/~tech-reports/2004/BU-CE-0412.pdf (2004)

176 E. Şaykol, U. Güdükbay, and Ö. Ulusoy

21. Dönderler, M., Şaykol, E., Arslan, U., Ulusoy, Ö., Güdükbay, U.: BilVideo: Design
and implementation of a video database management system. Multimedia Tools
and Applications (accepted for publication) (2005)

22. Dönderler, M., Ö.Ulusoy, Güdükbay, U.: Rule-based spatio-temporal query pro-
cessing for video databases. The VLDB Journal 13 (2004) 86–103

A Grammar for Visual Surveillance Querying
Language(VSQL)

Visual Surveillance Query Language (VSQL) is designed to provide support for
integrated querying of indoor visual surveillance videos by spatial, semantic, and
low-level features.
/* main query string */
<query> := select <target> from <range> [where <querycondition>] ‘;’

/* main query string components */
<target> := event | <objectlist> | segment
<objectlist> := [<objectlist> ‘,’] <objlabel>
<range> := all | <videolist>
<videolist> := [<videolist> ‘,’] <vid>
<querycondition> := <objectassignmentlist> and <scenario>
<objectassignmentlist> := [<objectassignmentlist> ‘,’] <objectassignment>
<scenario> := [<scenario> <timegap>] <eventcondition>
<eventcondition> := <entercondition> | <leavecondition>

| <depositcondition> | <pickupcondition> | <crossovercondition>
<objectassignment> := <objlabel> <objoperator> <objcondition>

/* single object query conditions */
<entercondition> := enter ‘(’ <objlabel> ‘)’
<leavecondition> := leave ‘(’ <objlabel> ‘)’

/* multi object query conditions */
<depositcondition> := deposit ‘(’ <multiobjcondition> ‘)’
<pickupcondition> := deposit ‘(’ <multiobjcondition> ‘)’
<crossovercondition> := crossover ‘(’ <multiobjcondition> ‘)’
<multiobjcondition> := <objlabel> ‘,’ <objlabel> [‘,’ <directional>]
<directional> := west | east | north | south | northeast | southeast

| northwest | southwest

/* object condition */
<objcondition> := objdata ‘(’ <objdesclist> ‘)’
<objdesclist> := [<objdesclist> ‘,’] <objdesc>
<objdesc> := class ‘=’ <classvalue> | <colordesc> | <shapedesc> | <texturedesc>
<colordesc> := color ‘=’ <colorlabel> | <colorvector>
<shapedesc> := [<shapedesc> ‘,’] <shapepair>
<texturedesc> := texture ‘=’ <textureid>
<colorvector> := [<colorvector> ‘,’] <colorpair>
<colorpair> := ‘(’ <intvalue> ‘,’ <doublevalue> ‘)’
<shapepair> := ‘(’ <intvalue> ‘,’ <doublevalue> ‘)’

/* primitive types */
<vid> := (1-9)(0-9)*
<timegap> := null | <intvalue>
<objlabel> := (a-z)(A-Za-z0-9)*
<objoperator> := ‘=’ | ‘‘!=’’
<classvalue> := person | object | pet | other
<intvalue> := (1-9)(0-9)*
<doublevalue> := <intvalue> ‘.’ <intvalue>
<colorlabel> := red | green | blue | yellow | white | black | orange | violet
<textureid> := (1-9)(0-9)* /* enumerated set of texture patterns */

	Introduction
	Related Work
	A Database Framework for an Integrated Querying of Visual Surveillance
	Object Extraction and Tracking Module
	Shot Boundary Detection Module
	Event Information Extraction Module
	Query Processing Module
	Content-Based Retrieval Module

	Conclusion
	Grammar for Visual Surveillance Querying Language(VSQL)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

